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Minireview
Protein solubility is a critical factor in the production of recombinant proteins, which are 
widely used in various industries, including pharmaceuticals, diagnostics, and biotechnolo-
gy. Predicting protein solubility remains a challenging task due to the complexity of protein 
structures and the multitude of factors influencing solubility. Recent advances in computa-
tional methods, particularly those based on machine learning, have provided powerful tools 
for predicting protein solubility, thereby reducing the need for extensive experimental trials. 
This review provides an overview of current computational approaches to predict protein 
solubility. We discuss the datasets, features, and algorithms employed in these models. The 
review aims to bridge the gap between computational predictions and experimental valida-
tions, fostering the development of more accurate and reliable solubility prediction models 
that can significantly enhance recombinant protein production.

Keywords: biotechnology, machine learning, protein solubility, recombinant protein, solu-

bility prediction

Introduction

Recombinant proteins are indispensable in biotechnology and bioin-
dustry since they are widely used for various purposes, including disease 
diagnosis and treatment (Arendt et al., 2016; Demain & Vaishnav, 2009; 
Morales-Alvarez et al., 2013; Singh et al., 2013), environmental bioreme-
diation (Aer et al., 2024; Wang et al., 2019), industrial bioprocessing 
(Godawat et al., 2015; Tripathi & Shrivastava, 2019). Despite of the impor-
tance of recombinant proteins, approximately 35% of proteins being in-
soluble and around 25% being soluble but prone to aggregation at high 
concentrations (Fang & Fang, 2013; Samak et al., 2012). Enhancing solu-
bility significantly improves the functional quality of recombinant pro-
teins and reduces physiological burdens during their production in bac-
terial hosts by minimizing aggregation, misfolding, and cellular stress (De 
Simone et al., 2011; Gopal & Kumar, 2013; Xiao et al., 2014). Therefore, 
enhancing protein solubility is a challenge in the production and use of 
recombinant proteins in bioindustry (Bhatwa et al., 2021).

To date, numerous strategies have been developed to enhance the 
solubility of recombinant proteins that are insoluble or prone to aggre-
gation (Ghosh et al., 2004). These strategies include producing proteins 
at low expression level, optimizing media composition, and incubating 
at lower temperatures to prevent aggregation (Gutierrez-Gonzalez et al., 
2019; Taylor et al., 2017). Another widely accepted approach is to utilize 
globular and soluble fusion partners such as glutathione-S-transferase 
(GST) and maltose-binding protein (MBP), which are well-known for en-
hancing the solubility of fused recombinant proteins (Esposito & Chatter-
jee, 2006; Nallamsetty & Waugh, 2007). However, these fusion tags are 

relatively large and consume additional nutrients, thereby reducing re-
combinant protein production. To address the size issue, short fusion 
tags have been developed, including small ubiquitin-like modifier 
(SUMO) (Saitoh et al., 2009), thioredoxin (TrxA) (LaVallie et al., 2000), and 
short disordered peptides (Ren et al., 2022; Tang et al., 2024). Despite 
their benefits, these tags are not universally applicable to all recombi-
nant proteins, which necessitates ad hoc experimental trials to identify 
an effective partner or tag for each specific protein. This creates a signifi-
cant demand for computational methods that can accurately predict 
protein solubility, thereby reducing the need for labor-intensive experi-
mental approaches.

Despite the importance of computational prediction of protein solu-
bility, it remains a challenging endeavor due to the complex nature of 
proteins and the multitude of factors influencing their solubility (Hou et 
al., 2020; Yang et al., 2021). Advances in high-throughput experimental 
techniques have enabled the accumulation of extensive protein solubili-
ty data across multiple species (Velecky et al., 2022). This accumulating 
data paves the way for developing computational models capable of 
predicting solubility based on protein sequences and structures (Habibi 
et al., 2014).

In this review, we introduce computational methods for predicting 
protein solubility, emphasizing the principles behind these techniques 
and highlighting accessible online resources. We discuss the advantages 
and limitations of the approaches.

Machine learning (ML), a subset of artificial intelligence, enables algo-
rithms to identify patterns in data without explicit programming. In the 
context of protein solubility prediction, ML is primarily applied through 
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supervised learning, where models are trained on labeled datasets con-
taining known solubility outcomes (i.e., soluble or insoluble proteins). 
These models, once trained, can generalize to predict solubility for un-
seen proteins based on input features. The core objective of these mod-
els is to achieve predictive accuracy by learning from the underlying data 
structure while mitigating issues such as overfitting, which can compro-
mise generalization to new datasets.

Fig. 1 illustrates the general workflow involved in machine learn-
ing-based protein solubility prediction. The process commences with 
data collection from curated protein solubility datasets. Following this, 
feature extraction takes place, where relevant attributes (features), such 
as sequence information or structural properties, are computed. These 
extracted features are then used during model training, where the algo-
rithm learns from the training data. Finally, the trained model undergoes 
evaluation and is applied to predict the solubility of novel proteins. This 
figure encapsulates the iterative nature of the process, highlighting the 
critical stages necessary for building and validating a predictive model 
while addressing common challenges like overfitting.

Computational Models for Protein Solubility 
Prediction

Developed solubility prediction models to date are summarized in Ta-
ble 1, including their approach, datasets used for training and testing, 
features, and employed learning algorithms, their performances, and 
their availability. Most prediction methods are classification models that 
determine whether a given protein is soluble or insoluble (Habibi et al., 
2014). However, owing to the advance of high-throughput experiment 
techniques and accumulating data, regression models capable of pre-
dicting absolute solubility, such as soluble fraction or percentage, have 
been developed (Han et al., 2019, 2020).

Solubility prediction models utilize primarily sequence-derived fea-
tures such as residue compositions, conserved sequence patterns, physi-
cochemical properties calculated from sequences, etc. Recent models 
also utilize the features obtained from protein 3D structures due to accu-
mulating data of protein structures and advances in structure prediction 
methods (Hou et al., 2020), including secondary structures, solvent ac-
cessibility surface area, backbone torsion angles, residue contact map, 
etc., which offer insights into residue interactions and their impact on 
solubility (Chen et al., 2021; Hou et al., 2020).

In the following sections, we will introduce the datasets used for learn-
ing prediction models, the features used for learning, developed models 
and their applications in bioindustry, and challenges in developing solu-
bility prediction methods.

Datasets for Model Development

For accurate model learning, it is necessary to compile a large amount 
of protein solubility data. Conventional small-scale random mutagenesis 
experiments provide detailed insights into how individual mutations af-
fect protein solubility, offering mechanistic understanding for protein 
engineering (Tachioka et al., 2016). However, these low-throughput ex-
periments are labor-intensive and time-consuming, have inherent bias 
due to the focus on specific mutation positions and types, and thereby 
have limited generalizability.

Databases containing protein expression information can provide 
whether proteins are soluble or not, because well-expressed proteins are 
mostly soluble. Qualitative solubility data have been compiled by infer-
ring protein expression status from protein data bank (PDB) and target 
registration database (TargetDB), which have annotations about protein 
expression (Burley et al., 2019; De Cesco et al., 2020). Basically, most pro-
teins deposited in PDB are soluble and these proteins can be extracted 

Fig. 1. Schematic illustration depicting the general workflow of machine learning-based approaches for predicting protein solubility. This 
workflow encompasses various stages, including data collection, identification of feature types, feature extraction, feature selection, model 
training/testing, and the final solubility prediction.
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using the annotation about the expression system used. TargetDB is a 
database in which diverse biological information on therapeutic target 
proteins are aggregated (De Cesco et al., 2020). This database also tracks 
the progress of protein targets through various stages of production and 
structure determination, and serves an annotation of protein status 
whether soluble or not. Qualitative solubility data over 10,000 have been 
collected from these two databases and have been utilized for learning 
models classifying whether a protein is soluble or not. For the accurate 
development of protein solubility prediction models, it is essential to 
compile extensive and diverse solubility datasets. Such datasets enhance 
the model’s ability to generalize across a wide variety of protein sequenc-
es, thereby improving the accuracy of solubility predictions. The PDB and 
TargetDB provide valuable qualitative solubility data inferred from pro-
tein expression statuses.

Similarly, TargetTrack database contains information on experimental 
expression state of proteins, which implies solubility (Berman et al., 
2017). The peptide crystallization database (pepcDB) is another data-
base, which compiles empirical data from individual experiments fo-
cused on the crystallization of peptides and small proteins (Kouranov et 
al., 2006). The pepcDB stores target and protocol information contribut-
ed by Protein Structure Initiative centers as well as target proteins depos-
ited in the TargetDB. The pepcDB database compiles over 80,000 proteins 
with solubility information (Kouranov et al., 2006). Qualitative protein 
solubility data extracted from these databases have been instrumental in 
developing solubility prediction classifiers. They help mitigate bias from 
imbalanced datasets, where certain classes of proteins (e.g., soluble vs. 
insoluble) are overrepresented, and improve model validation when ap-
plied to new, unseen data.

Despite the large number of qualitative solubility data and developed 
classifiers based on the data, now there is a high demand for models ca-
pable of predicting quantitative solubilities for enhanced protein engi-
neering. Recent advances in high-throughput methods, especially cell-
free methods, have enabled to test a large number of proteins in parallel, 
allowing for generating expansive datasets that help capture the correla-
tion between protein sequence and solubility. The eSOL dataset is a 
comprehensive collection of solubility data for E. coli proteins (Delaney, 
2004). The whole open reading frames (ORF) of E. coli were individually 
amplified by PCR, systematically expressed using the in vitro translation 
system (PURE system) (Cui et al., 2022), and their solubility were mea-
sured at a high-throughput scale. The collected data provide compre-
hensive solubility profiles for many proteins. This quantitative data is in-
valuable for developing predictive models that assess not only whether 
a protein will be soluble but also the degree of its solubility. Such preci-
sion enhances the model’s performance, particularly in distinguishing 
subtle differences in solubility among closely related proteins. Further-
more, quantitative datasets enable advanced feature selection tech-
niques that identify the most relevant features influencing solubility, 
which is essential for constructing a robust model.

By leveraging these datasets, machine learning models can achieve 
greater accuracy in predicting solubility across various protein sequences 
and types. This reduces the reliance on trial-and-error experimental test-
ing, facilitating more efficient protein production in biotechnological ap-
plications.

Features and Feature Calculation Tools

For model learning, diverse properties (features) at residue level or 
protein level should be generated from sequences, and the features 
highly correlated with protein solubility are used by learning algorithms 
to determine whether a protein is soluble or not, or the percentage of 
solubility.

There are many different sequence-based features that can be calcu-
lated or predicted from protein sequences. The simplest features extract-
ed from sequences are the compositions of amino acids, dipeptides, and 
tripeptides, and the content of charged residues, turn-forming residues, 
etc., since soluble proteins have statistical preferences to certain residues 
(Cao et al., 2013, 2015; Chen et al., 2022; Pande et al., 2023; Xiao et al., 
2015). Physicochemical properties including hydrophobicity, net charge, 
etc. can be also calculated from protein sequences. Of diverse physico-
chemical properties, hydrophobicity or aliphatic index gauges the ten-
dency of proteins to repel water, thereby influencing solubility (Gross-
mann & McClements, 2023). Evolutionary conserved sequences repre-
sented by position-specific scoring matrix (PSSM) or hidden Markov 
model can be also used as features since like the residue preference there 
are conserved regions or sequences in proteins that are more frequently 
found within soluble proteins (Bystroff & Krogh, 2008; Wang et al., 2017). 
While sequence-based features offer foundational insights into protein 
solubility, structure-based features provide essential contextual and de-
tailed information. The spatial arrangement of amino acids affects their 
interactions with each other and with solvents, which in turn directly in-
fluences protein solubility (Aguirre-Plans et al., 2021). This relationship 
improves the accuracy and depth of solubility predictions. For example, 
protein globularity is one of the structural features that has been cor-
related with solubility. Globular proteins, e.g., glutathione S-transferase 
and maltose-binding protein, are highly soluble and are commonly used 
as a fusion partner to solubilize recombinant proteins (Nallamsetty & 
Waugh, 2007). In addition to globularity, many diverse features can be 
obtained from protein structures. Secondary structure contents (helix, 
sheet, and loop), backbone torsion angles, protein contact map, etc. are 
also important features that determine protein 3D structure and internal 
residue interactions, and thereby affect solubility (Hou et al., 2020; Kuhl-
man & Bradley, 2019). B-factor representing atomic mobility and flexibili-
ty gives an insight into how proteins maintain solubility (Sun et al., 2019). 
Solvent accessibility, accessible surface area, solvation energy, etc. repre-
sent interactions with water molecules, determining solubility (Durham 
et al., 2009).

These structure-based features require precise protein structures to 
accurately determining atomic level property calculations, which ham-
pered the development of structure-based prediction models since 
structure determination is biologically laborious process and difficult to 
obtain large number of protein structures (Chen et al., 2021). However, 
owing to recent advances in computational protein structure prediction 
methods, highly accurate protein structures are now easily obtained in 
silico (Liu et al., 2022; Pak et al., 2023; Ruff & Pappu, 2021). While these 
methods offer valuable insights, they may not fully capture the complex-
ity of experimentally derived structures, particularly in regions where 
flexibility or disorder affects solubility (Chen et al., 2021; Hou et al., 2020). 
Therefore, it is crucial to account for potential discrepancies in models 
trained on predicted data to prevent error propagation. Integrating both 
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high-quality experimental data and predicted structures is essential for 
improving the robustness and accuracy of solubility prediction models 
(Jumper et al., 2021; Liu et al., 2022; Ruff & Pappu, 2021). This combined 
approach leverages the precision of experimental data alongside the 
scalability of in silico methods, allowing for more comprehensive data-
sets that enhance the reliability of machine learning models in protein 
solubility prediction.

Meanwhile, due to the tedious and repetitive nature of feature calcu-
lation, numerous computational tools have been developed to facilitate 
this process, allowing users to easily download and utilize them for ex-
tracting a wide range of features. Available tools for feature calculation 
are listed in Table 2. Specifically, PROFEAT computes a wide range of pro-
tein features, including residue compositions, physicochemical proper-
ties, and secondary structures (Zhang et al., 2017). These biochemical 
characteristics allows to predict various aspects of protein function and 
behavior. Additionally, tools such as iFeatureOmega, Pfeature, protr, Pro-
py, and Rcpi generate a comprehensive set of sequence-based features 
including PSSM (Cao et al., 2013, 2015; Chen et al., 2022; Pande et al., 
2023; Xiao et al., 2015). POSSUM generates and analyzes PSSMs from 
protein sequences, aiding in the identification of conserved motifs and 
functional sites within proteins (Wang et al., 2017). PDBparam computes 
detailed properties based on protein 3D structure, including charge dis-
tribution, accessible surface area, hydrophobicity patterns, secondary 
structure elements, structural flexibility, and inter-residue contact dis-
tances, etc. (Nagarajan et al., 2016). More accurate protein solubility pre-
diction models can be developed with ease by utilizing these publicly 

available tools and their calculated diverse features.

Overview of Computation Models, Algorithms, 
and Features for Protein Solubility Prediction

Protein solubility prediction models reported to date are summarized 
in Table 1, and briefly introduced in the following subsections. The PRO-
SO, PROSO II, SOLpro, DeepSol, PaRSnIP, NetSolP, PROTSOLM, PLM_Sol, 
DeepSoluE and SoluProt are classification models that are able to deter-
mine which proteins are soluble and which are insoluble. SOLart (Hou et 
al., 2020), Han et al.’s (2020) Support Vector Regression (SVR) model, and 
GraphSol (Chen et al., 2021) are regression models estimating the precise 
numerical value of protein solubility, providing quantitative predictions, 
which can be useful for fine-tuning protein sequences for industrial ap-
plications.

To better interpret the performance of these models, it is important to 
contextualize common evaluation metrics. Accuracy measures how of-
ten the model correctly predicts solubility. Scores above 0.70 typically in-
dicate strong model performance. For instance, DeepSol achieved an ac-
curacy of 77%, reflecting its high predictive reliability (Khurana et al., 
2018). However, models with accuracy around 0.60, like SoluProt with 
58.5% accuracy (Hon et al., 2021), can still be valuable depending on the 
dataset and application.

Another important metric is the Matthews Correlation Coefficient 
(MCC), which assesses the balance between true positive and false posi-
tive rates. An MCC value greater than 0.50, such as DeepSol’s 0.55 (Khura-

Table 2. Feature generation tools

Tool name Number of 
features Feature URL References

PROFEAT <  2,000 Residue compositions, physicochemical properties, 
sequence order and secondary structures, topological 
characteristics, interaction patterns, and other network 
properties

http://bidd2.nus.edu.sg/cgi-bin/pro-
feat2016/main.cgi*

Zhang et al. (2017)

iFeatureOmega >  18,000 Residue compositions, physicochemical properties, 
sequence order and secondary structures, half sphere 
exposure, residue depth, atom composition and 
network-based index

https://github.com/Superzchen/iFeatu-
reOmega-CLI

Chen et al. (2022)

protr 22,700 Residue compositions, physicochemical properties, 
secondary structure, similarity score, customizable 
descriptors (AAindex database), Auxiliary functions

https://github.com/nanxstats/protr Xiao et al. (2015)

Rcpi >  10,000 Residue composition, physicochemical properties, 
secondary structures, PSSM profile, PCM, GO similarity, 
sequence similarity. Rcpi also provides compound-
related features and protein-compound/protein-protein 
interactions features

https://github.com/nanxstats/Rcpi Cao et al. (2015)

Propy 9,547 Residue compositions, physicochemical properties, 
sequence order coupling numbers, pseudo amino acids 
compositions.

https://github.com/MartinThoma/pro-
py3

Cao et al. (2013)

PDBparam >  50 Physicochemical properties, secondary structures, inter-
residue interactions, identification of binding sites from 
PDB structure

https://www.iitm.ac.in/bioinfo/pdb-
param/index.html

Nagarajan et al. (2016)

POSSUM 12,010 PSSM-based features https://possum.erc.monash.edu/ Wang et al. (2017)
Pfeature 200,000+ Diverse sequence-based features, binary profiles, 

evolutionary information based on PSSM, structural 
features, and pattern-based features

https://github.com/raghavagps/Pfea-
ture

Pande et al. (2023)

*Not accessible at the time of manuscript preparation.
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na et al., 2018), suggests balanced performance, whereas lower MCC val-
ues, like SoluProt’s 0.17 (Hou et al., 2020) may still hold relevance in spe-
cific tasks, such as sequence prioritization.

For regression models, R2 values between 0.40 and 0.60 are typical 
due to the complexity of protein solubility prediction (Chen et al., 2021; 
Hou et al., 2020). These values represent how well the model can explain 
the variance in protein solubility, making these models useful for 
fine-tuning protein engineering strategies.

The computational models described in this review employ a variety 
of algorithms and datasets, providing a comprehensive exploration of 
different approaches to predict protein solubility. Each algorithm has its 
strengths and weaknesses in capturing patterns within data. For in-
stance, while some algorithms like support vector machines (SVM) excel 
at handling non-linear relationships, others, like neural networks, are 
better suited for capturing complex interactions within high-dimension-
al data. This diversity enables models to capture distinct patterns from 
the input data, thereby allowing for generalization across a wide spec-
trum of protein sequences. The models like PaRSnIP and DeepSol lever-
age different machine learning techniques such as gradient boosting 
machines and convolutional neural networks, respectively, which pro-
cess features in unique ways.

The use of varied datasets also enhances model generalizability. Di-
verse training data enables models to predict solubility across a broader 
range of protein sequences, thus improving their robustness and appli-
cability to real-world scenarios. However, despite the potential advantag-
es of changing algorithms and datasets, the inherent complexity of pro-
tein solubility prediction may limit the extent to which accuracy scores 
can be improved. Consequently, model performances often plateau even 
with different algorithms and datasets. For classification models, accura-
cy scores typically range between 0.72 and 0.77, with MCC values stabi-
lizing around 0.5. For regression models, R2 values typically fall between 
0.4 and 0.6, reflecting the inherent difficulty in modeling the quantitative 
aspects of solubility.

To achieve substantial improvements in predictive performance, espe-
cially beyond these thresholds, more diverse and comprehensive data-
sets are essential. Additionally, incorporating higher-order features, such 
as structure-based properties, could further refine these models. Howev-
er, until such datasets and features become widely available, substantial 
advancements in accuracy, MCC, or R2 are unlikely, regardless of algorith-
mic improvements.
PROSO, PROSO II, SOLpro : PROSO, SOLpro, and PROSO II, developed a 
decade ago, are classification models designed to distinguish between 
soluble and insoluble proteins (Magnan et al., 2009; Smialowski et al., 
2007, 2012). PROSO was trained on E. coli dataset compiled from Tar-
getDB and PDB, which included over 14,000 proteins. SOLpro was 
trained using the dataset of 17,408 E. coli proteins, which were collected 
from PDB, SwissProt, and TargetDB, and the dataset of Idicula-Thomas 
and Balaji (2005). PROSO II is an updated version of PROSO and was 
trained on 82,299 proteins, a merged dataset of PROSO’s and the pro-
teins from pepcDB database.

The three models utilized sequence-derived features for learning, in-
cluding compositions (amino acid, dipeptides, and tripeptide), physico-
chemical properties (hydropathy, charge, molecular weight, aliphatic in-
dex, etc.), secondary structure composition, exposed residues, number of 
domains, etc. PROSO and SOLpro were initially built based on the 

chained models of SVM but different in the output layer, naïve Bayes in 
PROSO and SVM in SOLpro. PROSO II was built based on the chained 
models of a Parzen window model and a logistic regression classifier 
with an output model of a logistic regression classifier. The accuracies of 
PROSO and SOLpro were 0.72 and 0.74, respectively, when crossvalidat-
ed. The accuracy of PROSO II on an independent test dataset was 0.75.

PROSO has been successfully applied in experimental settings to pre-
dict protein solubility. In validation tests involving 31 mutational variants 
of two different proteins, FGFR1 oncogene partner (FOP) and centro-
some-associated protein 350 (CAP350), PROSO accurately predicted the 
solubility states for the majority of variants. These solubility predictions 
were based on experimental factors such as maximum achievable con-
centration, stability in solution, and the propensity to form aggregates. 
The model’s predictions aligned closely with experimental results, 
demonstrating its effectiveness in reducing reliance on trial-and-error 
approaches in wet-lab experiments.

PROSO is recognized for its computational efficiency and straightfor-
ward implementation, making it a practical option for large-scale solubil-
ity screening. However, its exclusive reliance on sequence-derived fea-
tures limits its predictive capacity, particularly for proteins where solubili-
ty is influenced by higher-order structural properties. PROSO II, while en-
hancing performance through expanded datasets and optimized algo-
rithms, continues to face challenges due to the lack of structural data in-
tegration, which can reduce its effectiveness in accurately predicting sol-
ubility in structurally complex proteins. SOLpro addresses some of these 
limitations by employing a more advanced SVM-based architecture, 
which improves predictive accuracy over earlier models. Nevertheless, 
like PROSO and PROSO II, SOLpro remains constrained by its dependence 
on sequence-based features, limiting its applicability in scenarios where 
solubility is heavily modulated by 3D structural conformation and inter-
actions.
PaRSnIP and DeepSol : PaRSnIP and DeepSol are classification models 
designed to predict soluble proteins (Khurana et al., 2018; Rawi et al., 
2018), which were trained using an E. coli dataset of 69,420 proteins, 
originally derived from the dataset used to train PROSO II, but with a dif-
ferent preprocessing step. Both models were trained using similar fea-
tures including sequence length, molecular weight, fraction of turn 
forming residues, average hydrophathicity, compositions of amino acids, 
dipeptides, and tripeptides, and secondary structures, exposed residues, 
etc. The main difference is the learning algorithm they employed: PaRS-
nIP employed Gradient Boosting Machine (GBM) and DeepSol employed 
convolutional neural network. When the models were evaluated on an 
independent test dataset of 2,001 E. coli proteins (1,000 soluble and 
1,001 insoluble) (Chang et al., 2014), PaRSnIP achieved an accuracy of 
0.74 and a MCC of 0.48, and DeepSol achieved an accuracy of 0.77 with 
an MCC of 0.55. One of PaRSnIP’s key advantages is its ability to provide 
feature importance scores, which allow researchers to identify sequence 
variants that are linked to solubility outcomes. For instance, proteins with 
higher fractions of exposed residues (FER) exhibited improved solubility, 
while tripeptides containing multiple histidines (IHH) were associated 
with a higher likelihood of insolubility (Rawi et al., 2018).

Moreover, PaRSnIP leverages GBM to model complex sequence-de-
rived features efficiently, making it suitable for solubility prediction with 
moderate computational demands. However, its reliance on manually 
engineered features and the absence of structural data limit its general-
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izability, particularly for structurally complex proteins. DeepSol, utilizing 
a convolutional neural network, automates feature extraction, offering 
enhanced accuracy and adaptability across diverse datasets. Nonethe-
less, its dependence on sequence-based data without incorporating 3D 
structural information constrains its predictive capacity for proteins 
where solubility is driven by structural conformation.
SoluProt : SoluProt is also a classification model, trained by GBM using 
the dataset of 11,436 proteins (5,718 soluble and 5,718 insoluble pro-
teins) built from TargetTrack database (Hon et al., 2021). The features 
used for the model development included compositions of amino acids 
and dipeptides, physicochemical properties, average flexibility, second-
ary structure content, average disorder, content of amino acids in trans-
membrane helices, and maximum identity to the E. coli PDB proteins.

In addition to these features, SoluProt employed an advanced feature 
selection process to prioritize properties highly correlated with protein 
solubility, particularly focusing on secondary structure and disorder con-
tent. The model also improved its robustness by filtering noisy training 
data, ensuring higher reliability in predictions and reducing the risk of er-
roneous outputs. This careful data curation and feature refinement al-
lowed SoluProt to offer more precise predictions, even though its accura-
cy and MCC metrics were moderate. When SoluProt was evaluated on an 
independent test dataset of 3,100 proteins (1,550 soluble and 1,550 in-
soluble proteins) compiled from North East Structural Consortium (NESG) 
(Price et al., 2011), it achieved an accuracy of 0.59 and an MCC of 0.17. 
Despite these relatively modest metrics, SoluProt outperformed other 
classification models like PROSO II, DeepSol, and SOLpro in specific con-
texts, particularly due to its strong handling of noisy datasets.

SoluProt demonstrates a strong capacity for handling noisy datasets 
through its comprehensive feature selection process, which prioritizes 
attributes highly correlated with protein solubility, such as secondary 
structure and disorder content. For example, when SoluProt predictions 
were applied to a test set, selecting only the top 10% of sequences with 
the highest predicted solubility led to a 49.7% increase in the success 
rate of protein production. This ability to effectively filter and manage 
complex data enhances the model’s reliability in solubility predictions. 
However, despite these strengths, SoluProt has an overall predictive per-
formance constrained by relatively modest accuracy and MCC values, 
which limit its applicability in high-precision solubility prediction tasks. 
Compared to more advanced models such as DeepSol and PROSO II, 
SoluProt may be less suited for applications requiring higher predictive 
accuracy.
NetSolP : NetSolP is a solubility classification model that leverages a 
transformer-based protein language model (Thumuluri et al., 2022). The 
model was trained on a curated dataset, primarily sourced from the PSI: 
Biology dataset, focusing on proteins expressed in E. coli. This training 
dataset comprised 12,216 proteins, with 66% reported as soluble (the 
exact proportion of insoluble proteins was unspecified). To ensure di-
verse representation, sequence identity partitioning was applied to re-
duce redundancy. NetSolP utilizes contextual embeddings generated 
from transformer-based models, which capture intricate relationships 
between amino acid residues. The model also integrates sequence pro-
files derived from multiple sequence alignments (MSAs), which assess 
amino acid conservation across homologous proteins. Additionally, 
physicochemical properties such as hydrophobicity and polarity further 
enhance the model's solubility prediction capabilities by combining both 

sequence-level and structural information. Additionally, a robust feature 
selection process is incorporated to reduce noisy data and mitigate bias-
es in the dataset.

In terms of performance, NetSolP was evaluated on an independent 
test set of 1,323 proteins (620 soluble and 703 insoluble) and achieved 
an accuracy of 0.76 and an MCC of 0.40. This solid performance was 
demonstrated particularly for highly expressed E. coli proteins in the 
price dataset. Additionally, when applied to the Camsol mutation data-
set, consisting of 19 proteins with 56 variants from various organisms 
(excluding E. coli) (Sormanni et al., 2015), NetSolP achieved an accuracy 
of 0.66.

NetSolP’s transformer-based architecture allows it to capture complex 
sequence-residue relationships critical for solubility prediction, offering 
broad generalizability across different protein sequences. However, the 
model’s moderate accuracy and MCC on challenging datasets highlight 
some limitations in precision. Moreover, the computational demands of 
the transformer-based architecture pose challenges in resource-limited 
settings, which affect its broader applicability.
DeepSoluE : DeepSoluE is a protein solubility classification model that 
uses a hybrid feature-based approach, combining physicochemical prop-
erties with distributed amino acid representation features through a 
Long Short-Term Memory (LSTM) network (Wang & Zou, 2023). The 
model was trained on a dataset of 11,436 E. coli proteins, evenly split be-
tween soluble (5,718) and insoluble (5,718) proteins. DeepSoluE incorpo-
rates a diverse set of features, including physicochemical properties such 
as isoelectric point, aromaticity, and molecular weight, alongside se-
quence embeddings derived from a Word2Vec representation of amino 
acids, utilizing a skip-gram model. Furthermore, the model integrates 
secondary structure content and sequence identity features, which en-
hance its predictive ability by capturing both detailed sequence informa-
tion and broader physicochemical characteristics related to protein solu-
bility.

During its independent evaluation on a dataset of 3,100 E. coli pro-
teins (1,550 soluble and 1,550 insoluble), DeepSoluE achieved an accura-
cy of 0.59 and an MCC of 0.18, reflecting balanced performance in pre-
dicting both soluble and insoluble proteins.

While DeepSoluE effectively combines physicochemical properties 
and sequence representation features through its LSTM-based architec-
ture, allowing for nuanced solubility prediction, its moderate accuracy 
and MCC suggest that it may not be the most suitable choice for 
high-precision tasks. As a result, its application might be limited in con-
texts where higher predictive accuracy is required.
PROTSOLM : PROTSOLM is a classification model developed for predict-
ing protein solubility by integrating various data types, including protein 
sequence, structural information, and physicochemical properties (Tan 
et al., 2024). It utilizes a dataset known as PDBSOL-train, which consists 
of 58,138 proteins (30,419 soluble and 27,719 insoluble proteins) after 
removing redundancy at a 25% sequence identity cutoff. Notably, a sig-
nificant portion of these proteins are expressed in E. coli.

The model employs a two-stage training approach: first, pre-training, 
followed by fine-tuning. In this process, protein sequences are encoded 
using the ESM2 framework, and local structural information is incorpo-
rated through equivariant graph neural networks (GNNs). This combina-
tion allows PROTSOLM to effectively capture the complex relationships 
between amino acids, enhancing its predictive capabilities.
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For independent evaluation, PROTSOLM was evaluated on four exter-
nal datasets: PDBSOL-test (3,230 proteins: 1,675 soluble, 1,555 insoluble), 
ESOL-agg (2,155 proteins: 951 soluble, 1,204 insoluble), NESG-SoluProt 
(1,784 proteins: 1,052 soluble, 732 insoluble), and NESG-DSResSol (3,640 
proteins: 1,817 soluble, 1,823 insoluble). The ESOL-agg, NESG-SoluProt, 
and NESG-DSResSol datasets primarily feature proteins expressed in E. 
coli, while the PDBSOL-test dataset includes a mix of E. coli-expressed 
proteins and those from other expression systems. Specifically, it 
achieved an accuracy of 0.79 and an MCC of 0.58 on PDBSOL-test, 0.61 
accuracy and 0.22 MCC on ESOL-agg, 0.61 accuracy and 0.23 MCC on 
NESG-SoluProt, and 0.60 accuracy with 0.21 MCC on NESG-DSResSol. This 
consistent performance highlights the model’s robustness and its ability 
to generalize across different datasets, making it a valuable tool for pre-
dicting protein solubility.

Overall, PROTSOLM advances the field of solubility prediction by com-
bining various data modalities. Its use of GNNs allows for a more nu-
anced understanding of amino acid relationships, resulting in improved 
performance compared with models that rely solely on sequence data. 
However, the model’s reliance on high-quality structural data may pose 
limitation in scenarios where such information is not readily available, 
particularly in the early stages of protein design.
PLM_Sol : PLM_Sol is a classification model by integrating multiple pro-
tein language models (PLMs) to generate protein sequence embeddings. 
This model employs classification layers to improve solubility prediction 
(Zhang et al., 2024). It was trained on the Updated E. coli Solubility Data-
set (UESolDS), which is curated from various sources, including Tar-
getTrack, eSOL, and the PDB. This UESolDS includes 79,344 proteins, 
comprising 47,291 soluble and 32,053 insoluble proteins.

The PLM_Sol model utilizes attention-based algorithms to extract 
contextual embeddings from protein sequences, specifically leveraging 
ProtT5 and ESM2. It then applies a multilayer perceptron (MLP) for the 
classification of solubility. For evaluation, an external test set was created, 
consisting of 4,000 proteins (2,000 soluble and 2,000 insoluble proteins), 
selected randomly after filtering out sequences that exhibit more than 
25% identity to the training data. When evaluated on this independent 
test set, PLM_Sol achieved an accuracy of 0.72 and an MCC of 0.46, rep-
resenting a 9% improvement in F1 score compared to SoluProt and a 
10.4% increase in MCC relative to EPSOL.

By leveraging modern protein language models, PLM_Sol significantly 
advances solubility prediction, enabling it to extract rich contextual em-
beddings from sequence data. This capability enhances the model’s abil-
ity to capture complex relationships between protein sequence and sol-
ubility, thus offering superior performance over earlier methodologies. 
However, the model's reliance on computationally intensive atten-
tion-based algorithms, coupled with its dependence on large datasets, 
may pose challenges in practical applications, particularly in environ-
ments with limited computational resources.
SOLart : SOLart is a regression model designed to predict quantitative 
solubility (Hou et al., 2020). The model was trained using the eSOL E. coli 
dataset, which was generated through high-throughput cell-free expres-
sion of E. coli ORFs, covering approximately 70% of the entire E. coli pro-
teome (Niwa et al., 2009). From the eSOL proteins, those with experi-
mental 3D structures in PDB or structural models in SWISS-MODEL were 
selected (Schwede et al., 2003; Waterhouse et al., 2018). Redundant se-
quences were removed using an identity cutoff of 25%, resulting in a se-

lection of 406 proteins with quantitative solubility and 3D structures. The 
features used for the SOLart model included residue compositions, sec-
ondary structure content, protein size, solvent accessibility, statistical po-
tentials, etc. The SOLart model was built using the random forest algo-
rithm based on these features. For independent evaluation, solubility 
data from the eSOL E. coli dataset, excluded during training dataset 
preparation due to the identity cutoff, were prepared (550 proteins). Ad-
ditionally, S. cerevisiae eSOL datasets were used as additional test sets, 
including 59 proteins with X-ray structures and 50 proteins with homolo-
gy-modeled structures (Uemura et al., 2018). When evaluated on the 
three test datasets, SOLart demonstrated reliable performance across 
datasets from two different species, achieving R2 values of 0.448 on the E. 
coli test dataset, and 0.608 and 0.490 on the S. cerevisiae test datasets.

SOLart performs effectively in quantitative solubility prediction by in-
tegrating 3D structural data, making it highly suitable for proteins with 
well-characterized structures. Its random forest model efficiently com-
bines structural and sequence features to deliver accurate cross-species 
predictions. However, its reliance on high-quality 3D structural data lim-
its its applicability for proteins without experimentally determined or 
modeled structures, restricting its generalizability.
Han et al.’s SVR model : Han et al.’s SVR model is a regression-based 
model aimed at improving protein solubility by introducing optimized 
short peptide tags (Han et al., 2020). The model was trained on the E. coli 
eSOL dataset, which includes 3,148 proteins, using amino acid composi-
tion as input features. The SVR model predicts continuous solubility val-
ues. They refined peptide tags through a genetic algorithm to enhance 
their solubility properties. These peptide tags, typically 20 to 30 amino 
acids in length, are rich in aspartic acid (D) and glutamic acid (E), and im-
prove solubility by increasing electrostatic repulsion between protein 
molecules, thereby preventing aggregation.

Experimental validation showed significant improvements in both sol-
ubility and enzymatic activity of modified enzymes. For example, the sol-
ubility of tyrosine ammonia lyase (TAL) more than doubled, and its enzy-
matic activity improved by 250%. Similar improvements were observed 
for other enzymes, such as 1-deoxy-D-xylulose-5-phosphate synthase 
(DXS), showing that the optimized tags not only enhance solubility but 
also improve protein folding quality, which in turn boosts the enzyme’s 
activity. This method presents a valuable tool for applications in meta-
bolic engineering and other biotechnological fields (Hou et al., 2020).
GraphSol : GraphSol is another regression model designed to predict 
quantitative protein solubility (Chen et al., 2021). The E. coli eSOL dataset 
was split into 75% for training (2,052 proteins) and 25% for testing (685 
proteins) (Niwa et al., 2009). GraphSol was trained by graph convolution-
al network algorithm utilizing sequence-derived features such as Hidden 
Markov model, PSSM, diverse physicochemical properties (e.g., steric pa-
rameters, hydrophobicity, volume, polarizability, isoelectric point), and 
structure-derived features such as relative solvent accessibility, backbone 
torsion angles, and protein contact information. When evaluated on the 
685 E. coli proteins, it achieved an R2 of 0.483. As another evaluation, 
GraphSol was also evaluated on 108 S. cerevisiae proteins used for SO-
Lart evaluation and the model achieved R2 of 0.37. GraphSol offers nota-
ble performance in integrating both sequence and structure-derived 
features, leveraging GCNs to capture complex relationships that influ-
ence protein solubility. Its ability to incorporate structural data provides 
an advantage in predicting quantitative solubility. However, its reliance 

Pimtawong et al.  Protein solubility prediction models

1010.71150/jm.2408001January 2025 Vol 63 No 1



on detailed structural information, like other structure-dependent mod-
els, limits its use in cases where such data is unavailable, potentially re-
stricting its generalizability.
CamSol : CamSol is a physics-based computational model developed to 
improve protein solubility through rational design (Sormanni et al., 
2015). Unlike machine learning models, which rely on training data to 
predict solubility outcomes, CamSol uses physicochemical principles 
such as hydrophobicity, charge distribution, and structural corrections to 
predict how specific mutations impact protein solubility. By rapidly 
screening thousands of potential mutations, CamSol identifies variants 
that improve solubility while maintaining the protein’s structural integri-
ty and function.

CamSol has been successfully applied to design solubility-enhancing 
mutations for therapeutic proteins, particularly antibodies. One notable 
application was its use in predicting mutations for antibodies targeting 
the Alzheimer’s Aβ peptide, where experimental validation demonstrat-
ed a strong correlation between CamSol’s predictions and actual mea-
sured solubility in the lab. This makes CamSol a fast, cost-effective alter-
native for protein solubility prediction, with significant potential use in 
biotechnological and pharmaceutical industries.
TISIGNER.com : TISIGNER.com is an integrated platform that offers com-
putational tools for optimizing recombinant protein production, ad-
dressing challenges such as low protein expression levels and solubility 
issues (Bhandari et al., 2021). The platform is particularly suitable for life 
science research and the development of biotherapeutics. Unlike tradi-
tional machine learning models, TISIGNER.com provided targeted solu-
tions through three main tools: TIsigner, SoDoPE, and Razor.

First, TIsigner optimizes mRNA sequences to enhance protein expres-
sion by adjusting translation initiation site accessibility. This tool is cus-
tomizable for various expression hosts, such as E. coli and S. cerevisiae, 
allowing researchers to achieve higher protein yields without labor-in-
tensive trial-and-error approaches in the lab. Second, SoDoPE analyzes 
and optimizes protein solubility by identifying regions prone to aggrega-
tion, guiding mutagenesis experiments to improve stability during ex-
pression and purification. Lastly, Razor predicts signal peptides for pro-
tein secretion, ensuring proper translocation for secretory protein, and 
preventing intracellular accumulation and toxicity in host cells.

TISIGNER.com has been effectively used in applied research and in-
dustrial settings to improve recombinant protein production. TIsigner 
has optimized protein expression levels in large-scale production pro-
cesses. SoDoPE has helped stabilize proteins during purification, and Ra-
zor has ensured correct translocation of secretory proteins, preventing 
harmful accumulation in host cells. By seamlessly integrating these tools, 
TISIGNER.com offers fast, efficient, and cost-effective solutions for protein 
production challenges, making it invaluable for biotechnology and phar-
maceutical industries.
Limitation of current models : The computational models described in 
this review employ a variety of algorithms and datasets, providing a 
comprehensive exploration of different approaches to predict protein 
solubility. This diversity enables models to capture distinct patterns from 
the input data, thereby allowing for generalization across a wide spec-
trum of protein sequences. For example, models like PaRSnIP and Deep-
Sol leverage different machine learning techniques such as gradient 
boosting machines and convolutional neural networks, respectively, 
which process features in unique ways. Despite the variation in algo-

rithms and datasets, the overall predictive performance of these models, 
as measured by accuracy, MCC, and R2, does not exhibit significant fluc-
tuations. Protein solubility is governed by a complex interplay of factors, 
many of which are not fully represented by the sequence- or struc-
ture-derived features typically used in current models. As a result, even 
with advancements in algorithms and dataset size, model performance 
tends to plateau. For classification models, accuracy scores typically 
range between 0.72 and 0.77, while MCC values tend to plateau around 
0.5. For regression models, R² values typically fall between 0.4 and 0.6, 
reflecting the inherent difficulty in modeling the quantitative aspects of 
solubility.

To achieve substantial improvements in predictive performance, par-
ticularly beyond these thresholds, more diverse and comprehensive 
datasets are required. Additionally, the inclusion of higher-order features, 
such as structure-based properties, could further refine these models. 
However, until such datasets and features are widely available, significant 
advances in accuracy, MCC, or R² are unlikely, regardless of the algorith-
mic improvements.

Challenges in the Development of Protein 
Solubility Prediction Models

The performance of machine learning models heavily relies on the 
quality and size of data used for training. Currently, over 80,000 qualita-
tive solubility data were collected from various resources, but this dataset 
often contain inconsistent or unreliable data due to differences in experi-
mental conditions, such as temperature and expression platform, and 
varying criteria for determining solubility.

This is a common issue in bioinformatics, where datasets are frequent-
ly sourced from diverse resources with different standards. To address the 
reliability and scalability issues associated with conventional experi-
ments, high-throughput approaches based on cell-free protein synthesis 
systems have gained significant attention. The PURE system, for instance, 
enables the in vitro translation of mRNAs into proteins without the need 
for living cells, allowing for the production of recombinant proteins with 
minimal cellular contaminants (Doerr et al., 2021). This cell-free system 
facilitates high-throughput protein expression and solubility measure-
ment.

However, despite its advantages, cell-free systems have limitations. In 
vitro and in vivo solubility can differ significantly due to the complex in-
terplay between cellular components in vivo such as chaperones. For ex-
ample, the study on the eSOL dataset found that only 32% of the ex-
pressed proteins were soluble (solubility > 70%) (Delaney, 2004). Inter-
estingly, when chaperones like DnaJKE or GroE were added to the in vitro 
expression system, 2/3 of the tested proteins showed a significant in-
crease in solubility (de Marco et al., 2007; Niwa et al., 2012). This under-
scores the potential of chaperone-assisted co-expression to bridge the 
gap between in vitro and in vivo conditions. By mimicking the intricate 
cellular environments of in vivo systems, such approaches can greatly re-
duce discrepancies in protein solubility. Furthermore, optimizing in vitro 
conditions to replicate physiological environments—such as adjusting 
ionic strength, macromolecular crowding, and redox balance—can en-
hance the predictive accuracy of solubility models, ensuring that in vitro 
conditions align more closely with in vivo conditions. Given the impor-
tance of knowing solubility in vivo for recombinant protein production 
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and function, the discrepancy between in vitro and in vivo solubilities is 
a significant challenge.

Another challenge is the skewed distribution of quantitative solubility 
data, which is similar to the imbalanced dataset problem encountered in 
classifier development (Thabtah et al., 2020). This issue is common in 
quantitative datasets (Kotronoulas et al., 2023). For instance, the eSOL 
dataset exhibits a bimodal solubility distribution, indicating that the data 
are biased towards highly insoluble and highly soluble proteins (Delaney, 
2004). Such a skewed distribution can significantly affect the model's 
ability to accurately predict across the entire range of solubility. To ad-
dress this, data augmentation techniques like the Synthetic Minority 
Over-sampling Technique (SMOTE) can be employed to balance the 
dataset by generating synthetic samples that represent underrepresent-
ed solubility classes (Kotronoulas et al., 2023). This approach enhances 
the distribution, enabling the model to learn more effectively across a 
broader range of solubility values and ultimately improving accuracy. 
Additionally, implementing stratified sampling during model training 
ensures a more even representation of solubility states, reducing overfit-
ting and enhancing the model’s generalizability to unseen dataset. How-
ever, caution is needed with unconditional data augmentation methods, 
as they do not reflect actual experimental results.

Recently, high-performance models have utilized structure-based fea-
tures from protein conformation (Jumper et al., 2021). While se-
quence-based features are appreciated for their simplicity and supported 
by extensive datasets (Hou et al., 2022), they frequently encounter chal-
lenges in accurately predicting solubility due to their inability to capture 
higher-order structures critical for solubility. Structure-based features, 
such as solvent accessibility, backbone torsion angles, and secondary 
structure content, offer more detailed information for solubility predic-
tion, but they are limited by the availability of structure data and the 
computational demands required for their implementation. Despite re-
cent breakthroughs in protein structure prediction methods (Jumper et 
al., 2021; Liu et al., 2022; Ruff & Pappu, 2021), which have enabled 
high-accuracy conformation predictions, these approaches remain com-
putationally intensive and limit the practical application of solubility pre-
diction models to identify optimal single amino acid mutations for pro-
tein engineering.

To overcome these challenges, hybrid models that combine machine 
learning techniques with physics-based solubility models could poten-
tially enhance predictive accuracy by integrating both experimental and 
theoretical insights into protein behavior. Additionally, further refining 
the features related to protein structure and expression, such as integrat-
ing more detailed structural information from homology models or pre-
dicted protein structures using techniques like AlphaFold, could improve 
model reliability. As protein structure prediction tools continue to evolve, 
integrating these advancements into solubility prediction models will be 
essential for improving their accuracy and utility in bioindustrial applica-
tions.

Conclusion

In summary, this review highlights the significant strides made in the 
field of protein solubility prediction through computational approaches. 
Despite these advancements, challenges still remain, particularly in the 
areas of data quality, the discrepancy between in vitro and in vivo solu-

bility, and the skewed distribution of solubility data. The integration of 
advanced machine learning techniques with both sequence-based and 
structure-based features promises to improve predictive accuracy. As 
protein structure prediction technologies continue to evolve, these 
high-accuracy models will facilitate the design of proteins with desired 
solubility characteristics. These developments will contribute to more ef-
ficient and scalable protein engineering processes, benefiting various 
applications in biotechnology and related industries.
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