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Salmonella enterica is a clinically significant oro-fecal pathogen that causes a wide variety of 
illnesses and can lead to epidemics. S. enterica expresses a lot of virulence factors that enhance 
its pathogenesis in host. For instance, S. enterica employs a type three secretion system (T3SS) 
to translocate a wide array of effector proteins that could change the surrounding niche ensur-
ing suitable conditions for the thrive of Salmonella infection. Many antimicrobials have been 
recently introduced to overcome the annoying bacterial resistance to antibiotics. Enoxacin is 
member of the second-generation quinolones that possesses a considerable activity against S. 
enterica. The present study aimed to evaluate the effect of enoxacin at sub-minimum inhibito-
ry concentration (sub-MIC) on S. enterica virulence capability and pathogenesis in host. Enoxa-
cin at sub-MIC significantly diminished both Salmonella invasion and intracellular replication 
within the host cells. The observed inhibitory effect of enoxacin on S. enterica internalization 
could be attributed to its ability to interfere with translocation of the T3SS effector proteins. 
These results were further confirmed by the finding that enoxacin at sub-MIC down-regulated 
the expression of the genes encoding for T3SS-type II (T3SS-II). Moreover, enoxacin at sub-MIC 
lessened bacterial adhesion to abiotic surface and biofilm formation which indicates a potential 
anti-virulence activity. Importantly, in vivo results showed a significant ability of enoxacin to 
protect mice against S. enterica infection and decreased bacterial colonization within animal 
tissues. In nutshell, current findings shed light on an additional mechanism of enoxacin at sub-
MIC by interfering with Salmonella intracellular replication. The outcomes presented herein 
could be further invested in conquering bacterial resistance and open the door for additional 
effective clinical applications.
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Introduction

Enoxacin, a broad-spectrum bactericidal fluoroquinolone antibiotic, 
acts by inhibiting bacterial DNA gyrase and topoisomerase IV that results 
in the disruption of bacterial DNA replication (Jałbrzykowska et al., 2022). 
Enoxacin has been efficiently prescribed for treating a wide range of bac-
terial infections, mainly urinary tract infections, prostatitis and gonorrhea 
(Alkhalil, 2024; Gutiérrez-Castrellón et al., 2015). Additionally, enoxacin 
has been effectively used to treat respiratory tract infections, including 
community-acquired pneumonia and acute bronchitis (Redgrave et al., 
2014), bone and joint infections (Liu et al., 2014; Yao et al., 2021), skin 
and soft tissue infections (Kwak et al., 2017; Yao et al., 2021). Further-
more, enoxacin has been incorporated in the prophylaxis against bacte-
rial infections in neutropenic patients, such as those undergoing chemo-
therapy for cancer (Yao et al., 2021). Enoxacin enhances RNA interference 
and promotes microRNA processing, in addition to generating free radi-
cals. Notably, beyond its proapoptotic effects, induction of cell cycle ar-
rest, and cytostatic properties, enoxacin also reduces cancer cell invasive-
ness (Jałbrzykowska et al., 2022). One of the most important applications 
of enoxacin is that it retains a considerable effectiveness against various 
Gram-negative bacteria, making it a potential alternative to ciprofloxacin 
for treating enteric fever, which is primarily caused by S. enterica sero-
types Typhi and Paratyphi (Charles, 2017; Zehra et al., 2015).

S. enterica is a facultative intracellular Gram-negative bacterium 
which causes a range of gastrointestinal diseases expands from localized 
gastroenteritis to serious systematic fever known as enteric fever or ty-
phoid (Hegazy and Hensel, 2012; Wain et al., 2015). S. enterica is the 
causative agent of fecal-oral transmitted diseases which can be catego-
rized into typhoidal and non-typhoidal. However, while Salmonella se-
rovars Typhi and Paratyphi A, B, and C give rise to enteric fever, the other 
serovars are classified as non-typhoidal (Buckle et al., 2012). Clinically, 
both types of infections are invasive and could lead to serious complica-
tions if not treated properly resulting in higher mortality rates (Harish 
and Menezes, 2011). Typhoidal Salmonella strains are human-specific 
pathogens responsible for enteric fever, commonly known as typhoid fe-
ver. In contrast, non-typhoidal strains can cause typhoid-like illness in 
other vertebrate animals but are primarily associated with localized gas-
troenteritis in humans (Buckle et al., 2012; Hung et al., 2017). While, ty-
phoidal Salmonella causes serious systematic fever, the invasive non-ty-
phoidal serovars such as Typhimurium or Enteritidis could cause blood-
stream infections leading to serious illness (Askoura et al., 2021; Uche et 
al., 2017). Eventually, Salmonella infections pose significant health risks 
worldwide, particularly in Middle East, East Asia, and India (Rahman et 
al., 2014).

Pathogenicity islands (PAIs) are distinct genetic elements found within 
the genomes of pathogenic bacteria which contain clusters of genes 
contributing to the bacterium's ability to cause disease (Schmidt and 
Hensel, 2004). The genes that encode Salmonella virulence factors are 
clustered in Salmonella pathogenicity islands (SPIs). Salmonella species, 
including S. enterica, possess several SPIs that contribute to their viru-
lence. The exact number of SPIs can vary among different strains and se-
rovars of Salmonella (Marcus et al., 2000). Nonetheless, S. enterica har-
bors a total of seventeen SPIs (Vernikos and Parkhill, 2006), with SPI1 and 
SPI2 being the foremost and extensively researched among them (Hega-
zy and Hensel, 2012; Hegazy et al., 2012).

Bacteria recruit various types of secretion systems (SSs) to transport 
proteins and other molecules across their cell membranes and into their 
external environment. These SSs play crucial roles in bacterial physiology, 
virulence, and interactions with surrounding environments (Alandiyjany 
et al., 2022; Troman and Collinson, 2021). Among the most characterized 
SSs, type III secretion system (T3SS) is a complex molecular machinery 
found in some Gram-negative bacteria that enables them to inject viru-
lence factors directly into the cytoplasm of host cells. T3SS resembles a 
molecular syringe, allowing bacteria to deliver proteins directly into the 
cytoplasm of host cells, where they manipulate cellular processes to the 
bacterium's advantage (Cornelis, 2006; Hegazy et al., 2012). Salmonella 
is renowned for its ability to produce a T3SS that play crucial roles during 
various infection phases (Kuhle and Hensel, 2004). Two key SPIs, SPI1 and 
SPI2, encode T3SS and are responsible for the production of diverse bac-
terial effectors (Cornelis, 2006; Hegazy et al., 2022). SPI1 is essential for 
bacterial invasion, whereas SPI2 is critical for intracellular survival within 
human immune cells as antigen presenting cells including macrophages 
and dendritic cells that facilitates bacterial proliferation and establish-
ment of systemic infection in the host (Elfaky et al., 2022; Hegazy and 
Abbas, 2017; Thabit et al., 2022). Following ingestion of S. enterica-con-
taminated food and/or drink; it reaches the gastrointestinal tract and up-
taken by gate cells (M cells) in the Peyer's patches lining the intestine 
(Askoura and Hegazy, 2020; Kamaruzzaman et al., 2017; Thabit et al., 
2022). In the intestine, Salmonella cells are then engulfed within the 
macrophages phagosomes which are known as Salmonella-containing 
vacuole (SCVs) where Salmonella can survive by secreting SPI2 effector 
proteins that prevent the fusion of phagosome with lysosomes, thereby 
evading lysosomal killing (Cornelis, 2006; Elfaky et al., 2022).

In spite of the documented resistance, the fluorinated quinolones, 
particularly the second-generation members such as ciprofloxacin, are 
still effectively employed in treating of systemic salmonellosis because of 
their bactericidal properties and heightened efficacy within host cells 
(Easmon et al., 1986; Rahman et al., 2014). Intriguingly, ciprofloxacin at 
sub-MIC showed a significant ability to interfere with the SPI2 functional-
ity, diminishing the expression of SPI2 encoding genes and lessened the 
translocation of the SPI2 effectors leading to a significant defect in S. en-
terica ability to survive and replicate intracellularly within the host cells 
(Askoura and Hegazy, 2020). Enoxacin, another member of second-gen-
eration quinolones, shares ciprofloxacin the fluorinated quinolone moi-
ety (Fig. 1). Enoxacin has been shown to interfere intracellularly with RNA 
in cancer cells that results in the promotion of microRNA (Jałbrzykowska 

Fig. 1. Chemical structure similarity between enoxacin and 
ciprofloxacin. Enoxacin: 1-ethyl-6-fluoro-4-oxo-7-piperazin-1-yl-
1,8-naphthyridine-3-carboxylic acid; ciprofloxacin: 1-cyclopropyl-6-
fluoro-4-oxo-7-piperazin-1-ylquinoline-3-carboxylic acid.
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et al., 2022; Shaw and Gullerova, 2021), and the production of intracellu-
lar free radicals (Hussen et al., 2023). Bearing in mind these findings, it is 
hypothesized that enoxacin could display an additional antibacterial 
mechanism of action against intracellular bacteria. The current study 
aims to endorse the enoxacin interference with S. enterica T3SS, and its 
ability to protect mice in vivo against bacterial infection.

Materials and Methods

Determination of the effect of enoxacin sub-minimum 
inhibitory concentration (sub-MIC) on S. enterica growth

S. enterica serovar Typhimurium NCTC 12023 was used in this study. Enox-
acin (Cas no.74011-58-8) was purchased from Santa Cruz Biotechnology 
(USA). The broth microdilution method was employed to determine the MIC 
of enoxacin following the Clinical Laboratory and Standards Institute (CLSI, 
2015) guidelines with minor modifications (Abdulaal et al., 2024). The influ-
ence of enoxacin at sub-MIC on bacterial growth was assessed spectrophoto-
metrically. The optical densities of S. enterica grown in Luria-Bertani (LB) 
broth with and without enoxacin at sub-MIC were measured at different time 
intervals (Nazeih et al., 2023).

Bacterial adhesion and biofilm assay
Fresh cultures of S. enterica treated with enoxacin at sub-MIC were diluted 

with fresh Tryptic Soy Broth (TSB) and attuned to a cell density of 1 ×  106 
CFU/ml (OD600 =  0.4) for adhesion and biofilm assay (Vesterlund et al., 2005). 
To increase the adhesion and biofilm formation (Askoura et al., 2021), the 
bacterial suspensions of S. enterica were cultured in the presence of N-hexa-
noyl-DL-homoserine lactone (0.001 µM) and incubated at 37°C for 1 h or 24 h 
for evaluation the bacterial adhesion, or biofilm formation (Askoura et al., 
2021; Stepanovic et al., 2000). Plates were washed to remove non-adherent 
cells, adhered cells were fixed with for 30 min at 65°C and stained with 0.1% 
crystal violet for 25 min. Excess crystal violet was removed and adhered dye 
was extracted with methanol that was finally measured spectrophotometri-
cally at 590 nm (Hegazy and Abbas, 2017; Koshak et al., 2024; Vesterlund et 
al., 2005).

Invasion and intracellular replication assay
Gentamicin protection assay was used to assess the impact of enoxacin at 

sub-MIC on S. enterica invasion and intracellular replication as previously de-
scribed (Askoura et al., 2021; Askoura and Hegazy, 2020; Hegazy et al., 2012). 
Briefly, 24-wells polystyrene plates were seeded with HeLa cells or RAW264.7 
macrophages at cell density of 5 ×  105 and 2 ×  105 cells/well for invasion 
and intracellular replication assay, respectively. Overnight S. enterica cultures 
provided or not with enoxacin at sub-MIC were grown for 3 to 4 h at 37°C. 
Bacterial inoculum (1 ×  105 bacterial cells/well) was mixed with eukaryotic 
cells (HeLa cells or macrophages) at a multiplicity of infection (MOI) of 1 in 
Dulbecco’s modified Eagle’s medium (DMEM) in the presence of 0.001 µM 
N-hexanoyl-DL-homoserine lactone and incubated for 25 min. Non-internal-
ized bacterial cells were washed out using phosphate buffer saline (PBS), 
while the adhered bacterial cells were killed by gentamicin (100 µg/ml) for 1 
h. In order to evaluate bacterial invasion, HeLa cells were lysed using triton 
X-100 (0.1%) for 15 min at room temperature. The initial inoculum and intra-
cellular bacteria were viably counted and the percentage of invading bacteria 
(bacterial count at 1 h post-infection/initial bacterial count ×  100) was calcu-
lated. For the assay of bacterial intracellular replication, Salmonella-infected 

macrophages were lysed with 0.1% triton X-100 at 2 and 16 h post-infection 
exactly as described above. Next, the bacterial inoculum and intracellular 
bacteria were viably counted and the phagocytosed bacterial cells numbers 
comparative to uptaken cells (bacterial count at 2 h post-infection/initial bac-
terial count ×  100) and x-fold intracellular replication (bacterial count at 16 h 
relative to bacterial count at 2 h) was calculated. The results are expressed as 
the means ±  standard errors and the difference was considered significant at 
a P value of <  0.05 using ANOVA test.

Quantification of the translocation of T3SS effectors
The translocation of SPI2 effector SseJ was quantified to assess the influ-

ence of enoxacin on S. enterica ability translocate SPI2-T3SS within host cells. 
The constructed plasmid pWsk29 PsseJsseJ::hSurvivin encodes the hemagglu-
tinin (HA) tagged SPI2 effector protein SseJ (Askoura et al., 2021; Hegazy et 
al., 2012) was transformed into S. enterica by electroporation. S. enterica 
harboring the plasmid was allowed to grow in the presence or absence of 
enoxacin at sub-MIC. Then bacteria were used to infect HeLa cells or 
RAW264.7 macrophages in the presence of 0.001 µM N-hexanoyl-DL-homo-
serine lactone at MOI of 100 (Askoura et al., 2021; Askoura and Hegazy, 2020; 
Hegazy et al., 2012). Infected cells were immune stained to assess the trans-
located effector proteins after 16 h using Salmonella LPS [rabbit anti-Salmo-
nella O 1,4,5 (Difco, BD)] and the HA epitope tag (Roche, Switzerland). Sec-
ondary antibodies anti-rabbit tagged with GFP (green fluorescent protein) 
was used to stain Salmonella cells (Abcam; USA), the translocated SPI2 effec-
tor was stained with Cyanine5 (Cy5) dye (Invitrogen, USA) and diamidi-
no-2-phenylindole dye (DAPI; Thermo Fisher Scientific, USA) was used to 
stain macrophages (Askoura et al., 2021; Hegazy et al., 2012; Xu et al., 2014). 
Leica laser-scanning confocal microscope was used analyze the translocation 
of SPI2 effector SseJ and images were captured. The fluorescence signal in-
tensities of HA-tagged SseJ within infected cells were quantified using J-im-
age program.

RT-qPCR analysis
S. enterica was grown in SPI-2-inducing minimal phosphate-carbon-nitro-

gen medium (PCN-P, pH 5.8) to enhance the SPI-2 effector expression in the 
presence or absence of enoxacin (Deiwick et al., 1999). Both untreated and 
treated S. enterica with sub-MIC of enoxacin, were collected by centrifuga-
tion. Bacterial RNA was extracted using RNAeasy Mini Kit (Qiagen, Germany), 
quantified using NanoDrop ND-1000 spectrophotometer and Kept at -80°C 
until use (Elfaky et al., 2024; Hegazy, 2015). The expression of different genes 
encoding for SPI2-effectors (ssaJ, ssaV, steC, ssrB, sseJ, sifA, sifB, sseL, sscA, 
ssaE, sseF, and pipB) in the presence of enoxacin was assessed using RT-qP-
CR. High-capacity cDNA reverse transcriptase kit (Applied Biosystem, USA) 
was used to obtain cDNA which was amplified in a multi-well plate using 
Step One instrument (Applied Biosystem, USA) using the Syber Green I PCR 
Master Kit (Fermentas, USA). Specific PCR amplification was verified using 
both agarose gel electrophoresis and melting curve analysis of the products 
following the manufacturer's recommendations (Elfaky et al., 2023). Compar-
ative gene expression was calculated using the 2−∆∆CT method. The used 
primers were previously listed, and the expression was normalized to the 
housekeeping gene gyrB (Askoura and Hegazy, 2020).

In vivo protection against S. enterica pathogenesis using 
mice infection model

Three-week-old albino mice received intraperitoneal injections (I.P) of S. 
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Figure 2
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enterica treated or not with enoxacin at sub-MIC to evaluate its inhibitory ef-
fect on S. enterica pathogenesis (Badr-Eldin et al., 2024; Bendary et al., 2024). 
The experiment included four animal groups; each contains five mice. The 
first two groups, serving as negative controls, were left uninfected or injected 
with sterile PBS. Mice in the third group received S. enterica (1 ×  106 CFU/ml) 
treated with sub-MIC of enoxacin (2.5 µg/ml). Mice in last group were inject-
ed with S. enterica untreated with enoxacin and served as a positive control. 
Mice survival was monitored over 5 days and plotted using Kaplan-Meier 
method and the statistical analysis was verified using Log-rank test. Further-
more, the mice kidney and liver were isolated, homogenized and viable bac-
teria were counted. The homogenized organ tissues were transferred to ster-
ile PBS, serially diluted and plated on Salmonella Shigella (SS) agar plates. 
The bacterial counts were assessed and expressed as colony-forming units 
(CFU) per gram of tissue. One-way analysis of variance (ANOVA) test was used 
to determine the statistical significance.

Statistics
The presented data are the means ±  standard error compared to untreat-

ed controls. Unless stated otherwise, significance was assessed using the stu-
dent's t-test (p <  0.05).

Results

Enoxacin at sub-MIC diminished S. enterica adhesion to 
abiotic surface and reduced biofilm formation

The minimum inhibitory concentarion (MIC) of tnoxacin that inhibited 
S. enterica growth was determined and found to be 1 µg/ml. To ensure 
the enoxacin's anti-biofilm effect excluding any influence on bacterial 
growth, S. enterica growth was assessed spectrophotometrically by 
measuring the optical density of growing bacteria in presence and ab-
sence of enoxacin at 1/4 MIC (0.25 µg/ml) (Fig. 2A). There was no effect of 
enoxacin at sub-MIC on bacterial growth. The crystal violet method was 
used to quantify both the adhering bacterial cells to abiotic surface as 
well as biofilm forming capacity after 1 and 24 h, respectively. The optical 

density of the crystal violet significantly reduced when S. enterica were 
treated with enoxacin at sub-MIC (0.025 µg/ml) (Fig. 2B). This indicates 
that enoxacin at sub-MIC significantly decreased the bacterial adhesion 
to abiotic surface and biofilm formation by 40% and 45%, respectively.

Enoxacin at sub-MIC reduced S. enterica invasion and 
intracellular replication

Gentamicin assay was used to evaluate the influence of enoxacin at 
sub-MIC (0.25 µg/ml) on S. enterica invasion into HeLa cells and intracel-
lular replication within RAW264.7 macrophages. Enoxacin at sub-MIC 
significantly reduced both S. enterica invasion and intracellular replica-
tion by 72.5 and 32.5%, respectively (Fig. 3).

Enoxacin interfered with the translocation of SPI2-effector 
proteins

The translocation of the S. enterica SPI2 effector protein (HA-tagged 
SseJ) was quantified in the presence and absence of enoxacin at sub-MIC 
levels to evaluate enoxacin effect on T3SS Type 2. The fluorescence of the 
translocated HA-tagged SseJ was quantified in S. enterica treated with 
enoxacin at sub-MIC (0.25 µg/ml) and compared to that in untreated 
bacteria (Fig. 4). The fluorescence intensity of the tagged SPI2 effector 
was significantly reduced in the presence enoxacin at sub-MIC, which in-
dicates its interference with the translocation of SPI2 effector proteins.

Enoxacin markedly reduced the expression of genes 
encode SPI2 effectors

The expression level of SPI-2 encoding genes was quantified using 
RT-qPCR in S. enterica treated or not with enoxacin at sub-MIC (0.25 µg/
ml) (Fig. 5). Enoxacin significantly downregulated the expression of all 
tested SPI2 genes except sseL, sscA, and pipB. The down-regulation ef-
fect of enoxacin varied from 5-fold as in case of steC genes and 3-fold in 
genes ssrB, sseJ, sifA, and sifB to 2-fold in genes ssaE and sseF, while the 
least reduction in expression was observed in ssaJ and ssaV.

Fig. 2. Characterization of the influence of enoxacin at sub-MIC on S. enterica growth and virulence capability (A) Enoxacin at sub-MIC has no 
effect on bacterial growth. (B) Enoxacin significantly reduced S. enterica adhesion to abiotic surface and biofilm formation. Enoxacin at sub-
MIC decreased the adhesion to abiotic surface and biofilm formation by 40% and 45%, respectively in comparison to untreated control (ns: 
non-significant, *P > 0.05, **P < 0.01, ***P < 0.001).
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Enoxacin alleviated S. enterica pathogenesis in mice
In compliance with the interference capability of enoxacin with T3SS-

type2 either by down-regulation of its encoding genes or interference 
with the translocation of its effectors, enoxacin significantly decreased S. 
enterica pathogenesis in mice. All mice survived in groups that were un-
infected and PBS-injected (negative control groups). However, three 
deaths in mice out of five were reported in the mice injected with un-
treated S. enterica, while one death was recorded in the mice injected 
with S. enterica treated with enoxacin at sub-inhibitory concentration 
(0.25 µg/ml) (Fig. 6A). These results clearly indicate that enoxacin at sub-
MIC reduced mice deaths by 66% (*P =  0.0394). Additionally, S. enterica 
load in isolated mice kidney and liver were determined for all mice 
groups. The results revealed a significant reduction in bacterial counts in 
organs isolated from enoxacin-treated mice as compared to untreated 
mice. This indicates a remarkable capability of enoxacin to diminish S. 
enterica colonization in host (Fig. 6B and C).

Discussion

Clinically, typhoidal and non-typhoidal S. enterica are among the im-
portant pathogens that could easily spread via contaminated food and/
or water causing endemics and epidemics (Crump et al., 2015). The de-
velopment of bacterial resistance poses an imminent threat, particularly 
in the context of severe epidemic infections like the oro-fecal transmitted 
enteric fever caused by S. enterica (Tadesse et al., 2018). That requires 
the developing of new approaches to conquer bacterial resistance and 
deeply investigate the possible additional antibacterial effects of known 
antibiotics as well as new antimicrobial candidates (Agha et al., 2016; 
Khayat et al., 2022, 2023). In this study, it was aimed to evaluate the an-
ti-virulence potential of enoxacin at sub-inhibitory concentrations 
against S. enterica serovar Typhimurium.

First, to ensure that enoxacin’s interference with the T3SS and its an-

ti-virulence activities are due solely to enoxacin and not to any influence 
on S. enterica growth or viability, it was necessary to eliminate any influ-
ence of enoxacin on the growth of bacteria (Almalki et al., 2022; Alotaibi 
et al., 2023). The optical densities of growing bacteria in absence and 
presence of enoxacin at sub-inhibitory concentration were measured. 
There was no significant difference between enoxacin-treated and un-
treated cultures. This indicates that enoxacin has no influence on Salmo-
nella growth at sub-MIC and therefore all tests were conducted at the 
same sub-inhibitory concentration of enoxacin (1/4 MIC; 0.25 µg/ml).

The injectosome of S. enterica T3SS is extensively studied for its crucial 
role in pathogenesis and infection establishment. S. enterica initiates its 
infection in host cells by the expression of T3SS-type I (T3SS-I) that is en-
coded by SPI1 genes (Kuhle and Hensel, 2004; Marcus et al., 2000). Fol-
lowing S. enterica adhesion, bacteria release SPI1-effectors into the cyto-
plasm of invaded host cells which results in deformation of the cellular 
G-proteins and facilitates bacterial cells invasion into the host cells (Dei-
wick et al., 1999; Kuhle and Hensel, 2004). The host cells could engulf in-
vading salmonella cells into the SCV in order to facilitate their killing ei-
ther by oxidizing or non-oxidizing pathways (Yin et al., 2017). However, S. 
enterica T3SS-type II (T3SS-II) that is encoded by SPI2 starts its crucial 
function. T3SS-II translocate a diverse array of proteins with different 
functions to ensure not only Salmonella survival in SCV, but also facili-
tate its thrive and proliferation within SCV (Cornelis, 2006; Patel and 
Galan, 2005). In this context, the interference with Salmonella T3SS both 
types I and II could result in diminishing the bacterial invasion and intra-
cellular replication, respectively (Alandiyjany et al., 2022; Thabit et al., 
2022). Intriguingly, our findings showed that enoxacin at sub-MIC signifi-
cantly diminished S. enterica invasion into HeLa cells as well as intracel-
lular replication within human macrophages. That indicates the potential 
enoxacin interference with the T3SS.

Taking into consideration the outmost importance of T3SS-II for S. en-
terica host pathogenesis and intracellular survival within host cells (Ask-
oura and Hegazy, 2020; Hegazy and Hensel, 2012), the translocation of 
SPI2 effectors was evaluated in the presence of sub-MIC of enoxacin. For 
this purpose, a plasmid harboring HA tagged SPI2 effector SseJ (SseJ::HA) 
(Askoura et al., 2021; Hegazy et al., 2012) was transformed to S. enterica 
that then allowed to grow in the absence or presence of enoxacin at 
sub-inhibitory concentration. The fluorescence of translocated tagged 
SPI2 effector was greatly decreased in the cytoplasm of both infected 
HeLa cells and macrophages. This indicates the higher efficiency of enox-
acin to adversely affect the translocation of SPI2 effectors and lessening 
of S. enterica ability to internalize the host cells which explains the sig-
nificant reduction in bacterial invasion as well as intracellular replication.

There are more than thirty genes that encode the T3SS-II apparatus 
(Ssa), chaperones (Ssc) and effectors (Sse) in addition to a separate oper-
on encodes the regulatory secretion system SsrAB (Hegazy and Hensel, 
2012; Kuhle and Hensel, 2004). T3SS-II translocate diverse proteins "effec-
tors" into the cytoplasm of the host cells, that secures the nutrition and 
thrive of the Salmonella cells in SCV (Cornelis, 2006; Holzer and Hensel, 
2012). The interference of enoxacin with effectors translocation was fur-
ther confirmed by RT-qPCR in order to characterize its effect on the ex-
pression of SPI2 genes which play a significant role in Salmonella host 
virulence and pathogenesis (Gerlach and Hensel, 2007). Interestingly, 
current results show that enoxacin down-regulated all the SPI2 genes at 
sub-MIC. For instance, enoxacin down-regulated ssrB that encodes the 

Fig. 3. Enoxacin significantly reduced S. enterica invasion and 
intracellular replication. Enoxacin at sub-MIC significantly decreased 
the bacterial invasion and intracellular replication by 72.5 and 
32.5% respectively, respectively in comparison to untreated control 
(*P > 0.05, **P < 0.01, ***P < 0.001).
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Fig. 4. Enoxacin significantly interfered with the translocation of S. enterica SPI2-effectors. Infected HeLa cells (A) or macrophages (B) with S. 
enterica treated or not with enoxacin at sub-MIC were immune stained. Translocated HA-tagged Ssej was secondary stained with cy5 (red), 
while the bacterial cells were green stained (using GFP-secondary antibody), and the DAPI was used as counter stain for macrophages. (C) 
The intensity of the red fluorescence (translocated protein) was quantified using J-image program in at least 25 cells. Enoxacin significantly 
decreased the translocation of the SPI2 effector.
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regulatory system as well as ssaE and ssaJ that encode for the structural 
proteins of T3SS apparatus. Additionally, both sseJ and sseF that encode 
SPI2 effectors were significantly down-regulated following Salmonella 
exposure to sub-MIC of enoxacin.

Salmonella launches its own intracellular replicative niche and estab-
lishes a dynamic network of Salmonella-induced filaments (SIFs). SIFs 
originate from SCV, extend throughout infected host cells connecting 

separate SCVs that attain a vital role in the intracellular survival of Sal-
monella (Knuff and Finlay, 2017). The biogenesis of SIFs is contingent on 
the activity of sseF that in turn enhances the expression of other two ef-
fectors SifA and SifB which are essential for microtubule bundling and 
SIF formation (Kuhle and Hensel, 2004). Enoxacin significantly down-reg-
ulated sseF, sifA, and sifB that encode for essential effectors in order to 
maintain SCV integrity (Gerlach and Hensel, 2007; Kuhle and Hensel, 
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Fig. 5. Enoxacin downregulated the expression of SPI2 genes. The expression of SPI2 genes were quantified and normalized to gyrB. 
Enoxacin at sub-MIC significantly downregulated the expression of all tested genes except sseL, sscA and pipB (ns: non-significant, P > 0.05, 
***P < 0.001, **P < 0.01, *P < 0001).
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Fig. 6. Enoxacin diminished S. enterica ability to colonize and establish 
infection in mice. (A) Mice survival was monitored in each group 
daily for 5 days and plotted using Kaplan-Meier survival curve. There 
were no deaths in negative control groups. Enoxacin at sub-MIC 
significantly (P = 0.0394) reduced mortality rate. Bacterial loads in (B) 
liver and (C) kidney tissues were determined. Colonizing bacteria in 
organs isolated from mice injected with enoxacin-treated S. enterica 
were significantly reduced compared with untreated S. enterica-
injected mice (**P < 0.01, ***P < 0001).
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2004). PipB is involved in the dynamics of the SCV within host cells. PipB 
assists, in cooperation with SifB, in the trafficking of SCV along microtu-
bules, which is critical for maintaining of SCV integrity and positioning 
within the host cells (Knodler et al., 2002, 2003). While enoxacin re-
pressed sifA and sifB expression, it did not show a marked effect on pipB. 
Chaperone proteins are specialized proteins that assist in the proper 
folding, assembly, and maintenance of other proteins within the cell, 
some of SPI2 effectors require chaperon protein as SscA (Cornelis, 2006, 
Gerlach and Hensel, 2007). Ssav is essential for secretion of many effec-
tors necessary for Salmonella survival within the host cells, and its dele-
tion significantly decrease both intracellular survival and host virulence 
(Askoura et al., 2021; Hegazy and Abbas, 2017; Yu et al., 2018). Current 
results showed the significant down-regulation of ssaV, but not on sscA 
following bacterial treatment with enoxacin. The most observed 
down-regulation was observed to steC which encodes for a multifunc-
tional effector protein that plays a pivotal role in Salmonella pathogene-
sis by manipulating the host cell actin cytoskeleton, modulating signal-
ing pathways, and supporting intracellular survival and replication. SteC 
is crucial for the bacterium's ability to create a conducive environment 
within host cells and to enhance its virulence (Heggie et al., 2021; Poh et 

al., 2008). Enoxacin at sub-MIC reduced the expression of T3SS-II encod-
ing genes emphasizes its adverse effect on the translocation of SPI2 ef-
fectors and diminished Salmonella intracellular replication.

Bacterial adhesion and biofilm formation are critical processes in Sal-
monella lifecycle and host virulence (Askoura et al., 2021; Elfaky et al., 
2022; Hegazy and Abbas, 2017). The process of biofilm formation in-
volves several distinct stages that ends by the development of a com-
plex, structured community of bacteria (Elfaky et al., 2023; Rajab and He-
gazy, 2023). Formation of biofilms in chronic wounds impede healing 
and contribute to prolonged infection that in turn enhance the develop-
ment of resistance to antibiotics. Therefore, eradicating biofilms is a cru-
cial goal for effective treatment (Khayat et al., 2023; Lila et al., 2023; Na-
zeih et al., 2023). Quorum sensing (QS) is a fundamental communication 
mechanism that enables bacteria to coordinate collective behaviors es-
sential for survival and pathogenicity. QS systems control the production 
of diverse virulence factors and biofilm formation (Cavalu et al., 2022; 
Khayat et al., 2022; Thabit et al., 2022). Present findings demonstrate the 
significant ability of enoxacin at sub-MIC to diminish both bacterial ad-
hesion and biofilm formation. These findings suggest that enoxacin may 
possess anti- anti-QS activity, potentially explaining its additional an-
ti-virulence potential. Further detailed investigations are needed to ex-
plore the anti-QS properties of enoxacin.

In line with the current results, the bactericidal doses of antibiotics 
could kill or inhibit the growth of targeted bacteria, while at sub-inhibi-
tory concentration, they could induce physiological changes in these 
bacteria (Linares et al., 2006). These changes could affect a wide array of 
processes in the bacteria and lead to fitness modifications that influence 
bacterial thrive in different environments (Andersson and Hughes, 2014). 
Exposure to antibiotics at sub-inhibitory concentrations has been shown 
to modulate the expression of virulence-related processes, including QS, 
host-cell adherence, and bacterial motility (Molina-Quiroz et al., 2015). 
Furthermore, in vivo evidence showed the ability of fluoroquinolones 
such as ciprofloxacin at sub-inhibitory concentration to lessen S. enterica 
pathogenesis (Askoura and Hegazy, 2020). This is in compliance with the 
current results which disclosed the significant ability of enoxacin at 
sub-inhibitory concentration to diminish Salmonella virulence capability 
and host pathogenesis. In vivo findings are in alignment with the in vitro 
results which emphasize the interference of enoxacin with Salmonella 
invasion of host cells and consequently a decrease bacterial colonization 
of the host tissues

In conclusion, the present study clearly shows the interference ability 
of enoxacin at sub-MIC with both invasion and intracellular survival ca-
pabilities of Salmonella within the host cells. These effects could be at-
tributed to enoxacin interference with T3SS-II. Enoxacin diminished the 
translocation of SPI2 effectors and reduced the expression of their en-
coding genes. These findings uncover that enoxacin exhibits an addition-
al effective intracellular activity against Salmonella through disrupting 
of bacterial survival within host cells. These results are significant in ex-
panding our understanding of the various mechanisms by which enoxa-
cin and other quinolones could control bacterial infections. This ap-
proach could be beneficial in overcoming bacterial resistance to com-
monly used antibiotics. Furthermore, these observations pave the way to 
investigate and explore the anti-virulence activity of antibiotics and 
drugs that share similar chemical moieties.
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