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Antarctic fungi can effectively adapt to extreme environments, which leads to the produc-
tion of unique bioactive compounds. Studies on the discovery of fungi in the diverse envi-
ronments of Antarctica and their potential applications are increasing, yet remain limited. In 
this study, fungi were isolated from various substrates on the Fildes Peninsula in Antarctica 
and screened for their antibiosis activity against two significant plant pathogenic fungi, 
Botrytis cinerea and Fusarium culmorum. Phylogenetic analysis using multiple genetic 
markers revealed that the isolated Antarctic fungal strains are diverse, some of which are 
novel, emphasizing the underexplored biodiversity of Antarctic fungi. These findings sug-
gest that these fungi have potential for the development of new antifungal agents that can 
be applied in agriculture to manage fungal plant pathogens. Furthermore, the antibiosis ac-
tivities of the isolated Antarctic fungi were evaluated using a dual-culture assay. The results 
indicated that several strains from the genera Cyathicula, Penicillium, and Pseudeurotium 
significantly inhibited pathogen growth, with Penicillium pancosmium showing the high-
est inhibitory activity against Botrytis cinerea. Similarly, Aspergillus and Tolypocladium 
strains exhibited strong antagonistic effects against Fusarium culmorum. This study en-
hances our understanding of Antarctic fungal diversity and highlights its potential for bio-
technological applications.
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Introduction

Fungi are among the largest groups of organisms and thrive in diverse 
environments, where they occupy multiple ecological niches and play 
several roles, including saprotrophic, pathogenic, and symbiotic roles, 
making them essential ecosystem components (Kendrick, 2011; Naran-
jo-Ortiz and Gabaldón, 2019). Globally, their biomass accounts for ap-
proximately 12 gigatons of carbon (Bar‐On et al., 2018). Consequently, 
they exhibited a distinctive metabolic plasticity that enables rapid adap-
tation and survival through the biosynthesis of various natural products 

(Bhattarai et al., 2021; Gholami-Shabani et al., 2019). Fungi-derived natu-
ral products are pharmaceutically prolific and have been developed for 
several important biological applications, ranging from highly potent 
toxins to approved drugs (Aly et al., 2011; Rastegari et al., 2020; Schuef-
fler and Anke, 2014; Vicente et al., 2003).

Antarctica represents one of the most extreme environments on Earth 
for the existence of life. This ecosystem exhibits high-stress conditions, 
including low temperatures, sporadic and limited nutrient availability, 
high aridity, and elevated ultraviolet radiation levels. Antarctic fungi 
must adapt to survive under these highly demanding conditions (Hassan 



et al., 2016). These adaptations result from modifications in gene expres-
sion and secondary metabolite biosynthesis, forming biologically rele-
vant chemical spaces that allow them to survive efficiently in Antarctica 
(Varrella et al., 2021; Zucconi et al., 2020).

Studies on fungi in Antarctic ecosystems are limited. However, many 
studies on Antarctic fungi have explored the diversity and potential ap-
plications of culturable fungi from various Antarctic environments 
(González et al., 2020; Varrella et al., 2021). Despite these efforts, many 
studies on fungal diversity in Antarctica rely primarily on the internal 
transcribed spacer (ITS) region, a universal fungal genetic marker (Schoch 
et al., 2012), which often leads to inaccurate identification (Dupuis et al., 
2012; Kiss, 2012). This difficulty in species identification limits our under-
standing of fungal biology and its potential applications.

Most studies on Antarctic fungi have focused primarily on the charac-
teristics of secondary metabolites, including novel metabolite produc-
tion and antibacterial properties (Ordóñez-Enireb et al., 2022; Shi et al., 
2022; Vieira et al., 2018). However, their potential use, particularly in 
combating plant pathogens, remains undetermined. Recent findings re-
garding natural compounds that capable of inhibiting plant diseases 
have generated renewed interest (Kim and Hwang, 2007; Vinale et al., 
2014; Wang et al., 2023). Therefore, Antarctic fungi may be promising 
candidates with hidden and remarkable capabilities.

Botrytis cinerea and Fusarium culmorum are representative plant 
pathogenic fungi that cause significant economic losses to agriculture. 
Botrytis cinerea, responsible for grey mold, is a highly destructive patho-
gen and is estimated to cause nearly $100 billion in annual agricultural 
losses (Dwivedi et al., 2024; Roca-Couso et al., 2021). The destructive na-
ture of this fungus ranks second among scientifically and economically 
relevant pathogenic fungi (Dean et al., 2012). In Chile, B. cinerea affects 
grapes by reducing both yield and quality during ripening. Integrated 
management practices, including cultural, chemical, and biological 
methods, are crucial for controlling this pathogen in Chilean vineyards 
under temperate and humid conditions (Herrera-Défaz et al., 2023; La-
torre et al., 2015).

Fusarium culmorum, on the other hand, affects cereals, such as wheat 
and barley, causing Fusarium head blight, which reduces grain yield and 
quality. The presence of this pathogen in Chile is significant, especially in 
humid areas where it can produce mycotoxins such as deoxynivalenol, 
posing additional food safety concerns (Scherm et al., 2013). Chemical 
strategies through fungicides are currently the most widely used methods 
for controlling infections. Both B. cinerea and F. culmorum have devel-
oped resistance to several conventional fungicides (Yin et al., 2023), caus-
ing substantial agricultural damage worldwide (Hahn, 2014). Therefore, 
discovering new natural molecules with high efficiency in controlling 
plant pathogenic fungal growth is of vital importance to the agricultural 
sector.

During the Antarctic expedition (ECA59) funded by the Chilean Ant-
arctic Institute, we collected several environmental samples, including 
soil, lichens, plants, and snow, from the Fildes Peninsula, Antarctica. We 
isolated 97 fungal strains and examined their diversity and antibiosis 
ability against two plant pathogens. Through phylogenetic analysis us-
ing multi-genetic markers (ITS, LSU, ACT, RPB2, TEF1, and TUB) specific 
to each taxonomic group, we elucidated species diversity with consider-
able accuracy. Using a dual-culture assay approach, we evaluated the an-
tibiosis potential of all Antarctic fungal strains against B. cinerea and F. 

culmorum. Several strains from the genera Aspergillus, Cyathicula, Pen-
icillium, Pseudeurotium, Pseudogymnoascus, and Tolypocladium 
showed a remarkable capacity to control the growth of these phyto-
pathogens. Thus, our study offers comprehensive insights into the diver-
sity of culturable fungi in Antarctica and their potential for antibiosis. This 
study will broaden the understanding of Antarctic fungi and establish 
groundwork for future research.

Materials and Methods

Sample collection and processing
Antarctic samples for fungal isolation were collected from the Fildes Pen-

insula, Antarctica in March 2023 (Fig. 1). The exact locations and sample types 
are listed in Table 1. Samples were collected in sterilized falcon tubes 
(28 × 120 mm²) using a metal spatula sterilized with 70% alcohol, transport-
ed to Julio Escudero Base Laboratories, and stored at 4°C. They were then 
transported to the Laboratory of Applied and Sustainable Chemistry 
(LabQAS; Universidad del Bío-Bío, Chile).

A measured amount (5 g) of each collected sample (sediment, soil, moss, 
and fruiting body) was resuspended in 10 ml of sterile Type I ultrapure water. 
From the resulting suspension, 500 µl was plated on Potato Dextrose Agar 
(PDA; Difco, USA) supplemented with 100 mg/ml tetracycline and 100 mg/ml 
streptomycin to prevent bacterial contamination and incubated at 13–17°C 
for one week. Endophytic fungi were isolated from Deschampsia antarctica 
followed the method outlined by Ismail et al. (2021), with some modifica-
tions. Briefly, approximately 5 g of root was washed under running tap water 
to remove any residual soil. Roots that died or showed signs of lesions or dis-
coloration were excluded from the study. The remaining healthy roots were 
surface sterilized by immersion in 70% ethanol for 3 min, followed by a 2.5 
min soak in sodium hypochlorite solution (approximately 5% active chlorine). 
The roots were then rinsed three times with sterile Type I ultrapure water for 
3 min. After surface sterilization, the roots were dried on sterile filter paper 
and cut into small segments. Seventy root segments per plot were placed on 
PDA media supplemented with 100 µg/ml tetracycline and 100 mg/ml strep-
tomycin to inhibit bacterial growth. The plates were incubated at 15°C for 4 
weeks. The cultures were carefully monitored for fungal mycelia emergence. 
Once the mycelia were observed, they were immediately transferred to fresh 
PDA plates to encourage further growth.

Distinct fungal colonies were selected based on their morphological char-
acteristics, including colony color, texture, border type, and radial growth 
rate. These distinct colonies were then sub-cultured on fresh PDA plates to 
obtain pure fungal strains. All fungal strains were deposited in the LabQAS 
Fungal Collection at the Universidad del Bío-Bío, Chile.

Molecular identification
Genomic DNA was extracted from lyophilized tissues of each fungal strain 

grown on PDA (using 5 mm diameter blocks) using an AccuPrep Genomic 
DNA extraction kit (Bioneer Co., Korea), following the manufacturer’s instruc-
tions, with a modification of the CTAB buffer instead of the TL buffer. Poly-
merase chain reaction (PCR) was performed on a C1000 thermal cycler (Bio-
Rad, USA) using the AccuPower PCR premix (Bioneer Co., Korea). The primer 
sets ITS1 and ITS4 (White et al., 1990) were used to amplify the ITS region for 
all fungal strains under the following conditions: 95°C for 5 min; 35 cycles of 
95°C for 40 s, 55°C for 40 s, and 72°C for 1 min; and 72°C for 5 min. All PCR 
products were verified by gel electrophoresis on a 1% agarose gel and Gel 
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Doc™ XR (Bio-Rad, USA). The PCR products were purified using the Expin™ 
PCR Purification Kit (GeneAll Biotechnology Co., Korea). DNA sequencing was 
performed with the same primers used for PCR by Macrogen (Korea), using 
an ABI PRISM 3700 Genetic Analyzer (Life Technologies, USA). The resulting 
sequences were proofread and manually edited using Geneious Prime soft-
ware ver. 2024.0.7 (Biomatters Ltd., USA; Kearse et al., 2012). The forward and 
reverse sequences obtained were assembled using the de novo assembly 
function in Geneious Prime software ver. 2024.0.7 (Biomatters Ltd., USA; Ke-
arse et al., 2012).

Preliminary identification at a higher taxonomic level (mostly at the genus 
level; if not possible, then at the family level) was performed using NCBI 
BLAST with the ITS region sequences. Based on the preliminary identification 
via NCBI BLAST, appropriate additional genetic markers for each genus were 
selected through a reference search to allow for species-level identification 
(Table S1). The PCR conditions for each primer set are summarized in Table 
S1. The generated sequences were sequenced and edited according to the 
same protocol used to generate the ITS sequences. All newly generated se-
quences were deposited in GenBank (Table 1).

For phylogeny-based identification, reference sequences (mostly holotype 
sequences) were retrieved from GenBank. When holotype sequences were 
unavailable, verified strain sequences from the published literature were 
used (Table S2). Using both reference sequences and the newly generated 
sequences, phylogenetic analyses were performed using FunVIP 0.3.19 with 

the ‘--preset fast’ setting, employing FastTree for tree construction (https://
github.com/Changwanseo/FunVIP; Seo et al., under Review). The set of ge-
netic markers used for the final identification varied depending on the genus. 
The final species assignment was validated based on phylogenetic evidence, 
specifically the branch length and local support values of the phylogenetic 
tree generated using FastTree v.2.1.11 (Price et al., 2010).

To construct the phylogenetic tree shown in Fig. 2, RAxML phylogenetic 
analysis was conducted using the GTR+GAMMA model with 1,000 replicates 
using RAxML ver. 8 (Stamatakis, 2014). The analysis incorporated the ITS and 
LSU sequences of the strains obtained in this study, along with two outgroup 
sequences, Conidiobolus coronatus AFTOL-ID 137 and Entomophaga mai-
maiga ARSEF 1400 (Gryganskyi et al., 2012).

Antibiosis assay employing dual-culture method against 
B. cinerea and F. culmorum

Antarctic fungal strains were evaluated against two pathogenic fungi, B. 
cinerea and F. culmorum. For in vitro assays, the strain of B. cinerea F003 was 
obtained in 2006 from the blueberry fruit cv. O’Neal, infected with this fun-
gus, in Chillán, Ñuble Region, Chile. The strain was identified based on its mi-
croscopic morphological characteristics (presence of conidia and conidio-
phores) and confirmed by PCR using specific primers Bc3F/R, which amplify 
the intergenic spacer (IGS) region of the ribosomal DNA of B. cinerea (Suarez 
et al., 2005). The pathogenic isolate of F. culmorum strain F066 was isolated 

Fig. 1. Sampling sites in Antarctica (ECA59 Expedition) with photographs of each sample type. (A) Map indicating the sampling sites with 
the location of research stations from Chile and South Korea. Representative photographs of (B) fruit body, (C) ice, (D) lichen, (E) moss, (F) 
sediment, and (G) soil samples.
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Fig. 2. Phylogenetic tree of 97 fungal strains isolated in this study. The phylogenetic tree was constructed using RAxML analysis with internal 
transcribed spacer (ITS) and LSU sequences. The final identification results for each strain are shown along with the strain numbers in bold. 
Bootstrap values greater than 70% are indicated at each branch node, and branches with a bootstrap value of 100 are represented by thick 
lines. The substrate type from which each strain was isolated is indicated next to the strain, with the corresponding type highlighted by a 
colored box. For clarity, the substrate types are listed at the top of each column.
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from European hazelnut cv. Barcelona in Camarico, Maule Region, Chile. Iden-
tification was based on the microscopic morphological characteristics and 
phylogenetic analysis of the ITS (MT640271), RPB2 (MT997139), TEF1 
(MT661593), and CAL (MT997140) regions (Mishra et al., 2000; O'Donnell et 
al., 2000, 2008).

Mycelial disks (5 mm in diameter) of Antarctic fungal strains and patho-
gens were obtained from the margin of an actively growing culture using a 
cork borer. Both mycelial disks were placed on a Petri dish with 15 ml of PDA 
and positioned 6 cm apart. The negative controls consisted of mycelial disks 
from the pathogen alone. The plates were incubated in dark in a culture 
chamber at 25°C. The percentage of inhibition of radial growth (PIRG) was 
calculated using the following equation:

where PIRG is the percentage of growth inhibition,
Dc is the growth (mm) of the pathogenic fungus in the control group.
Dt is the pathogen growth (mm) in the presence of an Antarctic fungus.
Three replicates were performed for each treatment group. Antagonistic 

activity was evaluated by measuring the growth radius of the pathogenic 
fungal mycelia. Once the pathogenic fungus grew free of competition (nega-
tive control) and occupied the entire plate, the experiment was terminated. 
Fusarium culmorum and B. cinerea occupied the entire plate in 15 and 10 
days, respectively.

Results

Identification of Antarctic fungi
A total of 97 Antarctic fungal strains were isolated from biotic (moss, 

lichen, fruit body, macroalgae, and root) and abiotic substrates (soil, sedi-
ment, ice, and styrofoam) in similar proportions (Fig. 2), with 48% and 
40% of each substrate type, respectively. The substrate type with the 

highest number of fungal strains was soil (20 strains), followed by moss 
(18 strains), and roots (16 strains; Table 1).

The ITS region sequences were successfully obtained from 95 of the 97 
strains. NCBI BLAST analysis was performed using the ITS region of these 
95 strains, whereas the LSU region was used for the remaining two 
strains. This preliminary analysis identified 97 strains representing 58 
taxa. Among these, 54 taxa were assigned to 19 known genera, whereas 
the remaining four taxa could not be assigned to any known genera. 
These four taxa matched annotated fungal sequences in the NCBI BLAST 
database: “Dothideomycetes sp.” (strain numbers: 1808, 1816), “Fungal 
sp.” (1818, 1824), “Helotiales sp.” (1812, 1813, 1830, 1855, 1859, 1884), 
and “Uncultured endophytic fungi” (1822, 1842).

Based on previous studies, additional genetic markers suitable for 
each taxonomic classification were selected, and 132 additional genetic 
marker sequences were acquired (Table 1): 44 sequences in the LSU re-
gion, 34 in the TUB region, 7 in the CMD region, 10 in the ACT region, 34 
in the TEF1 region, and 3 in the RPB2 region. Phylogenetic analysis using 
multiple genetic markers was conducted, along with the appropriate ref-
erence sequences for each genus. The analysis confirmed that the 58 
taxa belonged to three phyla: 6 classes (2 isolates in Agaricomycetes, 8 
in Dothideomycetes, 22 in Eurotiomycetes, 47 in Leotiomycetes, 3 in 
Mortierellomycetes, and 15 in Sordariomycetes), 12 orders (1 isolate in 
Agaricales, 1 in Amphisphaeriales, 1 in Atheliales, 5 in Cladosporiales, 
21 in Eurotiales, 21 in Helotiales, 14 in Hypocreales, 3 in Mortierellales, 
1 in Onygenales, 3 in Pleosporales, and 26 in Thelebolales), 21 families, 
and 23 genera (Fig. S1). Approximately 30% of the 97 strains (29 strains) 
were identified at the species-level, whereas the remaining 70% were 
confirmed as new species candidates, particularly those concentrated in 
Leotiomycetes. The complete strain phylogeny is presented in Fig. 2, 
based on ITS and LSU sequences, and the final identification results are 
reflected in the strain annotations.

Fig. 3. Images showing the top five strains with the highest antibiosis activity against two plant pathogens. The leftmost image in each row 
represents the control for B. cinerea and F. culmorum. Strain numbers and identification results are indicated below each plate.

PIRG% = × 100
Dc−Dt

Dc
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Antibiosis evaluation of Antarctic fungi against B. cinerea 
and F. culmorum

Using a dual-culture assay approach and PIRG as a quantifiable vari-
able, we evaluated the antibiosis potential of all isolated fungal strains 
against B. cinerea and F. culmorum (Tables S3 and S4). Overall, remark-
able antibiosis bioactivities were observed in the isolated fungal strains, 
with the best examples shown in Fig. 3.

The isolated Antarctic fungi exhibited antibiosis activity against B. ci-
nerea and F. culmorum, with PIRG values ranging from 0 to 72.95% and 
from 0 to 53.45%, respectively (Tables S3 and S4). Based on the PIRG val-
ues, antibiosis activity was categorized into four levels: +++ (PIRG: 
> 40%), ++ (PIRG: 20–40%), + (PIRG: 0–20%), and 0 (no inhibition). The 
strains showing the highest level of inhibition (+++) included 36 and 8 
strains against B. cinerea and F. culmorum, respectively (Tables S3 and 
S4). The antibiosis activity of the isolated Antarctic fungi was, on average, 
higher against B. cinerea than against F. culmorum (Fig. 4). However, the 
antibiosis activity of each fungal strain against the two plant pathogenic 
fungi did not always align consistently.

Three Penicillium pancosmium strains, 1878, 1887, and 1892, showed 
elevated levels of antibiosis against B. cinerea, with PIRG values of 71.1, 
71.1, and 66, respectively. Additionally, new species candidates of the 
genera Cyathicula (1830) and Pseudeurotium (1874) showed remark-
able levels of antibiosis activity, with PIRG values of 66.9 and 65.1, re-
spectively (Fig. 4A, Table S3). Against F. culmorum, the new species can-
didates of Aspergillus (1877) and Tolypocladium (1860) most actively 
controlled pathogen growth, with PIRG values of 31.8 and 30.8, respec-
tively. In addition, two Pseudogymnoascus species (1815 and 1807) and 
one Pseudeurotium strain (1872) controlled F. culmorum growth (PIRG 
=  30.8, 27.6, and 29.5, respectively; Fig. 4B, Table S4).

Discussion

We successfully isolated 58 diverse fungal taxa at the species level 
from various regions and substrates in Antarctica, representing the first 
report of culturable fungi associated with Antarctic fruiting bodies. Addi-
tionally, we evaluated the antibiosis potential of all fungal strains isolated 
during the Antarctic expedition (ECA 59) against B. cinerea and F. culmo-
rum. This study revealed several Antarctic strains that substantially inhib-
ited the growth of agriculturally relevant fungal pathogens, thereby em-
phasizing their ecological and biotechnological significance.

A significant number of these isolated fungal strains were identified as 
new species candidates because they showed no match at the spe-
cies-level in the existing species databases. This highlights the lack of 
comprehensive taxonomic studies on Antarctic fungi and their underrep-
resentation in global databases. Furthermore, discrepancies between the 
final phylogenetic identification and ITS-based BLAST results were ob-
served, particularly within the orders Pleosporales and Helotiales. For in-
stance, strains preliminarily identified as “Fungal sp.” (1818 and 1824) and 
“Helotiales sp.” (1812, 1830, and 1859), based on ITS-based BLAST, were 
later classified as Cyathicula through phylogenetic analysis. A detailed 
taxonomic study revealed that the closest known species, Cyathicula mi-
crospora, shared only 86.1% to 92.3% ITS sequence identity with these 
Antarctic fungal strains, indicating a substantial genetic divergence. These 
findings further highlight the limitations of fungal sequence curation in 
the NCBI database, particularly for the identification of Antarctic fungi, 
due to the lack of taxonomic studies on these organisms.

Furthermore, the limitations of ITS as the sole marker and the necessi-
ty of multi-genetic approaches for accurate fungal taxonomy were also 
pointed out, when studying for Antarctic fungi. To overcome the taxo-
nomic ambiguities of Antarctic fungi, we applied a multigene mark-
er-based approach to discover new species candidates. This approach is 

Fig. 4. Antibiosis activity of Antarctic fungal strains against two plant pathogens. The graphs show the antibiosis activity results, ranked 
from highest to lowest, for (A) B. cinerea and (B) F. culmorum. The average percentage of inhibition of radial growth (PIRG) is indicated by the 
dashed line in each graph. Antibiosis activity is categorized into four levels, represented by distinct colors: (+++) in green, (++) in yellow, (+) 
in light gray, and below-average in gray.
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particularly effective for genera such as Penicillium and Cladosporium, 
which require additional markers, such as TUB and RPB2, for reliable spe-
cies-level classification (Bensch et al., 2012; Visagie et al., 2014). By apply-
ing this approach, we resolved taxonomic ambiguities and demonstrat-
ed its utility in revealing previously uncharacterized fungal diversity. By 
providing accurate information on these poorly studied Antarctic fungi, 
this study contributes to the understanding of their potential impact on 
the changing Antarctic ecosystem and their hidden capabilities for vari-
ous future applications.

Taxonomic ambiguities in identifying Antarctic fungi were particularly 
pronounced in the class Leotiomycetes, a group frequently reported in 
polar environments, including soil, moss, and marine habitats, such as al-
gae, seawater, and sponges (Kochkina et al., 2014, 2019; Ordóñez-Enireb 
et al., 2022; Rämä et al., 2017; Rosa et al., 2019, 2020). Despite their eco-
logical significance (Bates et al., 2012; Câmara et al., 2021; Kochkina et al., 
2014; Park et al., 2015; Yu et al., 2018), Leotiomycetes remain understud-
ied, with many unresolved taxonomic issues (Johnston et al., 2019; 
Quandt and Haelewaters, 2021). This makes the species-level identifica-
tion particularly difficult for Antarctic Leotiomycetes (Henríquez et al., 
2014; Hirose et al., 2016, 2017; Kochkina et al., 2014; Ordóñez-Enireb et 
al., 2022). Recent studies have reported an increasing association be-
tween Antarctic mosses and Antarctic Leotiomycetes species (De Carval-
ho et al., 2019; Hirose et al., 2016, 2017), with some Leotiomycetes spe-
cies identified as pathogenic (Rosa et al., 2020, 2021). These findings un-
derscore the need for accurate identification within this class.

Our findings highlight the antifungal potential of Antarctic fungi, 
many of which are poorly understood. A dual-culture assay revealed sig-
nificant antifungal activity against two major phytopathogens, B. cinerea 
and F. culmorum. On average, B. cinerea was more susceptible to the 
antibiosis effects of the Antarctic fungal isolates than F. culmorum (Fig. 
4). Fungi belonging to Eurotiales, including Penicillium pancosmium, 
exhibit particularly strong antibiosis activity, suggesting their potential 
as natural fungicides. Although Penicillium species are well-documented 
for their biocontrol activities (Roca-Couso et al., 2021; Thambugala et al., 
2020), studies on P. pancosmium remain limited, making this a notable 
discovery.

Among the new species candidates, strains from Cyathicula and 
Pseudeurotium showed the highest levels of antibiosis activity against 
both plant pathogens. To the best of our knowledge, this is the first re-
port of the antifungal activity of Cyathicula. Although other species of 
the family Helotiaceae, to which Cyathicula belongs, also produce vari-
ous secondary metabolites with antifungal properties (Chen et al., 2013; 
Elhamouly et al., 2022), the discovery of such activity in Cyathicula ex-
pands our understanding of the functional diversity within Helotiaceae, 
highlighting its potential as a source of novel antifungal compounds. 
Moreover, Antarctic strains of Aspergillus, Penicillium, Pseudeurotium, 
and Tolypocladium exhibited antibiosis activity. These fungal groups 
were well-known for synthesizing antifungal secondary metabolites 
(Bladt et al., 2013; Brown et al., 1976; Bushley et al., 2013; Heo et al., 2019; 
Khokhar et al., 2011; Quandt et al., 2015; Wang et al., 2023).

Notably, Pseudogymnoascus, the most taxonomically diverse genus 
identified in this study (6 taxa, 18 isolates), demonstrated significant an-
tifungal activity, with most showing above-average activity against at 
least one plant pathogen. This aligns with the results of previous studies 
indicating the capacity of Pseudogymnoascus to synthesize diverse an-

tifungal compounds, such as amphiols, geomycins A–C, and various ses-
quiterpenes (Antipova et al., 2023; Shi et al., 2021). These findings em-
phasize their potential as key sources of bioactive compounds and their 
ecological role in Antarctic environments, where antifungal properties 
may confer adaptive advantages. This study highlights the immense mi-
crobial diversity within Antarctic ecosystems and their potential to be 
broadly applicable in biotechnology, agriculture, and medicine. The ex-
treme conditions in Antarctica likely drive unique selective pressures, 
fostering the evolution of microorganisms producing distinctive second-
ary metabolites (Marx et al., 2007; Núñez-Montero and Barrientos, 2018; 
Ramasamy et al., 2023).

Therefore, this study improves our understanding of Antarctic fungi by 
elucidating their diversity across various Antarctic habitats and their anti-
biosis activity against plant pathogenic fungi. Furthermore, this study 
highlights the importance of applying multi-genetic approaches for the 
accurate identification and taxonomic classification of fungi in underex-
plored regions, such as Antarctica. By identifying new species candidates 
and characterizing their antibiosis activity against B. cinerea and F. cul-
morum, we demonstrate the immense potential of Antarctic fungi as a 
source of novel bioactive compounds with profound biotechnological 
applications. As the Antarctic ecosystem continues to undergo changes, 
this study establishes a foundation for future ecological and biotechno-
logical research by providing critical insights into fungal taxonomy and 
physiology.
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