Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Previous issues

Page Path
HOME > Browse Articles > Previous issues
12 Previous issues
Filter
Filter
Article category
Keywords
Volume 58(1); January 2020
Prev issue Next issue
Review
[Minireview]Recent advances in genetic engineering tools based on synthetic biology
Jun Ren , Jingyu Lee , Dokyun Na
J. Microbiol. 2020;58(1):1-10.   Published online January 2, 2020
DOI: https://doi.org/10.1007/s12275-020-9334-x
  • 51 View
  • 0 Download
  • 25 Web of Science
  • 24 Crossref
AbstractAbstract
Genome-scale engineering is a crucial methodology to rationally regulate microbiological system operations, leading to expected biological behaviors or enhanced bioproduct yields. Over the past decade, innovative genome modification technologies have been developed for effectively regulating and manipulating genes at the genome level. Here, we discuss the current genome-scale engineering technologies used for microbial engineering. Recently developed strategies, such as clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9, multiplex automated genome engineering (MAGE), promoter engineering, CRISPR-based regulations, and synthetic small regulatory RNA (sRNA)-based knockdown, are considered as powerful tools for genome-scale engineering in microbiological systems. MAGE, which modifies specific nucleotides of the genome sequence, is utilized as a genome-editing tool. Contrastingly, synthetic sRNA, CRISPRi, and CRISPRa are mainly used to regulate gene expression without modifying the genome sequence. This review introduces the recent genome-scale editing and regulating technologies and their applications in metabolic engineering.

Citations

Citations to this article as recorded by  
  • Bacterial genome reduction for optimal chassis of synthetic biology: a review
    Shuai Ma, Tianyuan Su, Xuemei Lu, Qingsheng Qi
    Critical Reviews in Biotechnology.2024; 44(4): 660.     CrossRef
  • Rational Design of High-Efficiency Synthetic Small Regulatory RNAs and Their Application in Robust Genetic Circuit Performance Through Tight Control of Leaky Gene Expression
    Jun Ren, Nuong Thi Nong, Phuong N. Lam Vo, Hyang-Mi Lee, Dokyun Na
    ACS Synthetic Biology.2024; 13(10): 3256.     CrossRef
  • From lab bench to farmers' fields: Co-creating microbial inoculants with farmers input
    Adegboyega Adeniji, Ayomide Emmanuel Fadiji, Shidong Li, Rongjun Guo
    Rhizosphere.2024; 31: 100920.     CrossRef
  • Development of synthetic small regulatory RNA for Rhodococcus erythropolis
    Lijuan Wang, Jie Hou, Kun Yang, Haonan Yu, Bo Zhang, Zhiqiang Liu, Yuguo Zheng
    Biotechnology Journal.2024;[Epub]     CrossRef
  • Tunable translation-level CRISPR interference by dCas13 and engineered gRNA in bacteria
    Giho Kim, Ho Joon Kim, Keonwoo Kim, Hyeon Jin Kim, Jina Yang, Sang Woo Seo
    Nature Communications.2024;[Epub]     CrossRef
  • Potential applications of engineered bacteria in disease diagnosis and treatment
    Zhaowei Luo, Zhanghua Qi, Jie Luo, Tingtao Chen
    Microbiome Research Reports.2024;[Epub]     CrossRef
  • Wastewater treatment from a science faculty during the COVID-19 pandemic by using ammonium-oxidising and heterotrophic bacteria
    Lucas D. Pedroza-Camacho, Paula A. Ospina-Sánchez, Felipe A. Romero-Perdomo, Nury G. Infante-González, Diana M. Paredes-Céspedes, Balkys Quevedo-Hidalgo, Viviana Gutiérrez-Romero, Claudia M. Rivera-Hoyos, Aura M. Pedroza-Rodríguez
    3 Biotech.2024;[Epub]     CrossRef
  • Synthetic bacteria for the detection and bioremediation of heavy metals
    Thi Duc Thai, Wonseop Lim, Dokyun Na
    Frontiers in Bioengineering and Biotechnology.2023;[Epub]     CrossRef
  • An Account of Models of Molecular Circuits for Associative Learning with Reinforcement Effect and Forced Dissociation
    Zonglun Li, Alya Fattah, Peter Timashev, Alexey Zaikin
    Sensors.2022; 22(15): 5907.     CrossRef
  • CRISPR-Cas9 based stress tolerance: New hope for abiotic stress tolerance in chickpea (Cicer arietinum)
    Muhammad Khuram Razzaq, Muhammad Akhter, Ramala Masood Ahmad, Kaiser Latif Cheema, Aiman Hina, Benjamin Karikari, Ghulam Raza, Guangnan Xing, Junyi Gai, Mohsin Khurshid
    Molecular Biology Reports.2022; 49(9): 8977.     CrossRef
  • Microbes of traditional fermentation processes as synthetic biology chassis to tackle future food challenges
    Adán Andrés Ramírez Rojas, Razan Swidah, Daniel Schindler
    Frontiers in Bioengineering and Biotechnology.2022;[Epub]     CrossRef
  • A synthetic ‘essentialome’ for axenic culturing of ‘Candidatus Liberibacter asiaticus’
    Lulu Cai, Mukesh Jain, Alejandra Munoz-Bodnar, Jose C. Huguet-Tapia, Dean W. Gabriel
    BMC Research Notes.2022;[Epub]     CrossRef
  • In silico genome mining of potential novel biosynthetic gene clusters for drug discovery from Burkholderia bacteria
    Khorshed Alam, Md Mahmudul Islam, Kai Gong, Muhammad Nazeer Abbasi, Ruijuan Li, Youming Zhang, Aiying Li
    Computers in Biology and Medicine.2022; 140: 105046.     CrossRef
  • Developing of specific monoclonal recombinant antibody fused to alkaline phosphatase (AP) for one-step detection of fig mosaic virus
    Niloofar Rajabi, Mohammad Reza Safarnejad, Farshad Rakhshandehroo, Masoud Shamsbakhsh, Hodjattallah Rabbani
    3 Biotech.2022;[Epub]     CrossRef
  • Identification of efficient prokaryotic cell-penetrating peptides with applications in bacterial biotechnology
    Hyang-Mi Lee, Jun Ren, Kha Mong Tran, Byeong-Min Jeon, Won-Ung Park, Hyunjoo Kim, Kyung Eun Lee, Yuna Oh, Myungback Choi, Dae-Sung Kim, Dokyun Na
    Communications Biology.2021;[Epub]     CrossRef
  • Flapjack: Data Management and Analysis for Genetic Circuit Characterization
    Guillermo Yáñez Feliú, Benjamín Earle Gómez, Verner Codoceo Berrocal, Macarena Muñoz Silva, Isaac N. Nuñez, Tamara F. Matute, Anibal Arce Medina, Gonzalo Vidal, Carolus Vitalis, Jonathan Dahlin, Fernán Federici, Timothy J. Rudge
    ACS Synthetic Biology.2021; 10(1): 183.     CrossRef
  • Synthetic small regulatory RNAs in microbial metabolic engineering
    Wen-Hai Xie, Hong-Kuan Deng, Jie Hou, Li-Juan Wang
    Applied Microbiology and Biotechnology.2021; 105(1): 1.     CrossRef
  • Combinatorial metabolic pathway assembly approaches and toolkits for modular assembly
    Rosanna Young, Matthew Haines, Marko Storch, Paul S. Freemont
    Metabolic Engineering.2021; 63: 81.     CrossRef
  • Fourth generation biofuel from genetically modified algal biomass: Challenges and future directions
    Hoofar Shokravi, Zahra Shokravi, Mahshid Heidarrezaei, Hwai Chyuan Ong, Seyed Saeid Rahimian Koloor, Michal Petrů, Woei Jye Lau, Ahmad Fauzi Ismail
    Chemosphere.2021; 285: 131535.     CrossRef
  • Construction of a tunable promoter library to optimize gene expression in Methylomonas sp. DH-1, a methanotroph, and its application to cadaverine production
    Hyang-Mi Lee, Jun Ren, Myeong-Sang Yu, Hyunjoo Kim, Woo Young Kim, Junhao Shen, Seung Min Yoo, Seong-il Eyun, Dokyun Na
    Biotechnology for Biofuels.2021;[Epub]     CrossRef
  • Trans-acting regulators of ribonuclease activity
    Jaejin Lee, Minho Lee, Kangseok Lee
    Journal of Microbiology.2021; 59(4): 341.     CrossRef
  • RNA-Sequencing Analyses of Small Bacterial RNAs and their Emergence as Virulence Factors in Host-Pathogen Interactions
    Idrissa Diallo, Patrick Provost
    International Journal of Molecular Sciences.2020; 21(5): 1627.     CrossRef
  • Extremophilic Microorganisms for the Treatment of Toxic Pollutants in the Environment
    Sun-Wook Jeong, Yong Jun Choi
    Molecules.2020; 25(21): 4916.     CrossRef
  • Nachweismethoden von SARS‐CoV‐2
    Martin Witt, Christopher Heuer, Lina Miethke, John‐Alexander Preuß, Johanna Sophie Rehfeld, Torsten Schüling, Cornelia Blume, Stefanie Thoms, Frank Stahl
    Chemie in unserer Zeit.2020; 54(6): 368.     CrossRef
Journal Articles
[Protocol]Rapid method for chromatin immunoprecipitation (ChIP) assay in a dimorphic fungus, Candida albicans
Jueun Kim , Jung-Shin Lee
J. Microbiol. 2020;58(1):11-16.   Published online June 11, 2019
DOI: https://doi.org/10.1007/s12275-020-9143-2
  • 43 View
  • 0 Download
  • 4 Web of Science
  • 5 Crossref
AbstractAbstract
A chromatin immunoprecipitation (ChIP) assay is a method to identify how much a protein of interest binds to the DNA region. This method is indispensable to study the mechanisms of how the transcription factors or chromatin modifications regulate the gene expression. Candida albicans is a dimorphic pathogenic fungus, which can change its morphology very rapidly from yeast to hypha in response to the environmental signal. The morphological change of C. albicans is one of the critical factors for its virulence. Therefore, it is necessary to understand how to regulate the expression of genes for C. albicans to change its morphology. One of the essential methods for us to understand this regulation is a ChIP assay. There have been many efforts to optimize the protocol to lower the background signal and to analyze the results accurately because a ChIP assay can provide very different results even with slight differences in the experimental procedure. We have optimized the rapid and efficient ChIP protocol so that it could be applied equally for both yeast and hyphal forms of C. albicans. Our method in this protocol is also comparatively rapid to the method widely used. In this protocol, we described our rapid method for the ChIP assay in C. albicans in detail.

Citations

Citations to this article as recorded by  
  • Transcription tuned by S-nitrosylation underlies a mechanism for Staphylococcus aureus to circumvent vancomycin killing
    Xueqin Shu, Yingying Shi, Yi Huang, Dan Yu, Baolin Sun
    Nature Communications.2023;[Epub]     CrossRef
  • Molecular Identification, Dimorphism and Virulence of C. albicans
    Mohsen A. Sayed, Gihad A. Sayed, Eman Abdullah M. Ali
    Research Journal of Pharmacy and Technology.2023; : 1007.     CrossRef
  • Methyltransferase-like 3 silenced inhibited the ferroptosis development via regulating the glutathione peroxidase 4 levels in the intracerebral hemorrhage progression
    Liu Zhang, Xiangyu Wang, Wenqiang Che, Yongjun Yi, Shuoming Zhou, Yongjian Feng
    Bioengineered.2022; 13(6): 14215.     CrossRef
  • Ino80 is required for H2A.Z eviction from hypha‐specific promoters and hyphal development of Candida albicans
    Qun Zhao, Baodi Dai, Hongyu Wu, Wencheng Zhu, Jiangye Chen
    Molecular Microbiology.2022; 118(1-2): 92.     CrossRef
  • Set1-mediated H3K4 methylation is required for Candida albicans virulence by regulating intracellular level of reactive oxygen species
    Jueun Kim, Shinae Park, Sohee Kwon, Eun-Jin Lee, Jung-Shin Lee
    Virulence.2021; 12(1): 2648.     CrossRef
Paraflavitalea soli gen. nov., sp. nov., isolated from greenhouse soil
Jun Heo , Hang-Yeon Weon , Hayoung Cho , Seung-Beom Hong , Jeong-Seon Kim , Soo-Jin Kim , Soon-Wo Kwon
J. Microbiol. 2020;58(1):17-23.   Published online November 23, 2019
DOI: https://doi.org/10.1007/s12275-020-9236-y
  • 46 View
  • 0 Download
  • 7 Web of Science
  • 7 Crossref
AbstractAbstract
A bacterial strain designated 5GH32-13T was isolated from greenhouse soil in Yongin-city, Republic of Korea. Cells were Gram-stain-negative, strictly aerobic, motile rods of two different shapes. The strain was catalase-positive and oxidasenegative. Flexirubin-like pigments were not detected. β-Carotene was produced. The strain grew in the range of 10–37°C (optimum of 28–30°C) and pH 6–8 (optimum of pH 7) and tolerated up to 1% (w/v) NaCl (optimum of 0%). According to the 16S rRNA gene sequence comparison, strain 5GH32- 13T shared a sequence similarity of less than 96.0% with all validly named taxa, having the highest sequence similarity with Pseudoflavitalea soli KIS20-3T (95.8%), Pseudoflavitalea rhizosphaerae T16R-265T (95.4%), Flavitalea gansuensis JCN-23T (95.3%), Pseudobacter ginsenosidimutans Gsoil 221T (95.3%), and Flavitalea populi HY-50RT (95.2%). A phylogenetic tree showed that strain 5GH32-13T was not grouped consistently into any specific genus. Its only polyamine was homospermidine, and its major fatty acids (> 10% of total fatty acids) were iso-C15:0, iso-C17:0 3-OH, and iso-C15:1 G. The strain’s only respiratory quinone was MK-7, and its polar lipids were phosphatidylethanolamine, one unidentified phospholipid, six unidentified aminolipids and four unidentified lipids. Its DNA G + C content was 47.5 mol%. The results from chemotaxonomic, phenotypic and phylogenetic analyses indicated that strain 5GH32-13T represents a novel species of a novel genus of the family Chitinophagaceae, and the name Paraflavitalea soli gen. nov., sp. nov. is proposed. The type strain is 5GH32-13T (= KACC 17331T = JCM 33061T).

Citations

Citations to this article as recorded by  
  • Polysaccharide utilization loci encoded DUF1735 likely functions as membrane‐bound spacer for carbohydrate active enzymes
    Lisanne Hameleers, Lucie A. Gaenssle, Salvador Bertran‐Llorens, Tjaard Pijning, Edita Jurak
    FEBS Open Bio.2024; 14(7): 1133.     CrossRef
  • Paraflavitalea pollutisoli sp. nov., Pollutibacter soli gen. nov. sp. nov., Polluticoccus soli gen. nov. sp. nov., and Terrimonas pollutisoli sp. nov., four new members of the family Chitinophagaceae from polluted soil
    Ze-Shen Liu, Xiao-Kang Wang, Ke-Huan Wang, Mei-Ling Yang, De-Feng Li, Shuang-Jiang Liu
    Systematic and Applied Microbiology.2024; 47(2-3): 126503.     CrossRef
  • Paraflavisolibacter caeni gen. nov., sp. nov., a novel taxon within the family Chitinophagaceae isolated from sludge
    Cansheng Yuan, Bin Liu, Lin Wang, Weihua Long, Zhuang Ke, Jian He
    International Journal of Systematic and Evolutionary Microbiology .2023;[Epub]     CrossRef
  • Longitalea arenae gen. nov., sp. nov. and Longitalea luteola sp. nov., two new members of the family Chitinophagaceae isolated from desert soil
    Shuai Li, Lei Dong, Jia-Rui Han, Guo-Yuan Shi, Chun-Yan Lu, Lu Xu, Wen-Hui Lian, Dalal Hussien M. Alkhalifah, Wael N. Hozzein, Wen-Jun Li
    Archives of Microbiology.2022;[Epub]     CrossRef
  • Optimizing the bacterial community structure and function in rhizosphere soil of sesame continuous cropping by the appropriate nitrate ammonium ratio
    Ruiqing Wang, Zhihua Zhang, Fengjuan Lv, Hongxin Lin, Lingen Wei, Yunping Xiao
    Rhizosphere.2022; 23: 100550.     CrossRef
  • Paraflavitalea devenefica sp. nov., isolated from urban soil
    Xiaoxiao Hou, Hongliang Liu, Yumang Shang, Sidi Mao, Shucheng Li, Feng Sang, Hongkuan Deng, Lijuan Wang, Ling Kong, ChunYang Zhang, Zhongfeng Ding, Yan Gao, Shuzhen Wei, Zhiwei Chen
    International Journal of Systematic and Evolutionary Microbiology .2021;[Epub]     CrossRef
  • List of new names and new combinations previously effectively, but not validly, published
    Aharon Oren, George M. Garrity
    International Journal of Systematic and Evolutionary Microbiology.2020; 70(5): 2960.     CrossRef
Saccharibacillus brassicae sp. nov., an endophytic bacterium isolated from kimchi cabbage (Brassica rapa subsp. pekinensis) seeds
Lingmin Jiang , Chan Ju Lim , Song-Gun Kim , Jae Cheol Jeong , Cha Young Kim , Dae-Hyuk Kim , Suk Weon Kim , Jiyoung Lee
J. Microbiol. 2020;58(1):24-29.   Published online November 25, 2019
DOI: https://doi.org/10.1007/s12275-020-9346-6
  • 38 View
  • 0 Download
  • 12 Web of Science
  • 11 Crossref
AbstractAbstract
Strain ATSA2T was isolated from surface-sterilized kimchi cabbage (Brassica rapa subsp. pekinensis) seeds and represents a novel bacterium based on the polyphasic taxonomic approach. A phylogenetic analysis based on 16S rRNA gene sequences showed that strain ATSA2T formed a lineage within genus Saccharibacillus and was most closely to Saccharibacillus deserti WLG055T (98.1%) and Saccharibacillus qingshengii H6T (97.9%). The whole-genome of ATSA2T comprised a 5,619,468 bp of circular chromosome with 58.4% G + C content. The DNA-DNA relatedness values between strain ATSA2T and its closely related type strains S. deserti WLJ055T and S. qingshengii H6T were 26.0% and 24.0%, respectively. Multiple gene clusters associated with plant growth promotion activities (stress response, nitrogen and phosphorus metabolism, and auxin biosynthesis) were annotated in the genome. Strain ATSA2T was Gram-positive, endospore-forming, facultatively anaerobic, and rod-shaped. It grew at 15–37°C (optimum 25°C), pH 6.0–10.0 (optimum pH 8.0), and in the presence of 0–5% (w/v) NaCl (optimum 1%). The major cellular fatty acids (> 10%) of strain ATSA2T were anteiso- C15:0 and C16:0. MK-7 was the major isoprenoid quinone. The major polar lipids present were diphosphatidylglycerol, phosphatidylglycerol, and three unknown glycolipids. Based on its phylogenetic, genomic, phenotypic, and chemotaxonomic features, strain ATSA2T is proposed to represent a novel species of genus Saccharibacillus, for which the name is Saccharibacillus brassicae sp. nov. The type strain is ATSA2T (KCTC 43072T = CCTCC AB 2019223T).

Citations

Citations to this article as recorded by  
  • Improving plant salt tolerance through Algoriphagus halophytocola sp. nov., isolated from the halophyte Salicornia europaea
    Yuxin Peng, Dong Hyun Cho, Zalfa Humaira, Yu Lim Park, Ki Hyun Kim, Cha Young Kim, Jiyoung Lee
    Frontiers in Microbiology.2024;[Epub]     CrossRef
  • Dasania phycosphaerae sp. nov., isolated from phytoplankton sample from the south coast of the Republic of Korea
    Yue Jiang, Yong Guan, Sungmo Kang, Mi-Kyung Lee, Ki-Hyun Kim, Zhun Li
    International Journal of Systematic and Evolutionary Microbiology .2023;[Epub]     CrossRef
  • Genome insights into the plant growth-promoting bacterium Saccharibacillus brassicae ATSA2T
    Lingmin Jiang, Jiyoon Seo, Yuxin Peng, Doeun Jeon, Soon Ju Park, Cha Young Kim, Pyoung Il Kim, Chul Hong Kim, Ju Huck Lee, Jiyoung Lee
    AMB Express.2023;[Epub]     CrossRef
  • Emticicia fluvialis sp. nov., a potential hormone-degrading bacterium isolated from Nakdong River, Republic of Korea
    Hyun-Sun Baek, Yong Guan, Min-Ju Kim, Yue Jiang, Mi-Kyung Lee, Ki-Hyun Kim, Jaeyoon Lee, Yuna Shin, Yoon-Ho Kang, Zhun Li
    Antonie van Leeuwenhoek.2023; 116(12): 1317.     CrossRef
  • Identification and genomic analysis of Pseudosulfitobacter koreense sp. nov. isolated from toxin-producing dinoflagellate Alexandrium pacificum
    Yue Jiang, Zhun Li
    Archives of Microbiology.2023;[Epub]     CrossRef
  • Gymnodinialimonas phycosphaerae sp. nov., a phycosphere bacterium isolated from Karlodinium veneficum
    Yuxin Peng, Lingmin Jiang, Yue Jiang, Jiyoon Seo, Doeun Jeon, Young-Min Kim, Zhun Li, Jiyoung Lee
    International Journal of Systematic and Evolutionary Microbiology .2023;[Epub]     CrossRef
  • Flavobacterium endoglycinae sp. nov., an endophytic bacterium isolated from soybean (Glycine max L. cv. Gwangan) stems
    Jiyoon Seo, Yuxin Peng, Lingmin Jiang, Sang-Beom Lee, Rae-Dong Jeong, Soon Ju Park, Cha Young Kim, Man-Soo Choi, Jiyoung Lee
    International Journal of Systematic and Evolutionary Microbiology .2022;[Epub]     CrossRef
  • Gymnodinialimonas ceratoperidinii gen. nov., sp. nov., isolated from rare marine dinoflagellate Ceratoperidinium margalefii
    Yue Jiang, Yuxin Peng, Hyeon Ho Shin, Hyun Jung Kim, Ki-Hyun Kim, Lingmin Jiang, Jiyoung Lee, Zhun Li
    Archives of Microbiology.2022;[Epub]     CrossRef
  • Flagellatimonas centrodinii gen. nov., sp. nov., a novel member of the family Nevskiaceae isolated from toxin-producing dinoflagellate Centrodinium punctatum
    Yue Jiang, Lingmin Jiang, Yuxin Peng, Ki-Hyun Kim, Hyeon Ho Shin, Young-Min Kim, Jiyoung Lee, Zhun Li
    International Journal of Systematic and Evolutionary Microbiology .2021;[Epub]     CrossRef
  • Pedobacter endophyticus sp. nov., an endophytic bacterium isolated from Carex pumila
    Yuxin Peng, Lingmin Jiang, Jiyoon Seo, Zhun Li, Hanna Choe, Jae Cheol Jeong, Suk Weon Kim, Young-Min Kim, Cha Young Kim, Jiyoung Lee
    International Journal of Systematic and Evolutionary Microbiology .2021;[Epub]     CrossRef
  • Neobacillus endophyticus sp. nov., an endophytic bacterium isolated from Selaginella involvens roots
    Lingmin Jiang, Myoung Hui Lee, Jae Cheol Jeong, Dae-Hyuk Kim, Cha Young Kim, Suk Weon Kim, Jiyoung Lee
    International Journal of Systematic and Evolutionary Microbiology .2019;[Epub]     CrossRef
Sterilization efficiency of pathogen-contaminated cottons in a laundry machine
Yoonjae Shin , Jungha Park , Woojun Park
J. Microbiol. 2020;58(1):30-38.   Published online November 25, 2019
DOI: https://doi.org/10.1007/s12275-020-9391-1
  • 47 View
  • 0 Download
  • 8 Web of Science
  • 8 Crossref
AbstractAbstract
Pathogenic bacteria on abiotic surfaces such as fabrics, bedding, patient wears, and surgical tools are known to increase the risk of bacterial diseases in infants and the elderly. The desiccation tolerance of bacteria affects their viability in cotton. Thus, washing and drying machines are required to use conditions that ensure the sterilization of bacteria in cotton. The objective of this study is to determine the effects of various sterilization conditions of washing and drying machines on the survival of three pathogenic bacteria (Acinetobacter baumannii, Pseudomonas aeruginosa, and Staphylococcus aureus) commonly presented in contaminated cotton and two non-pathogenic bacteria (Bacillus subtilis and Escherichia coli) in cotton. High survival rates of A. baumannii and S. aureus in desiccated cotton were observed based on scanning electron microscope and replicate organism direct agar contact assay. The survival rates of A. baumannii and S. aureus exposed in desiccated cotton for 8 h were higher (14.4 and 5.0%, respectively) than those of other bacteria (< 0.5%). All tested bacteria were eradicated at low-temperature (< 40°C) washing with activated oxygen bleach (AOB). However, bacterial viability was shown in low temperature washing without AOB. High-temperature (> 60°C) washing was required to achieve 99.9% of the sterilization rate in washing without AOB. The sterilization rate was 93.2% using a drying machine at 60°C for 4 h. This level of sterilization was insufficient in terms of time and energy efficiency. High sterilization efficiency (> 99.9%) at 75°C for 3 h using a drying machine was confirmed. This study suggests standard conditions of drying machines to remove bacterial contamination in cotton by providing practical data.

Citations

Citations to this article as recorded by  
  • Toward sustainable household laundry. Washing quality vs. environmental impacts
    Brigita Tomšič, Lara Ofentavšek, Rok Fink
    International Journal of Environmental Health Research.2024; 34(2): 1011.     CrossRef
  • Effect of Sterilization Methods on Chemical and Physical-Mechanical Properties of Cotton Compresses
    Maja Somogyi Škoc, Jana Juran, Iva Rezić
    Molecules.2024; 29(15): 3541.     CrossRef
  • Evaluating infection risks and importance of hand hygiene during the household laundry process using a quantitative microbial risk assessment approach
    Yoonhee Jung, Sarah E. Abney, Kelly A. Reynolds, Charles P. Gerba, Amanda M. Wilson
    American Journal of Infection Control.2023; 51(12): 1377.     CrossRef
  • Impact of antibacterial detergent on used‐towel microbiomes at species‐level and its effect on malodor control
    TzeHau Lam, Yuxiang Liu, Fumi Iuchi, Yolanda Huang, Kejing Du, Yajie Dai, Jia Wu, Linda Lim, Jason Goo, Yoshiki Ishida, Jiquan Liu, Jian Xu
    iMeta.2023;[Epub]     CrossRef
  • Quantifying pathogen infection risks from household laundry practices
    Kelly A. Reynolds, Marc P. Verhougstraete, Kristina D. Mena, Syed A. Sattar, Elizabeth A. Scott, Charles P. Gerba
    Journal of Applied Microbiology.2022; 132(2): 1435.     CrossRef
  • Comparison of Survival of Healthcare Associated Bacteria on Materials used for Making White Coat
    Silla Varghese Thomas, K. Gopalakrishna Bhat
    Journal of Pure and Applied Microbiology.2022; 16(1): 613.     CrossRef
  • Laundry Hygiene and Odor Control: State of the Science
    Sarah E. Abney, M. Khalid Ijaz, Julie McKinney, Charles P. Gerba, Christopher A. Elkins
    Applied and Environmental Microbiology.2021;[Epub]     CrossRef
  • Silver Nanostars-Coated Surfaces with Potent Biocidal Properties
    Lucinda J. Bessa, Miguel Peixoto de Almeida, Peter Eaton, Eulália Pereira, Paula Gameiro
    International Journal of Environmental Research and Public Health.2020; 17(21): 7891.     CrossRef
Identification and characterization of a novel light-induced promoter for recombinant protein production in Pleurotus ostreatus
Chaomin Yin , Xiuzhi Fan , Kun Ma , Zheya Chen , Defang Shi , Fen Yao , Hong Gao , Aimin Ma
J. Microbiol. 2020;58(1):39-45.   Published online November 4, 2019
DOI: https://doi.org/10.1007/s12275-020-9230-4
  • 46 View
  • 0 Download
  • 3 Web of Science
  • 1 Crossref
AbstractAbstract
A lectin gene (plectin) with a high level of expression was previously identified by comparative transcriptome analysis of Pleurotus ostreatus. In this study, we cloned a 733-bp DNA fragment from the start codon of the plectin gene. Sequence analysis showed that the plectin promoter (Plp) region contained several eukaryotic transcription factor binding motifs, such as the TATA-box, four possible CAAT-box, light responsiveness motifs and MeJA-responsiveness motifs. To determine whether the Plp promoter was a light-regulated promoter, we constructed an expression vector with the fused egfp-hph fragment under the control of the Plp promoter and transformed P. ostreatus mycelia via Agrobacterium tumefaciens. PCR and Southern blot analyses confirmed the Plpegfp- hph fragment was integrated into the chromosomal DNA of transformants. qRT-PCR, egfp visualization, and intracellular egfp determination experiments showed the Plp promoter could be a light-induced promoter that may be suitable for P. ostreatus genetic engineering. This study lays the foundation for gene homologous expression in P. ostreatus.

Citations

Citations to this article as recorded by  
  • The GATA transcription factor BcWCL2 regulates citric acid secretion to maintain redox homeostasis and full virulence in Botrytis cinerea
    Weiheng Ren, Chen Qian, Dandan Ren, Yunfei Cai, Zhaohui Deng, Ning Zhang, Congcong Wang, Yiwen Wang, Pinkuan Zhu, Ling Xu, Regine Kahmann
    mBio.2024;[Epub]     CrossRef
Development of a neutralization assay based on the pseudotyped chikungunya virus of a Korean isolate
Woo-Chang Chung , Kwang Yeon Hwang , Suk-Jo Kang , Jae-Ouk Kim , Moon Jung Song
J. Microbiol. 2020;58(1):46-53.   Published online November 25, 2019
DOI: https://doi.org/10.1007/s12275-020-9384-0
  • 49 View
  • 0 Download
  • 7 Web of Science
  • 6 Crossref
AbstractAbstract
The Chikungunya virus (CHIKV) belongs to the Alphavirus genus of Togaviridae family and contains a positive-sense single stranded RNA genome. Infection by this virus mainly causes sudden high fever, rashes, headache, and severe joint pain that can last for several months or years. CHIKV, a mosquito- borne arbovirus, is considered a re-emerging pathogen that has become one of the most pressing global health concerns due to a rapid increase in epidemics. Because handling of CHIKV is restricted to Biosafety Level 3 (BSL-3) facilities, the evaluation of prophylactic vaccines or antivirals has been substantially hampered. In this study, we first identified the whole structural polyprotein sequence of a CHIKV strain isolated in South Korea (KNIH/2009/77). Phylogenetic analysis showed that this sequence clustered within the East/ Central/South African CHIKV genotype. Using this sequence information, we constructed a CHIKV-pseudotyped lentivirus expressing the structural polyprotein of the Korean CHIKV isolate (CHIKVpseudo) and dual reporter genes of green fluorescence protein and luciferase. We then developed a pseudovirus-based neutralization assay (PBNA) using CHIKVpseudo. Results from this assay compared to those from the conventional plaque reduction neutralization test showed that our PBNA was a reliable and rapid method to evaluate the efficacy of neutralizing antibodies. More importantly, the neutralizing activities of human sera from CHIKVinfected individuals were quantitated by PBNA using CHIKVpseudo. Taken together, these results suggest that our PBNA for CHIKV may serve as a useful and safe method for testing the neutralizing activity of antibodies against CHIKV in BSL-2 facilities.

Citations

Citations to this article as recorded by  
  • Pseudotyped Viruses: A Useful Platform for Pre-Clinical Studies Conducted in a BSL-2 Laboratory Setting
    Sofiia N. Rizatdinova, Alina E. Ershova, Irina V. Astrakhantseva
    Biomolecules.2025; 15(1): 135.     CrossRef
  • Identification of RACK1 as a novel regulator of non-structural protein 4 of chikungunya virus
    Yao Yan, Fengyuan Zhang, Meng Zou, Hongyu Chen, Jingwen Xu, Shuaiyao Lu, Hongqi Liu
    Acta Biochimica et Biophysica Sinica.2024; 56(10): 1425.     CrossRef
  • Facile quantitative diagnostic testing for neutralizing antibodies against Chikungunya virus
    Hui-Chung Lin, Shu-Fen Chang, Chien-Ling Su, Huai-Chin Hu, Der-Jiang Chiao, Yu-Lin Hsu, Hsuan-ying Lu, Chang-Chi Lin, Pei-Yun Shu, Szu-Cheng Kuo
    BMC Infectious Diseases.2024;[Epub]     CrossRef
  • Development of a Novel Chikungunya Virus-Like Replicon Particle for Rapid Quantification and Screening of Neutralizing Antibodies and Antivirals
    Hui-Chung Lin, Der-Jiang Chiao, Pei-Yun Shu, Hui-Tsu Lin, Chia-Chu Hsiung, Chang-Chi Lin, Szu-Cheng Kuo, Juan E. Ludert
    Microbiology Spectrum.2023;[Epub]     CrossRef
  • Preparation and application of chikungunya pseudovirus containing double reporter genes
    Chunyan Su, Kaiyun Ding, Jingwen Xu, Jianchao Wu, Jiansheng Liu, Jiayuan Shen, Hongning Zhou, Hongqi Liu
    Scientific Reports.2022;[Epub]     CrossRef
  • Prevalence of Malaria and Chikungunya Co-Infection in Febrile Patients: A Systematic Review and Meta-Analysis
    Wanida Mala, Polrat Wilairatana, Kwuntida Uthaisar Kotepui, Manas Kotepui
    Tropical Medicine and Infectious Disease.2021; 6(3): 119.     CrossRef
Human cytomegalovirus IE86 protein aa 136–289 mediates STING degradation and blocks the cGAS-STING pathway
Jun-Kyu Lee , Jung-Eun Kim , Bang Ju Park , Yoon-Jae Song
J. Microbiol. 2020;58(1):54-60.   Published online January 2, 2020
DOI: https://doi.org/10.1007/s12275-020-9577-6
  • 44 View
  • 0 Download
  • 9 Web of Science
  • 9 Crossref
AbstractAbstract
We previously reported that human cytomegalovirus (HCMV) 86 kDa immediate-early 2 gene product (IE86) promotes proteasome-dependent degradation of STING. In the present study, we determined the specific residues of IE86 responsible for STING degradation using a STING-firefly luciferase fusion protein expression system for quantitative measurement of STING protein levels. IE86 amino acids (aa) 136–289 were sufficient to promote STING degradation and further induced down-regulation of 2􍿁3􍿁-cyclic GMP-AMP (cGAMP)-mediated IFN-β promoter activation. Interestingly, transactivation domains (TAD) of the IE86 protein located at the N- and C-termini were required for down-regulation of Toll/interleukin-1 receptor (TIR) domain-containing adaptor- inducing interferon β (IFN-β) (TRIF)-mediated IFN-β- and p65/RelA-induced NF-κB-dependent promoter activation while amino acids (aa) 136–289 had no significant effects. Our collective data suggest that the IE86 protein utilizes the aa 136–289 region to promote STING degradation and inhibit the cGAS-STING pathway.

Citations

Citations to this article as recorded by  
  • IUPHAR ECR review: The cGAS-STING pathway: Novel functions beyond innate immune and emerging therapeutic opportunities
    Xu He, Abdalla Wedn, Jian Wang, Yanlun Gu, Hongjin Liu, Juqi Zhang, Zhiqiang Lin, Renpeng Zhou, Xiaocong Pang, Yimin Cui
    Pharmacological Research.2024; 201: 107063.     CrossRef
  • The battle between host antiviral innate immunity and immune evasion by cytomegalovirus
    Shuang Li, Yuanyang Xie, Changyin Yu, Chunfu Zheng, Zucai Xu
    Cellular and Molecular Life Sciences.2024;[Epub]     CrossRef
  • Human cytomegalovirus: pathogenesis, prevention, and treatment
    Zifang Shang, Xin Li
    Molecular Biomedicine.2024;[Epub]     CrossRef
  • Sensing of viral lung infections by cGAS-STING
    Lei Fang, Michael Roth
    Exploration of Immunology.2022; : 303.     CrossRef
  • Advances in cGAS-STING Signaling Pathway and Diseases
    Yuting Yang, Yiming Huang, Zhenguo Zeng
    Frontiers in Cell and Developmental Biology.2022;[Epub]     CrossRef
  • Evasion of the Host Immune Response by Betaherpesviruses
    Daniel Sausen, Kirstin Reed, Maimoona Bhutta, Elisa Gallo, Ronen Borenstein
    International Journal of Molecular Sciences.2021; 22(14): 7503.     CrossRef
  • Regulation of antiviral innate immune signaling and viral evasion following viral genome sensing
    Kiramage Chathuranga, Asela Weerawardhana, Niranjan Dodantenna, Jong-Soo Lee
    Experimental & Molecular Medicine.2021; 53(11): 1647.     CrossRef
  • Zika virus NS2A inhibits interferon signaling by degradation of STAT1 and STAT2
    Elisa Fanunza, Fabrizio Carletti, Marina Quartu, Nicole Grandi, Laura Ermellino, Jessica Milia, Angela Corona, Maria Rosaria Capobianchi, Giuseppe Ippolito, Enzo Tramontano
    Virulence.2021; 12(1): 1580.     CrossRef
  • Human Cytomegalovirus Immediate Early Protein 2 Protein Causes Cognitive Disorder by Damaging Synaptic Plasticity in Human Cytomegalovirus-UL122-Tg Mice
    Zhifei Wang, Wenwen Yu, Lili Liu, Junyun Niu, Xianjuan Zhang, Fulong Nan, Lili Xu, Bin Jiang, Dingxin Ke, Wenhua Zhu, Zibin Tian, Yashuo Wang, Bin Wang
    Frontiers in Aging Neuroscience.2021;[Epub]     CrossRef
Repositioning of a mucolytic drug to a selective antibacterial against Vibrio cholerae
In-Young Chung† , Bi-o Kim† , Hye-Jeong Jang† , You-Hee Cho
J. Microbiol. 2020;58(1):61-66.   Published online January 2, 2020
DOI: https://doi.org/10.1007/s12275-020-9590-9
  • 41 View
  • 0 Download
  • 1 Web of Science
  • 1 Crossref
AbstractAbstract
Drug repositioning, the approach to explore existing drugs for use in new therapeutic indications, has emerged as an alternative drug development strategy. In this study, we found that a mucolytic drug, N-acetylcysteine (NAC) showed antibacterial activity against Vibrio cholerae. NAC can provide acid stress that selectively inhibited the growth of V. cholerae among other bacterial pathogens. To address the antibacterial mechanism of NAC against V. cholerae, six acr (acetylcysteine- resistant) mutants were isolated from 3,118 random transposon insertion clones. The transposon insertion sites of the six mutants were mapped at the five genes. All these mutants did not display NAC resistance under acidic conditions, despite their resistance to NAC under alkaline conditions, indicating that the NAC resistance directed by the acr mutations was independent of the unusual pH-sensitivity of V. cholerae. Furthermore, all these mutants displayed attenuated virulence and reduced biofilm formation, suggesting that the acr genes are required for pathogenesis of V. cholerae. This study validates the relevance of drug repositioning for antibacterials with new modes of action and will provide an insight into a novel antibacterial therapy for V. cholerae infections to minimize side effects and resistance emergence.

Citations

Citations to this article as recorded by  
  • Identification of brevinin-1EMa-derived stapled peptides as broad-spectrum virus entry blockers
    Mi Il Kim, Thanh K. Pham, Dahee Kim, Minkyung Park, Bi-o Kim, You-Hee Cho, Young-Woo Kim, Choongho Lee
    Virology.2021; 561: 6.     CrossRef
Zur-regulated lipoprotein A contributes to the fitness of Acinetobacter baumannii
Eun Kyung Lee , Chul Hee Choi , Man Hwan Oh
J. Microbiol. 2020;58(1):67-77.   Published online January 2, 2020
DOI: https://doi.org/10.1007/s12275-020-9531-7
  • 47 View
  • 0 Download
  • 10 Web of Science
  • 11 Crossref
AbstractAbstract
Acinetobacter baumannii is a notorious nosocomial pathogen that commonly infects severely ill patients. Zinc (Zn) is essential to survive and adapt to different environment and host niches in A. baumannii. Of the Zinc uptake regulator (Zur)-regulated genes in A. baumannii, the A1S_3412 gene encoding a Zur-regulated lipoprotein A (ZrlA) is critical for cell envelope integrity and overcoming antibiotic exposure. This study investigated whether ZrlA contributes to the fitness of A. baumannii in vitro and in vivo using the wildtype A. baumannii ATCC 17978, ΔzrlA mutant, and zrlAcomplemented strains. The ΔzrlA mutant showed reduced biofilm formation, surface motility, and adherence to and invasion of epithelial cells compared to the wild-type strain. In a mouse pneumonia model, the ΔzrlA mutant showed significantly lower bacterial numbers in the blood than the wildtype strain. These virulence traits were restored in the zrlAcomplemented strain. Under static conditions, the expression of csuCDE, which are involved in the chaperone-usher pili assembly system, was significantly lower in the ΔzrlA mutant than in the wild-type strain. Moreover, the expression of the bfmR/S genes, which regulate the CsuA/BABCDE system, was significantly lower in the ΔzrlA mutant under static conditions than in the wild-type strain. Our results indicate that the zrlA gene plays a role in the fitness of A. baumannii by regulating the BfmR/S two-component system and subsequently the CsuA/BABCDE chaperone-usher pili assembly system, suggesting it as a potential target for anti-virulence strategies against A. baumannii.

Citations

Citations to this article as recorded by  
  • Molecular Detection of Pap II, OmpA, and LuxR Genes Responsible for Biofilm Formation in Acinetobacter baumannii Isolated from Hospitalized Patients
    Estabraq Ali Maklef, Amal A. Kareem, Susan F. K. Al-Sudani
    Medical Journal of Babylon.2024; 21(Suppl 2): S258.     CrossRef
  • Pathogenicity and virulence of Acinetobacter baumannii : Factors contributing to the fitness in healthcare settings and the infected host
    Massimiliano Lucidi, Daniela Visaggio, Antonella Migliaccio, Giulia Capecchi, Paolo Visca, Francesco Imperi, Raffaele Zarrilli
    Virulence.2024;[Epub]     CrossRef
  • Characterization of the Zinc Uptake Repressor (Zur) from Acinetobacter baumannii
    Minyong Kim, My Tra Le, Lixin Fan, Courtney Campbell, Sambuddha Sen, Daiana A. Capdevila, Timothy L. Stemmler, David P. Giedroc
    Biochemistry.2024; 63(5): 660.     CrossRef
  • Acinetobacter Metabolism in Infection and Antimicrobial Resistance
    Xiaomei Ren, Lauren D. Palmer, Karen M. Ottemann
    Infection and Immunity.2023;[Epub]     CrossRef
  • A response regulator controls Acinetobacter baumannii virulence by acting as an indole receptor
    Binbin Cui, Quan Guo, Xia Li, Shihao Song, Mingfang Wang, Gerun Wang, Aixin Yan, Jianuan Zhou, Yinyue Deng, Marenda Wilson-Pham
    PNAS Nexus.2023;[Epub]     CrossRef
  • The role of quorum sensing, biofilm formation, and iron acquisition as key virulence mechanisms in Acinetobacter baumannii and the corresponding anti-virulence strategies
    Soffi Kei Kei Law, Hock Siew Tan
    Microbiological Research.2022; 260: 127032.     CrossRef
  • Carboxy-Terminal Processing Protease Controls Production of Outer Membrane Vesicles and Biofilm in Acinetobacter baumannii
    Rakesh Roy, Ren-In You, Chan-Hua Chang, Chiou-Ying Yang, Nien-Tsung Lin
    Microorganisms.2021; 9(6): 1336.     CrossRef
  • ppGpp signaling plays a critical role in virulence of Acinetobacter baumannii
    Kyeongmin Kim, Maidul Islam, Hye-won Jung, Daejin Lim, Kwangsoo Kim, Sung-Gwon Lee, Chungoo Park, Je Chul Lee, Minsang Shin
    Virulence.2021; 12(1): 2122.     CrossRef
  • COG0523 proteins: a functionally diverse family of transition metal-regulated G3E P-loop GTP hydrolases from bacteria to man
    Katherine A Edmonds, Matthew R Jordan, David P Giedroc
    Metallomics.2021;[Epub]     CrossRef
  • The role of Zur-regulated lipoprotein A in bacterial morphology, antimicrobial susceptibility, and production of outer membrane vesicles in Acinetobacter baumannii
    Nayeong Kim, Hyo Jeong Kim, Man Hwan Oh, Se Yeon Kim, Mi Hyun Kim, Joo Hee Son, Seung Il Kim, Minsang Shin, Yoo Chul Lee, Je Chul Lee
    BMC Microbiology.2021;[Epub]     CrossRef
  • Insights Into Mechanisms of Biofilm Formation in Acinetobacter baumannii and Implications for Uropathogenesis
    Jennifer M. Colquhoun, Philip N. Rather
    Frontiers in Cellular and Infection Microbiology.2020;[Epub]     CrossRef
Published Erratums
Erratum]Vibrio parahaemolyticus cqsA controls production of quorum sensing signal molecule 3-hydroxyundecan-4-one and regulates colony morphology
Kui Wu , Yangyun Zheng , Qingping Wu , Haiying Chen , Songzhe Fu , Biao Kan , Yongyan Long , Xiansheng Ni , Junling Tu
J. Microbiol. 2020;58(1):78-78.
DOI: https://doi.org/10.1007/s12275-020-9721-3
  • 34 View
  • 0 Download
  • 1 Scopus
AbstractAbstract
In the article by Wu et al. published in Journal of Microbiology 2019; 57, 1105–1114, the figure 8 is unfortunately incorrect. The figure 8 should be corrected as below. We apologize for any inconvenience that this may have caused.
Erratum]Methylobacterium terrae sp. nov., a radiation-resistant bacterium isolated from gamma ray-irradiated soil
Jiyoun Kim , Geeta Chhetri , Inhyup Kim , Hyungdong Kim , Myung Kyum Kim , Taegun Seo
J. Microbiol. 2020;58(1):79-79.
DOI: https://doi.org/10.1007/s12275-020-9722-2
  • 43 View
  • 0 Download
  • 2 Web of Science
  • 2 Crossref
AbstractAbstract
In the article by Kim et al. published in Journal of Microbiology 2019; 57, 959–966, The NBRC accession number NBRC 112879T on 33th line of 2nd paragraph in the section of ‘Description of Methylobacterium terrae sp. nov.’ on page 964 should be corrected in NBRC 112873T. The sentence in abstract should have read: The GenBank/EMBL/DDBJ accession numbers for the 16S rRNA gene and genome sequences of the type strain 17Sr1-28T (= KCTC 52904T = NBRC 112873T) are KY939566 and CP029553, respectively. We apologize for any inconvenience that this may have caused.

Citations

Citations to this article as recorded by  
  • International Committee on Systematics of Prokaryotes Subcommittee on the Taxonomy of Rhizobia and Agrobacteria Minutes of the closed meeting by videoconference, 6 July 2020
    Philippe de Lajudie, Seyed Abdollah Mousavi, J. Peter W. Young
    International Journal of Systematic and Evolutionary Microbiology .2021;[Epub]     CrossRef
  • International Committee on Systematics of Prokaryotes Subcommittee on the Taxonomy of Rhizobia and Agrobacteria Minutes of the closed meeting by videoconference, 17 July 2019
    Philippe de Lajudie, J. Peter W. Young
    International Journal of Systematic and Evolutionary Microbiology .2020; 70(5): 3563.     CrossRef

Journal of Microbiology : Journal of Microbiology
TOP