Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Most downloaded

Page Path
HOME > Browse Articles > Most downloaded
166 Most downloaded
Filter
Filter
Article category
Keywords
Publication year
Authors
Funded articles

The most downloaded articles in the last three months among those published since 2024.

Full article
Efficient and modular reverse genetics system for rapid generation of recombinant severe acute respiratory syndrome coronavirus 2
Sojung Bae, Jinjong Myoung
J. Microbiol. 2025;63(7):e2504015.   Published online July 21, 2025
DOI: https://doi.org/10.71150/jm.2504015
  • 2,220 View
  • 373 Download
AbstractAbstract PDF

The global spread of COVID-19 has underscored the urgent need for advanced tools to study emerging coronaviruses. Reverse genetics systems have become indispensable for dissecting viral gene functions, developing live-attenuated vaccine candidates, and identifying antiviral targets. In this study, we describe a robust and efficient reverse genetics platform for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The system is based on the assembly of a full-length infectious cDNA clone from seven overlapping fragments, each flanked by homologous sequences to facilitate seamless assembly using the Gibson assembly method. Individual cloning of each fragment into plasmids enables modular manipulation of the viral genome, allowing rapid site-directed mutagenesis by fragment exchange. Infectious recombinant virus was successfully recovered from the assembled cDNA, exhibiting uniform plaque morphology and genetic homogeneity compared to clinical isolates. Additionally, fluorescent reporter viruses were generated to enable real-time visualization of infection, and the effects of different mammalian promoters on viral rescue were evaluated. This reverse genetics platform enables efficient generation and manipulation of recombinant SARS-CoV-2, providing a valuable resource for virological research and the development of preventive and therapeutic antiviral measures.

Review
Advancements in dengue vaccines: A historical overview and pro-spects for following next-generation candidates
Kai Yan, Lingjing Mao, Jiaming Lan, Zhongdang Xiao
J. Microbiol. 2025;63(2):e2410018.   Published online February 27, 2025
DOI: https://doi.org/10.71150/jm.2410018
  • 9,219 View
  • 388 Download
  • 2 Web of Science
  • 3 Crossref
AbstractAbstract PDF

Dengue, caused by four serotypes of dengue viruses (DENV-1 to DENV-4), is the most prevalent and widely mosquito-borne viral disease affecting humans. Dengue virus (DENV) infection has been reported in over 100 countries, and approximately half of the world's population is now at risk. The paucity of universally licensed DENV vaccines highlights the urgent need to address this public health concern. Action and attention to antibody-dependent enhancement increase the difficulty of vaccine development. With the worsening dengue fever epidemic, Dengvaxia® (CYD-TDV) and Qdenga® (TAK-003) have been approved for use in specific populations in affected areas. However, these vaccines do not provide a balanced immune response to all four DENV serotypes and the vaccination cannot cover all populations. There is still a need to develop a safe, broad-spectrum, and effective vaccine to address the increasing number of dengue cases worldwide. This review provides an overview of the existing DENV vaccines, as well as potential candidates for future studies on DENV vaccine development, and discusses the challenges and possible solutions in the field.

Citations

Citations to this article as recorded by  
  • Role of c-ABL in DENV-2 Infection and Actin Remodeling in Vero Cells
    Grace Paola Carreño-Flórez, Alexandra Milena Cuartas-López, Ryan L. Boudreau, Miguel Vicente-Manzanares, Juan Carlos Gallego-Gómez
    International Journal of Molecular Sciences.2025; 26(9): 4206.     CrossRef
  • Crystallographic Fragment Screening of the Dengue Virus Polymerase Reveals Multiple Binding Sites for the Development of Non-nucleoside Antiflavivirals
    Manisha Saini, Jasmin C. Aschenbrenner, Francesc Xavier Ruiz, Ashima Chopra, Anu V. Chandran, Peter G. Marples, Blake H. Balcomb, Daren Fearon, Frank von Delft, Eddy Arnold
    Journal of Medicinal Chemistry.2025; 68(17): 18356.     CrossRef
  • Understanding the Diversity of Dengue Serotypes: Impacts on Public Health and Disease Control
    Gopinath Ramalingam, Madhumitha Patchaiyappan, M. Arundadhi, Krishnapriya Subramani, A. Dhanasezhian, Sucila Thangam Ganesan
    The Journal of Medical Research.2025; 11(4): 69.     CrossRef
Protocol
A guide to genome mining and genetic manipulation of biosynthetic gene clusters in Streptomyces
Heonjun Jeong, YeonU Choe, Jiyoon Nam, Yeon Hee Ban
J. Microbiol. 2025;63(4):e2409026.   Published online April 29, 2025
DOI: https://doi.org/10.71150/jm.2409026
  • 6,031 View
  • 202 Download
AbstractAbstract PDF

Streptomyces are a crucial source of bioactive secondary metabolites with significant clinical applications. Recent studies of bacterial and metagenome-assembled genomes have revealed that Streptomyces harbors a substantial number of uncharacterized silent secondary metabolite biosynthetic gene clusters (BGCs). These BGCs represent a vast diversity of biosynthetic pathways for natural product synthesis, indicating significant untapped potential for discovering new metabolites. To exploit this potential, genome mining using comprehensive strategies that leverage extensive genomic databases can be conducted. By linking BGCs to their encoded products and integrating genetic manipulation techniques, researchers can greatly enhance the identification of new secondary metabolites with therapeutic relevance. In this context, we present a step-by-step guide for using the antiSMASH pipeline to identify secondary metabolite-coding BGCs within the complete genome of a novel Streptomyces strain. This protocol also outlines gene manipulation methods that can be applied to Streptomyces to activate cryptic clusters of interest and validate the functions of biosynthetic genes. By following these guidelines, researchers can pave the way for discovering and characterizing valuable natural products.

Review
Synthetic biology strategies for sustainable bioplastic production by yeasts
Huong-Giang Le, Yongjae Lee, Sun-Mi Lee
J. Microbiol. 2025;63(3):e2501022.   Published online March 28, 2025
DOI: https://doi.org/10.71150/jm.2501022
  • 3,761 View
  • 215 Download
  • 1 Crossref
AbstractAbstract PDF

The increasing environmental concerns regarding conventional plastics have led to a growing demand for sustainable alternatives, such as biodegradable plastics. Yeast cell factories, specifically Saccharomyces cerevisiae and Yarrowia lipolytica, have emerged as promising platforms for bioplastic production due to their scalability, robustness, and ease of manipulation. This review highlights synthetic biology approaches aimed at developing yeast cell factories to produce key biodegradable plastics, including polylactic acid (PLA), polyhydroxyalkanoates (PHAs), and poly (butylene adipate-co-terephthalate) (PBAT). We explore recent advancements in engineered yeast strains that utilize various synthetic biology strategies, such as the incorporation of new genetic elements at the gene, pathway, and cellular system levels. The combined efforts of metabolic engineering, protein engineering, and adaptive evolution have enhanced strain efficiency and maximized product yields. Additionally, this review addresses the importance of integrating computational tools and machine learning into the Design-Build-Test-Learn cycle for strain development. This integration aims to facilitate strain development while minimizing effort and maximizing performance. However, challenges remain in improving strain robustness and scaling up industrial production processes. By combining advanced synthetic biology techniques with computational approaches, yeast cell factories hold significant potential for the sustainable and scalable production of bioplastics, thus contributing to a greener bioeconomy.

Citations

Citations to this article as recorded by  
  • Advancing microbial engineering through synthetic biology
    Ki Jun Jeong
    Journal of Microbiology.2025; 63(3): e2503100.     CrossRef
Minireview
A review on computational models for predicting protein solubility
Teerapat Pimtawong, Jun Ren, Jingyu Lee, Hyang-Mi Lee, Dokyun Na
J. Microbiol. 2025;63(1):e.2408001.   Published online January 24, 2025
DOI: https://doi.org/10.71150/jm.2408001
  • 5,819 View
  • 279 Download
AbstractAbstract PDF

Protein solubility is a critical factor in the production of recombinant proteins, which are widely used in various industries, including pharmaceuticals, diagnostics, and biotechnology. Predicting protein solubility remains a challenging task due to the complexity of protein structures and the multitude of factors influencing solubility. Recent advances in computational methods, particularly those based on machine learning, have provided powerful tools for predicting protein solubility, thereby reducing the need for extensive experimental trials. This review provides an overview of current computational approaches to predict protein solubility. We discuss the datasets, features, and algorithms employed in these models. The review aims to bridge the gap between computational predictions and experimental validations, fostering the development of more accurate and reliable solubility prediction models that can significantly enhance recombinant protein production.

Review
CRISPR-Cas technologies: Emerging tools from research to clinical application
Hana Hyeon, Soonhye Hwang, Yongyang Luo, Eunkyoung Shin, Ji-Hyun Yeom, Hong-Man Kim, Minkyung Ryu, Kangseok Lee
J. Microbiol. 2025;63(8):e2504012.   Published online August 31, 2025
DOI: https://doi.org/10.71150/jm.2504012
  • 2,301 View
  • 79 Download
AbstractAbstract PDF

CRISPR-Cas technologies have emerged as powerful and versatile tools in gene therapy. In addition to the widely used SpCas9 system, alternative platforms including modified amino acid sequences, size-optimized variants, and other Cas enzymes from diverse bacterial species have been developed to apply this technology in various genetic contexts. In addition, base editors and prime editors for precise gene editing, the Cas13 system targeting RNA, and CRISPRa/i systems have enabled diverse and adaptable approaches for genome and RNA editing, as well as for regulating gene expression. Typically, CRISPR-Cas components are transported to the target in the form of DNA, RNA, or ribonucleoprotein complexes using various delivery methods, such as electroporation, adeno-associated viruses, and lipid nanoparticles. To amplify therapeutic efficiency, continued developments in targeted delivery technologies are required, with increased safety and stability of therapeutic biomolecules. CRISPR-based therapeutics hold an inexhaustible potential for the treatment of many diseases, including rare congenital diseases, by making permanent corrections at the genomic DNA level. In this review, we present various CRISPR-based tools, their delivery systems, and clinical progress in the CRISPR-Cas technology, highlighting its innovative prospects for gene therapy.

Full article
Staphylococcus parequorum sp. nov. and Staphylococcus halotolerans sp. nov., isolated from traditional Korean soybean foods
Ju Hye Baek, Dong Min Han, Dae Gyu Choi, Chae Yeong Moon, Jae Kyeong Lee, Chul-Hong Kim, Jung-Woong Kim, Che Ok Jeon
J. Microbiol. 2025;63(8):e2503003.   Published online August 31, 2025
DOI: https://doi.org/10.71150/jm.2503003
Correction in: J. Microbiol 2025;63(9):e2509100Correction in: https://doi.org/
  • 1,295 View
  • 69 Download
AbstractAbstract PDFSupplementary Material

Strains Mo2-6T, S9, KG4-3T, and 50Mo3-2, identified as coagulase-negative, Gram-stain-positive, halotolerant, non-motile coccoid bacteria, were isolated from traditional Korean soybean foods. Strains Mo2-6T and S9 were both catalase- and oxidase-negative, whereas KG4-3T and 50Mo3-2 were catalase-positive but oxidase-negative. The optimal growth conditions for Mo2-6T and S9 were 30°C, 2% NaCl, and pH 7.0, while KG4-3T and 50Mo3-2 grew best at 35°C, 2% NaCl, and pH 7.0. All strains contained menaquinone-7 as the predominant isoprenoid quinone, with anteiso-C15:0 and iso-C15:0 as the major cellular fatty acids (> 10%). Additionally, anteiso-C13:0 was a major fatty acid in strain KG4-3T. The DNA G + C contents of strains Mo2-6T, S9, KG4-3T, and 50Mo3-2 were 33.4%, 33.3%, 32.5%, and 32.7%, respectively. Phylogenetic analyses based on the 16S rRNA gene and whole-genome sequences revealed that strains Mo2-6T and S9, as well as KG4-3T and 50Mo3-2, formed distinct lineages within the genus Staphylococcus. Digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) analyses confirmed that strains Mo2-6T and S9, as well as KG4-3T and 50Mo3-2, belonged to the same species. Meanwhile, dDDH and ANI values between strains Mo2-6T and KG4-3T, as well as comparisons with other Staphylococcus type strains, were below the species delineation thresholds, indicating they represent novel species. Based on phenotypic, chemotaxonomic, and molecular data, we propose strain Mo2-6T as the type strain of Staphylococcus parequorum sp. nov. (=KACC 23685T =JCM 37038T) and strain KG4-3T as the type strain of Staphylococcus halotolerans sp. nov. (=KACC 23684T =JCM 37037T).

Review
Extracellular vesicles of Gram-negative and Gram-positive probiotics
Yangyunqi Wang, Chongxu Duan, Xiaomin Yu
J. Microbiol. 2025;63(7):e2506005.   Published online July 31, 2025
DOI: https://doi.org/10.71150/jm.2506005
  • 2,344 View
  • 73 Download
AbstractAbstract PDF

Extracellular vesicles derived from probiotics have received considerable attention for their pivotal role in bacterial‒host communication. These nanosized, bilayer-encapsulated vesicles carry diverse bioactive molecules, such as proteins, lipids, nucleic acids, and metabolites. Currently, ample evidence has emerged that probiotic extracellular vesicles may modulate several processes of host physiological hemostasis and offer therapeutic benefits. This review examines the biogenesis, composition, and immunomodulatory functions of probiotic-derived extracellular vesicles in probiotic–host interactions, highlighting the therapeutic potential of probiotic extracellular vesicles in the diagnosis and treatment of conditions such as cancer and inflammatory bowel disease. We further summarize the techniques for the separation and purification of extracellular vesicles, providing a methodological foundation for future research and applications. Although the field of probiotic extracellular vesicle research is still in its infancy, the prospects for their application in the biomedical field are broad, potentially emerging as a novel therapeutic approach.

Full article
Prebiotic potential of proso millet and quinoa: Effects on gut microbiota composition and functional metabolic pathways
Jinwoo Kim, Jiwoon Kim, Yewon Jung, Gyungcheon Kim, Seongok Kim, Hakdong Shin
J. Microbiol. 2025;63(7):e2503002.   Published online July 31, 2025
DOI: https://doi.org/10.71150/jm.2503002
  • 1,909 View
  • 67 Download
AbstractAbstract PDFSupplementary Material

Prebiotics are indigestible dietary components that improve host health by stimulating the growth and metabolic activity of beneficial intestinal microbes. The whole grains are rich in non-digestible carbohydrates, which may confer prebiotic potential. Among them, millet and quinoa have gained attention as dietary alternatives due to the growing popularity of gluten-free diets. In this study, we examined the effects of proso millet and quinoa on the human gut microbiota using an in vitro fecal incubation model. Both grains altered alpha diversity metrics, including microbial richness, evenness, and phylogenetic diversity. Beta diversity analysis showed that the proso millet and quinoa treatment groups exhibited distinct clustering patterns compared to the control, highlighting their impact on microbial community structure. Taxonomic analysis showed an increase in beneficial genera, including Bifidobacterium, and a decrease in taxa such as Enterobacteriaceae and Flavonifractor. To assess metabolic changes associated with microbial fermentation, short-chain fatty acid (SCFA) intensities were measured. The intensities of acetic acid, propionic acid, and butyric acid were significantly higher in the proso millet- and quinoa-treated groups compared to the control group. Spearman correlation analysis showed that the abundances of Bifidobacterium and Blautia were significantly positively associated with SCFA intensities. Furthermore, predicted functional pathway analysis identified enrichment of carbohydrate-related pathways in proso millet and quinoa treatments. Quinoa supplementation led to a broader enhancement of metabolic pathways, including glycolysis/gluconeogenesis, starch and sucrose metabolism, and pentose phosphate pathways, whereas proso millet enriched galactose metabolism, and starch and sucrose metabolism. These findings suggest that proso millet and quinoa influence gut microbial diversity, composition, and function.

Review
Metabolic engineering of Saccharomyces cerevisiae for efficient utilization of pectin-rich biomass
Dahye Lee, Fransheska Semidey, Luping Xu, Eun Joong Oh
J. Microbiol. 2025;63(7):e2503001.   Published online July 31, 2025
DOI: https://doi.org/10.71150/jm.2503001
  • 2,000 View
  • 69 Download
AbstractAbstract PDF

Pectin-rich biomass, derived from fruit and citrus processing waste, presents a promising yet underutilized resource for sustainable biofuel and biochemical production. Its low lignin content and high concentrations of fermentable sugars, including D-galacturonic acid, L-arabinose, and D-xylose, make it an attractive feedstock. Unlike lignocellulosic biomass, pectin-rich hydrolysates require milder pretreatment, improving sugar recovery efficiency. However, industrial strains such as Saccharomyces cerevisiae exhibit strong glucose preference, limiting the efficient co-fermentation of mixed sugars. While prior reviews have broadly addressed lignocellulosic biomass utilization, this mini-review uniquely centers on the specific metabolic challenges and opportunities associated with pectin-rich feedstocks. In addition to incorporating established strategies for the co-utilization of cellobiose and xylose, we highlight recent advances that allow S. cerevisiae to metabolize carbon sources specifically from pectin-rich biomass, such as L-arabinose and D-galacturonic acid—monomers not prevalent in traditional lignocellulosic biomass. By integrating discussions on sugar transport engineering, redox balancing, and pathway optimization, this review offers a comprehensive framework to overcome glucose repression and support efficient co-fermentation of carbon sources from conventional and pectin-rich biomass. Drawing on these advances, we outline practical strategies to enhance fermentation performance and expand the valorization of food processing residues in biomanufacturing.

Full articles
Efficient CRISPR-based genome editing for inducible degron systems to enable temporal control of protein function in large double-stranded DNA virus genomes
Kihye Shin, Eui Tae Kim
J. Microbiol. 2025;63(9):e2504008.   Published online August 29, 2025
DOI: https://doi.org/10.71150/jm.2504008
  • 1,125 View
  • 53 Download
AbstractAbstract PDF

CRISPR-Cas9-based gene editing enables precise genetic modifications. However, its application to human cytomegalovirus (HCMV) remains challenging due to the large size of the viral genome and the essential roles of key regulatory genes. Here, we establish an optimized CRISPR-Cas9 system for precise labeling and functional analysis of HCMV immediate early (IE) genes. By integrating a multifunctional cassette encoding an auxin-inducible degron (AID), a self-cleaving peptide (P2A), and GFP into the viral genome via homology-directed repair (HDR), we achieved efficient knock-ins without reliance on bacterial artificial chromosome (BAC) cloning, a labor-intensive and time-consuming approach. We optimized delivery strategies, donor template designs, and component ratios to enhance HDR efficiency, significantly improving knock-in success rates. This system enables real-time fluorescent tracking and inducible protein degradation, allowing temporal control of essential viral proteins through auxin-mediated depletion. Our approach provides a powerful tool for dissecting the dynamic roles of viral proteins throughout the HCMV life cycle, facilitating a deeper understanding of viral pathogenesis and potential therapeutic targets.

Characterization of novel bacteriophages for effective phage therapy against Vibrio infections in aquaculture
Kira Moon, Sangdon Ryu, Seung Hui Song, Se Won Chun, Nakyeong Lee, Aslan Hwanhwi Lee
J. Microbiol. 2025;63(5):e2502009.   Published online May 27, 2025
DOI: https://doi.org/10.71150/jm.2502009
  • 2,267 View
  • 114 Download
  • 1 Web of Science
  • 1 Crossref
AbstractAbstract PDFSupplementary Material

The widespread use of antibiotics in aquaculture has led to the emergence of multidrug-resistant pathogens and environmental concerns, highlighting the need for sustainable, eco-friendly alternatives. In this study, we isolated and characterized three novel bacteriophages from aquaculture effluents in Korean shrimp farms that target the key Vibrio pathogens, Vibrio harveyi, and Vibrio parahaemolyticus. Bacteriophages were isolated through environmental enrichment and serial purification using double-layer agar assays. Transmission electron microscopy revealed that the phages infecting V. harveyi, designated as vB_VhaS-MS01 and vB_VhaS-MS03, exhibited typical Siphoviridae morphology with long contractile tails and icosahedral heads, whereas the phage isolated from V. parahaemolyticus (vB_VpaP-MS02) displayed Podoviridae characteristics with an icosahedral head and short tail.

Whole-genome sequencing produced complete, circularized genomes of 81,710 bp for vB_VhaS-MS01, 81,874 bp for vB_VhaS-MS03, and 76,865 bp for vB_VpaP-MS02, each showing a modular genome organization typical of Caudoviricetes. Genomic and phylogenetic analyses based on the terminase large subunit gene revealed that although vB_VhaS-MS01 and vB_VhaS-MS03 were closely related, vB_VpaP-MS02 exhibited a distinct genomic architecture that reflects its unique morphology and host specificity. Collectively, these comparative analyses demonstrated that all three phages possess genetic sequences markedly different from those of previously reported bacteriophages, thereby establishing their novelty. One-step growth and multiplicity of infection (MOI) experiments demonstrated significant differences in replication kinetics, such as burst size and lytic efficiency, among the phages, with vB_VhaS-MS03 maintaining the most effective bacterial control, even at an MOI of 0.01. Additionally, host range assays showed that vB_VhaS-MS03 possessed a broader spectrum of activity, supporting its potential use as a stand-alone agent or key component of phage cocktails. These findings highlight the potential of region-specific phage therapy as a targeted and sustainable alternative to antibiotics for controlling Vibrio infections in aquaculture.

Citations

Citations to this article as recorded by  
  • Feed Additives in Aquaculture: Benefits, Risks, and the Need for Robust Regulatory Frameworks
    Ekemini Okon, Matthew Iyobhebhe, Paul Olatunji, Mary Adeleke, Nelson Matekwe, Reuben Okocha
    Fishes.2025; 10(9): 471.     CrossRef
Review
Small regulatory RNAs as key modulators of antibiotic resistance in pathogenic bacteria
Yubin Yang, Hana Hyeon, Minju Joo, Kangseok Lee, Eunkyoung Shin
J. Microbiol. 2025;63(4):e2501027.   Published online April 2, 2025
DOI: https://doi.org/10.71150/jm.2501027
  • 2,849 View
  • 162 Download
  • 2 Crossref
AbstractAbstract PDF

The escalating antibiotic resistance crisis poses a significant challenge to global public health, threatening the efficacy of current treatments and driving the emergence of multidrug-resistant pathogens. Among the various factors associated with bacterial antibiotic resistance, small regulatory RNAs (sRNAs) have emerged as pivotal post-transcriptional regulators which orchestrate bacterial adaptation to antibiotic pressure via diverse mechanisms. This review consolidates the current knowledge on sRNA-mediated mechanisms, focusing on drug uptake, drug efflux systems, lipopolysaccharides, cell wall modification, biofilm formation, and mutagenesis. Recent advances in transcriptomics and functional analyses have revealed novel sRNAs and their regulatory networks, expanding our understanding of resistance mechanisms. These findings highlight the potential of targeting sRNA-mediated pathways as an innovative therapeutic strategy to combat antibiotic resistance, and offer promising avenues for managing challenging bacterial infections.

Citations

Citations to this article as recorded by  
  • Biofilm, resistance, and quorum sensing: The triple threat in bacterial pathogenesis
    Mohammad Nazrul Islam Bhuiyan
    The Microbe.2025; 9: 100578.     CrossRef
  • Biofilm Maturation in Carbapenem-resistant Pseudomonas aeruginosa Is Regulated by the sRNA PA213 and Its Corresponding Encoded Small Protein
    Yongli Song, Jie Li, Yating Zhang, Lingge Su, Shuang Qin, Chunyan Wu, Guibo Song
    International Journal of Antimicrobial Agents.2025; : 107625.     CrossRef
Full article
Metal ion homeostasis regulates condensin-dependent chromatin architecture and chromosome segregation in Schizosaccharomyces pombe
Seong Ho An, Kyoung-Dong Kim
J. Microbiol. 2025;63(9):e2505008.   Published online August 29, 2025
DOI: https://doi.org/10.71150/jm.2505008
  • 1,300 View
  • 45 Download
AbstractAbstract PDFSupplementary Material

Condensin plays a central role in mitotic chromosome organization and segregation by mediating long-range chromatin interactions. However, the extent to which cellular metabolic status influences condensin function remains unclear. To gain insights into the relationship of metal ion homeostasis and the function of condensin, we conducted genome-wide chromatin immunoprecipitation sequencing (ChIP-seq) using Schizosaccharomyces pombe under iron- or zinc-deficient conditions. Under iron- or zinc-deficient conditions, ChIP-seq results revealed a selective reduction in condensin binding at high-affinity target loci, particularly genes regulated by Ace2 and Ams2, while cohesin binding remained largely unaffected. Hi-C analysis showed that iron depletion weakened chromatin interactions at these condensin targets and centromeres, without disrupting global genome architecture. DNA fluorescence in situ hybridization (FISH) confirmed that iron deficiency impaired long-range associations between centromeres and Ace2 target loci at the single-cell level. Notably, iron deficiency led to chromosome segregation defects during mitosis, suggesting that diminished condensin occupancy compromised genome stability. These changes occurred without significant alterations in condensin protein levels or global transcription, indicating a direct effect of metal ion availability on condensin activity. Collectively, our findings revealed a previously unrecognized regulatory axis in which cellular metal ion homeostasis modulated condensin-dependent chromatin organization and mitotic chromosome segregation, offering new insights into the integration of metabolic state with genome maintenance.

Review
Recent advances in the Design-Build-Test-Learn (DBTL) cycle for systems metabolic engineering of Corynebacterium glutamicum
Subeen Jeon, Yu Jung Sohn, Haeyoung Lee, Ji Young Park, Dojin Kim, Eun Seo Lee, Si Jae Park
J. Microbiol. 2025;63(3):e2501021.   Published online March 28, 2025
DOI: https://doi.org/10.71150/jm.2501021
  • 1,228 View
  • 121 Download
  • 1 Web of Science
  • 2 Crossref
AbstractAbstract PDF

Existing microbial engineering strategies—encompassing metabolic engineering, systems biology, and systems metabolic engineering—have significantly enhanced the potential of microbial cell factories as sustainable alternatives to the petrochemical industry by optimizing metabolic pathways. Recently, systems metabolic engineering, which integrates tools from synthetic biology, enzyme engineering, omics technology, and evolutionary engineering, has been successfully developed. By leveraging modern engineering strategies within the Design-Build-Test-Learn (DBTL) cycle framework, these advancements have revolutionized the biosynthesis of valuable compounds. This review highlights recent progress in the metabolic engineering of Corynebacterium glutamicum, a versatile microbial platform, achieved through various approaches from traditional metabolic engineering to advanced systems metabolic engineering, all within the DBTL cycle. A particular focus is placed C5 platform chemicals derived from L-lysine, one of the key amino acid production pathways of C. glutamicum. The development of DBTL cycle-based metabolic engineering strategies for this process is discussed.

Citations

Citations to this article as recorded by  
  • Advancing microbial engineering through synthetic biology
    Ki Jun Jeong
    Journal of Microbiology.2025; 63(3): e2503100.     CrossRef
  • Time-Series Metabolome and Transcriptome Analyses Reveal the Genetic Basis of Vanillin Biosynthesis in Vanilla
    Zeyu Dong, Shaoguan Zhao, Yizhang Xing, Fan Su, Fei Xu, Lei Fang, Zhiyuan Zhang, Qingyun Zhao, Fenglin Gu
    Plants.2025; 14(13): 1922.     CrossRef

Journal of Microbiology : Journal of Microbiology
TOP