Pathogenic fungi pose major threats to both global food security and human health, yet the molecular basis of their virulence remains only partially understood. Beyond genetic and transcriptional control, emerging evidence highlights protein glycosylation as a key post-translational modification that governs fungal development, stress adaptation, and host interactions. Glycosylation regulates protein folding, stability, trafficking, and immune evasion, thereby shaping infection processes across diverse pathogens. While extensively studied in model organisms, our understanding of glycosylation in pathogenic fungi remains fragmented and lacks a coherent framework linking glycosylation dynamics to fungal development and pathogenicity. This review synthesizes recent advances from proteomic, transcriptomic, and glycomic studies in pathogenic fungi, focusing on interspecific variation in glycogenes and enzymes, hierarchical regulatory networks, and glycoprotein-mediated mechanisms of virulence. Finally, we outline current challenges and highlight glycosylation-targeted strategies as promising avenues for antifungal intervention.
Two aerobic, Gram-stain-negative, non-motile and rod-shaped bacterial strains designated GGG-R5T and M4-18T were isolated from flowers of golden wave (Coreopsis grandiflora) and rice paddy soil, respectively in the Republic of Korea. Both strains were pigmented and produced flexirubin-type pigments. Based on phylogenetic analysis using 16S rRNA gene sequence, both strains were placed within the genus Mucilaginibacter with M. agri R11T and M. jinjuensis YC7004T both being the closest relatives to GGG-R5T (97.7%) and in case of M4-18T, M. ginsenosidivorax KHI28T (98.5%) was the nearest neighbor. Characteristic to genus Mucilaginibacter, the major cellular fatty acids in both strains were iso-C15:0, iso-C17:0 3-OH, summed feature 3 (C16:1 ω7c and/or C16:1 ω6c); menaquinone-7 was the major menaquinone and phosphatidylethanolamine was the major polar lipid observed. Comparison of genome sequences with the other members of Mucilaginibacter indicated orthologous average nucleotide identity (orthoANI) at 73.3–73.5% for GGG-R5T and 78.9–88.5% for M4-18T. Digital DNA-DNA hybridization (dDDH) values ranged at 19.1–19.7% between GGG-R5T and its neighbor species. In case of M4-18T, the observed range was at 21.9–36.6%. Considering the 16S rRNA similarity, orthoANI and dDDH values as well as comparison of phenotypic and chemotaxonomic characteristics indicated that both strains belonged to genus Mucilaginibacter but were distinctly distinguishable from previously described species. The strains GGG-R5T and M4-18T, therefore represent distinct novel species for which names Mucilaginibacter florum GGG-R5T and Mucilaginibacter oryzagri M4-18T are proposed. The type strains are GGG-R5T (= KACC 22063T = JCM 36590T) and M4-18T (= KACC 22773T = JCM 35894T).
The global rise in obesity and its associated metabolic complications underscores the urgent need for safe and effective interventions. This study investigated the anti-obesity efficacy of a probiotic mixture containing Bifidobacterium breve BR3 and Lactiplantibacillus plantarum LP3 in C57BL/6 mice with high-fat diet (HFD)-induced obesity. After obesity was established by feeding a 60% kcal HFD, the probiotic mixture was administered orally for 4 weeks. Compared with the control group, mice receiving the L. plantarum LP3 and B. breve BR3 mixture exhibited significant reductions in body weight and total fat mass, as assessed by Dual-energy X-ray Absorptiometry (DXA) and Echo Magnetic Resonance Imaging (EchoMRI). The probiotic treatment also lowered serum Aspartate Aminotransferase (AST), Alanine Aminotransferase (ALT), and glucose levels, and attenuated lipid accumulation in both hepatic and epididymal adipose tissues. Transcriptomic profiling revealed upregulation of lipolytic genes (Sirt1, Pparα) and downregulation of lipogenic genes (Srebp1c, Fas), suggesting that the probiotic mixture promotes lipid catabolism while suppressing lipid synthesis. Additionally, serum adipokine levels were favorably modulated, indicating improved metabolic homeostasis. Gut microbiota analysis demonstrated an increased relative abundance of beneficial genera, including Akkermansia and Bacteroides, highlighting a microbiome-mediated contribution to the observed metabolic benefits. Overall, our findings indicate that the combined administration of Lactiplantibacillus plantarum LP3 and Bifidobacterium breve BR3 exerts multi-faceted anti-obesity effects by enhancing lipolysis, regulating lipid metabolism, and restoring a healthy gut microbial balance. This probiotic mixture represents a promising therapeutic approach for managing obesity and related metabolic disorders.
Collagenase and keratinase are two important proteolytic enzymes with recognized applications in biotechnology and medicine, particularly in the enzymatic removal of necrotic tissue and the control of infection. In the present work, a soil isolate of Bacillus subtilis strain AB2 (PX453297.1) was optimized for enzyme production under different nutritional and physicochemical conditions. The enzymes were recovered by ammonium sulphate precipitation and dialysis, examined by SDS-PAGE and zymography, and further assessed for pH and temperature optima, stability, the influence of metal ions, and kinetic parameters. Maximum collagenase activity (4.41 ± 0.22 U/ml) was observed at 37°C and pH 7.5 in a glucose–peptone medium, whereas keratinase production was enhanced between 37 and 40°C at pH 7.5 in lactose–peptone medium. Protein bands of approximately 55 and 33 kDa were detected, representing 6.2- and 5.5-fold purification. Collagenase showed an alkaline optimum (pH 10.0, 37–45°C) with Km 0.31% and Vmax 1.92 U/ml, while keratinase exhibited dual optima (pH 3.0 and ~7.0) with Km 0.27% and Vmax 0.84 U/ml. Biofilm assays revealed that collagenase reduced pre-formed biomass by 62–68% and viable counts by 1.1–1.7 log10, clearly outperforming keratinase (41–57%, 0.7–1.2 log10). When combined with conventional antibiotics, both enzymes potentiated activity, with notable synergy between collagenase and oxacillin against Staphylococcus aureus (FICI 0.31–0.37), ciprofloxacin against Pseudomonas aeruginosa (FICI 0.37–0.50), and meropenem against Klebsiella pneumoniae (FICI 0.28–0.44). These results indicate that B. subtilis AB2 produces collagenase and keratinase with distinct biochemical characteristics and strong antibiofilm properties, underscoring their promise as adjuncts in chronic wound care as well as in industrial applications.
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 ATCC 43894 (also known as EDL932) has been widely used as a reference strain for studying the pathophysiology of EHEC. To elucidate the role of a large virulence plasmid pO157 and its relationship with acid resistance, for example, both EHEC ATCC 43894 and its pO157-cured derivative strain 277 were well studied. However, it is unclear whether or not these two strains are isogenic and share the same genetic background. To address this question, we analyzed the whole genome sequences of ATCC 43894 and 277. As expected, three and two closed contigs were identified from ATCC 43894 and 277, respectively; two contigs shared in both strains were a chromosome and a small un-identified plasmid, and one contig found only in ATCC 43894 was pO157. Surprisingly, our pan-genome analyses of the two sequences revealed several genetic variations including frameshift, substitution, and deletion mutations. In particular, the deletion mutation of hdeD and gadE in ATCC 43894 was identified, and further PCR analysis also confirmed their deletion of a 2.5-kb fragment harboring hdeD, gadE, and mdtE in ATCC 43894. Taken together, our findings demonstrate that EHEC ATCC 43894 harbors genetic mutations affecting glutamate-dependent acid resistance system and imply that the pO157-cured EHEC 277 may not be isogenic to ATCC 43894. This is the first report that such genetic differences between both reference strains of EHEC should be considered in future studies on pathogenic E. coli.
Sarcopenia is an age-related condition marked by a reduction in muscle mass and strength, and it is associated with impaired muscle regeneration and differentiation. While diseases like cardiovascular and chronic liver disease can induce sarcopenia, there is limited evidence regarding the specific diseases and mechanisms responsible for its development. In skeletal muscle, the loss of muscle mass is accompanied by a decrease in myofilament proteins and the inhibition of muscle differentiation in satellite cells. Bioactive compounds obtained from natural products have been traditionally used as therapeutics for diverse conditions. In this report, we investigated the effect of cinchonidine (CD) extracted from Cinchona tree on muscle differentiation of mouse satellite cells, and myoblast cell lines. CD significantly inhibited muscle differentiation by suppressing myotube formation and gene expression of myogenesis markers. In addition, CD reduced muscle differentiation by blocking phosphorylation of insulin receptor substrate 1 (IRS-1) during insulin-induced signal transduction. Therefore, the results show that CD, an antimalarial agent, inhibited muscle differentiation through the suppression of IRS-1 phosphorylation, suggesting that sarcopenia can be induced by CD.
Keratinase kerZJ is a multifunctional protease with potential as a feed additive and functional ingredient. Here we performed an integrated multi‑omics evaluation of its biosafety and impact on gut homeostasis in mice. Our findings confirm that kerZJ is well-tolerated, with no evidence of systemic toxicity or intestinal epithelial damage. Integrated transcriptomic and proteomic analyses revealed that kerZJ reinforces intestinal barrier integrity by upregulating extracellular matrix components, including collagen IV, and modulates mucosal immunity by enhancing B-cell activation and antimicrobial peptide defenses without inducing inflammation. Furthermore, kerZJ administration led to a significant upregulation of digestive enzymes and a dose-dependent increase in short-chain fatty acids production. Microbiome analysis showed that while high-dose kerZJ altered community composition, it enriched for beneficial taxa like Lactobacillaceae and did not induce dysbiosis. These results demonstrate that kerZJ safely enhances gut barrier function, promotes a favorable immune and metabolic environment, and fosters a resilient gut ecosystem, supporting its development as a safe feed additive and nutraceutical component.