Most-cited are based on citations from 2024 ~ 2026.
Citations
Citations
Citations
Citations
Citations
Citations
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) technologies have emerged as powerful tools for precise genome editing, leading to a revolution in genetic research and biotechnology across diverse organisms including microalgae. Since the 1950s, microalgal production has evolved from initial cultivation under controlled conditions to advanced metabolic engineering to meet industrial demands. However, effective genetic modification in microalgae has faced significant challenges, including issues with transformation efficiency, limited target selection, and genetic differences between species, as interspecies genetic variation limits the use of genetic tools from one species to another. This review summarized recent advancements in CRISPR systems applied to microalgae, with a focus on improving gene editing precision and efficiency, while addressing organism-specific challenges. We also discuss notable successes in utilizing the class 2 CRISPR-associated (Cas) proteins, including Cas9 and Cas12a, as well as emerging CRISPR-based approaches tailored to overcome microalgal cellular barriers. Additionally, we propose future perspectives for utilizing CRISPR/Cas strategies in microalgal biotechnology.
Citations
Citations
Citations
Citations
Citations
Citations
Citations
Dengue, caused by four serotypes of dengue viruses (DENV-1 to DENV-4), is the most prevalent and widely mosquito-borne viral disease affecting humans. Dengue virus (DENV) infection has been reported in over 100 countries, and approximately half of the world's population is now at risk. The paucity of universally licensed DENV vaccines highlights the urgent need to address this public health concern. Action and attention to antibody-dependent enhancement increase the difficulty of vaccine development. With the worsening dengue fever epidemic, Dengvaxia® (CYD-TDV) and Qdenga® (TAK-003) have been approved for use in specific populations in affected areas. However, these vaccines do not provide a balanced immune response to all four DENV serotypes and the vaccination cannot cover all populations. There is still a need to develop a safe, broad-spectrum, and effective vaccine to address the increasing number of dengue cases worldwide. This review provides an overview of the existing DENV vaccines, as well as potential candidates for future studies on DENV vaccine development, and discusses the challenges and possible solutions in the field.
Citations
Citations
Citations
Citations
Citations
Citations
Citations
Two Gram-stain-negative, strictly aerobic, non-motile, rod-shaped bacteria, designated D3-12ᵀ and G2-2ᵀ, were isolated from the phycosphere of marine red algae. Both strains exhibited catalase- and oxidase-positive activities. Strain D3-12ᵀ grew optimally at 30°C, pH 7.0, and 2.0–3.0% (w/v) NaCl, while strain G2-2ᵀ showed optimal growth at 30°C, pH 7.0, and 2.0% NaCl. Ubiquinone-10 was the sole respiratory quinone in both strains. The major fatty acids (> 5%) in strain D3-12ᵀ were feature 8 (C18:1 ω7c and/or C18:1 ω6c), 11-methyl-C18:1 ω7c, and C16:0, while strain G2-2ᵀ contained summed feature 8 and C16:0. The predominant polar lipids in strain D3-12ᵀ were phosphatidylcholine, phosphatidylglycerol, and phosphatidylethanolamine, whereas strain G2-2ᵀ contained phosphatidylglycerol and diphosphatidylglycerol. The genomic DNA G + C content was 59.9% for strain D3-12ᵀ and 60.2% for strain G2-2ᵀ. Phylogenetic analyses based on 16S rRNA and whole-genome sequences placed both strains into distinct lineages within the family Roseobacteraceae, separate from previously described genera. Genome-based relatedness metrics, including average nucleotide identity, digital DNA-DNA hybridization, average amino acid identity, and percentage of conserved proteins, further confirmed that these strains represent novel genera. Based on phenotypic, chemotaxonomic, and molecular characteristics, strains D3-12ᵀ and G2-2ᵀ are proposed as novel genera: Phycobium rhodophyticola gen. nov., sp. nov. (D3-12ᵀ = KACC 22712ᵀ = JCM 35528ᵀ) and Aliiphycobium algicola gen. nov., sp. nov. (G2-2ᵀ = KACC 22602ᵀ = JCM 35752ᵀ). Additionally, metabolic features relevant to interactions with marine algae, including genes associated with carbohydrate-active enzymes, vitamin biosynthesis, phenylacetic acid production, and bacterioferritin synthesis, were bioinformatically investigated.
Citations
Existing microbial engineering strategies—encompassing metabolic engineering, systems biology, and systems metabolic engineering—have significantly enhanced the potential of microbial cell factories as sustainable alternatives to the petrochemical industry by optimizing metabolic pathways. Recently, systems metabolic engineering, which integrates tools from synthetic biology, enzyme engineering, omics technology, and evolutionary engineering, has been successfully developed. By leveraging modern engineering strategies within the Design-Build-Test-Learn (DBTL) cycle framework, these advancements have revolutionized the biosynthesis of valuable compounds. This review highlights recent progress in the metabolic engineering of Corynebacterium glutamicum, a versatile microbial platform, achieved through various approaches from traditional metabolic engineering to advanced systems metabolic engineering, all within the DBTL cycle. A particular focus is placed C5 platform chemicals derived from L-lysine, one of the key amino acid production pathways of C. glutamicum. The development of DBTL cycle-based metabolic engineering strategies for this process is discussed.
Citations
This review explores current advancements in microbiome functional analysis enabled by next-generation sequencing technologies, which have transformed our understanding of microbial communities from mere taxonomic composition to their functional potential. We examine approaches that move beyond species identification to characterize microbial activities, interactions, and their roles in host health and disease. Genome-scale metabolic models allow for in-depth simulations of metabolic networks, enabling researchers to predict microbial metabolism, growth, and interspecies interactions in diverse environments. Additionally, computational methods for predicting metabolite profiles offer indirect insights into microbial metabolic outputs, which is crucial for identifying biomarkers and potential therapeutic targets. Functional pathway analysis tools further reveal microbial contributions to metabolic pathways, highlighting alterations in response to environmental changes and disease states. Together, these methods offer a powerful framework for understanding the complex metabolic interactions within microbial communities and their impact on host physiology. While significant progress has been made, challenges remain in the accuracy of predictive models and the completeness of reference databases, which limit the applicability of these methods in under-characterized ecosystems. The integration of these computational tools with multi-omic data holds promise for personalized approaches in precision medicine, allowing for targeted interventions that modulate the microbiome to improve health outcomes. This review highlights recent advances in microbiome functional analysis, providing a roadmap for future research and translational applications in human health and environmental microbiology.
Citations
Citations
Citations
The increase of sequence data in public nucleotide databases has made DNA sequence-based identification an indispensable tool for fungal identification. However, the large proportion of mislabeled sequence data in public databases leads to frequent misidentifications. Inaccurate identification is causing severe problems, especially for industrial and clinical fungi, and edible mushrooms. Existing species identification pipelines require separate validation of a dataset obtained from public databases containing mislabeled taxonomic identifications. To address this issue, we developed FunVIP, a fully automated phylogeny-based fungal validation and identification pipeline (
Citations
Korean Red ginseng has emerged as a potent candidate in the fight against various viral infections, demonstrating significant efficacy both in vitro and in vivo, particularly against influenza A viruses. Despite substantial evidence of its antiviral properties, the detailed molecular mechanisms through which it reduces viral lethality remain insufficiently understood. Our investigations have highlighted the superior effectiveness of Korean Red ginseng against influenza viruses, outperforming its effects on numerous other viral strains. We aim to uncover the specific mechanisms by which Korean Red ginseng exerts its antiviral effects, focusing on influenza A viruses. Our prior studies have identified the role of Z-DNA-binding protein 1 (ZBP1), a signaling complex involved in inducing programmed cell death in response to influenza virus infection. Given the critical role of ZBP1 as a sensor for viral nucleic acid, we hypothesize that Korean Red ginseng may modulate the ZBP1-derived cell death pathway. This interaction is anticipated to enhance cell death while concurrently suppressing viral protein expression, offering novel insights into the antiviral mechanism of Korean Red ginseng against influenza A viruses.
Citations
Citations
Citations
Citations
Citations
Citations
Citations
Extracellular vesicles derived from probiotics have received considerable attention for their pivotal role in bacterial‒host communication. These nanosized, bilayer-encapsulated vesicles carry diverse bioactive molecules, such as proteins, lipids, nucleic acids, and metabolites. Currently, ample evidence has emerged that probiotic extracellular vesicles may modulate several processes of host physiological hemostasis and offer therapeutic benefits. This review examines the biogenesis, composition, and immunomodulatory functions of probiotic-derived extracellular vesicles in probiotic–host interactions, highlighting the therapeutic potential of probiotic extracellular vesicles in the diagnosis and treatment of conditions such as cancer and inflammatory bowel disease. We further summarize the techniques for the separation and purification of extracellular vesicles, providing a methodological foundation for future research and applications. Although the field of probiotic extracellular vesicle research is still in its infancy, the prospects for their application in the biomedical field are broad, potentially emerging as a novel therapeutic approach.
Citations
Microbial biosynthesis using yeast species offers numerous advantages to produce industrially relevant biofuels and biochemicals. Conventional metabolic engineering approaches in yeast focus on biosynthetic pathways in the cytoplasm, but these approaches are disturbed by various undesired factors including metabolic crosstalk, competing pathways and insufficient precursors. Given that eukaryotic cells contain subcellular organelles with distinct physicochemical properties, an emerging strategy to overcome cytosolic pathway engineering bottlenecks is through repurposing these organelles as specialized microbial cell factories for enhanced production of valuable chemicals. Here, we review recent progress and significant outcomes of harnessing organelle engineering for biofuels and biochemicals production in both conventional and non-conventional yeasts. We highlight key engineering strategies for the compartmentalization of biosynthetic pathways within specific organelles such as mitochondria, peroxisomes, and endoplasmic reticulum; involved in engineering of signal peptide, cofactor and energy enhancement, organelle biogenesis and dual subcellular engineering. Finally, we discuss the potential and challenges of organelle engineering for future studies and propose an automated pipeline to fully exploit this approach.
Citations
Denitrification and dissimilatory nitrate reduction to ammonium (DNRA) were thought to be carried-out by anaerobic bacteria constrained to anoxic conditions as they use nitrate (NO3-) as a terminal electron acceptor instead of molecular O2. Three soil bacilli, Neobacillus spp. strains PS2-9 and PS3-12 and Bacillus salipaludis PS3-36, were isolated from rice paddy field soil in Korea. The bacterial strains were selected as possible candidates performing aerobic denitrification and DNRA as they were observed to reduce NO3- and produce extracellular NH4+ regardless of oxygen presence at the initial screening. Whole genome sequencing revealed that these strains possessed all the denitrification and DNRA functional genes in their genomes, including the nirK, nosZ, nirB, and nrfA genes, which were simultaneously cotranscribed under aerobic condition. The ratio between the assimilatory and dissimilatory NO3- reduction pathways depended on the availability of a nitrogen source for cell growth, other than NO3-. Based on the phenotypic and transcriptional analyses of the NO3- reductions, all three of the facultative anaerobic strains reduced NO3- likely in both assimilatory and dissimilatory pathways under both aerobic and anoxic conditions. To our knowledge, this is the first report that describes coexistence of NO3- assimilation, denitrification, and DNRA in a Bacillus or Neobacillus strain under aerobic condition. These strains may play a pivotal role in the soil nitrogen cycle.
Citations
Systemic sclerosis (SSc) is a chronic autoimmune disorder characterised by skin fibrosis and internal organ involvement. Disruptions in the microbial communities on the skin may contribute to the onset of autoimmune diseases that affect the skin. However, current research on the skin microbiome in SSc is lacking. This study aimed to investigate skin microbiome associated with disease severity in SSc. Skin swabs were collected from the upper limbs of 46 healthy controls (HCs) and 36 patients with SSc. Metagenomic analysis based on the 16S rRNA gene was conducted and stratified by cutaneous subtype and modified Rodnan skin score (mRSS) severity. Significant differences in skin bacterial communities were observed between the HCs and patients with SSc, with further significant variations based on subtype and mRSS severity. The identified biomarkers were Bacteroides and Faecalibacterium for patients with diffuse cutaneous SSc with high mRSS (≥ 10) and Mycobacterium and Parabacteroides for those with low mRSS (< 10). Gardnerella, Abies, Lactobacillus, and Roseburia were the biomarkers in patients with limited cutaneous SSc (lcSS) and high mRSS, whereas Coprococcus predominated in patients with lcSS and low mRSS. Cutaneous subtype analysis identified Pediococcus as a biomarker in the HCs, whereas mRSS analysis revealed the presence of Pseudomonas in conjunction with Pediococcus. In conclusion, patients with SSc exhibit distinct skin microbiota compared with healthy controls. Bacterial composition varies by systemic sclerosis cutaneous subtype and skin thickness.
Citations
The presence of multiple nuclei in a common cytoplasm poses a significant challenge to genetic modification in mushrooms. Here, we demonstrate successful gene editing in both nuclei of a dikaryotic strain of Ganoderma lucidum using the Cas9-gRNA ribonucleoprotein complex (RNP). The RNP targeting the pyrG gene was introduced into dikaryotic protoplasts of G. lucidum, resulting in the isolation of 31 mycelial colonies resistant to 5-fluoroorotic acid (5-FOA). Twenty-six of these isolates were confirmed as dikaryotic strains by the presence of two distinct A mating type markers, denoted as A1 and A2. All dikaryons exhibited clamp connections on their mycelial hyphae, while the remaining 5 transformants were monokaryotic. Subsequent sequence analysis of PCR amplicons targeting pyrG revealed that two dikaryons harbored disrupted pyrG in both nuclei (pyrG-/pyrG-), while 10 and 14 displayed pyrG+/pyrG- (A1/A2) and pyrG-/pyrG+ (A1/A2) configurations, respectively. The disruption was achieved through non-homologous end joining repair, involving deletion or insertion of DNA fragments at the site of the double-strand break induced by RNP. Importantly, the nuclei were stable throughout 10 serial transfers over a period of 6 months. These findings highlight the capability of RNP to target genes across multiple nuclei within the same cytoplasm.
Citations
Citations
Citations
Citations
Citations
Citations
Citations
Citations
Citations
Citations
Citations
The innate immune system relies on innate immune sensors, such as pattern recognition receptors (PRRs), to detect pathogens and initiate immune responses, crucial for controlling infections but also implicated in inflammatory diseases. These innate immune sensors, including Toll-like receptors (TLRs), nod-like receptors (NLRs), RIG-I-like receptors (RLRs), absent in melanoma 2 (AIM2), and Z-DNA binding protein 1 (ZBP1) trigger signaling pathways that produce cytokines, modulating inflammation and cell death. Traditional therapies focus on directly targeting pathogens; however, host-targeting therapeutic strategies have emerged as innovative approaches to modulate innate immune sensor activity. These strategies aim to fine-tune the immune response, either enhancing antiviral defenses or mitigating hyperinflammation to prevent tissue damage. This review explores innate immune sensor-based therapeutic approaches, including inhibitors, agonists, and antagonists, that enhance antiviral defense or suppress harmful inflammation, highlighting innate immune sensors as promising targets in infectious and inflammatory disease treatment.
Citations
Gout is an inflammatory arthritis resulting from the deposition of monosodium urate crystals. Urate-lowering therapies for gout have limitations, including side effects and limited efficacy, highlighting the need for novel therapeutic approaches to improve patient outcomes. In this context, our research team conducted a microbiome analysis of fecal samples from healthy individuals and gout patients, identifying Bifidobacterium as a key biomarker. Subsequently, we isolated and identified this strain, B. longum PMC72, and demonstrated its efficacy in a gout mouse model. In potassium oxonate (PO)-induced hyperuricemia mice, PMC72 significantly alleviated nausea, gait disturbances, ankle inflammation, and improved renal health. These effects were associated with marked reductions in oxidative stress markers, including serum uric acid, blood urea nitrogen, hepatic xanthine oxidase, and malondialdehyde (MDA) levels in serum, liver, and joint samples, as well as the downregulation of inflammation and uric acid transport-related gene expression in kidney samples. These benefits were comparable to those treated with Febuxostat, a standard urate-lowering therapy for gout. Furthermore, gut microbiome analysis revealed that PMC72 restored dysbiosis induced by hyperuricemia, contrasting with the reduced microbial diversity observed with febuxostat alone, and showed a complete recovery to eubiosis when combined with Febuxostat. These findings position PMC72 as a promising microbial therapeutic candidate for gout management, demonstrating significant development potential and serving as a benchmark for reverse translational microbiome-based therapeutic research.
Citations