Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

2023 Special Issue

Page Path
HOME > Collections > 2023 Special Issue
8 2023 Special Issue
Filter
Filter
Article category
Keywords
Volume 61(3); March 2023
Editorial
Editorial] Bacterial Regulatory Mechanisms for the Control of Cellular Processes: Simple Organisms’ Complex Regulation
Jin-Won Lee
J. Microbiol. 2023;61(3):273-276.   Published online April 3, 2023
DOI: https://doi.org/10.1007/s12275-023-00036-6
  • 76 View
  • 0 Download
  • 4 Web of Science
  • 4 Crossref
AbstractAbstract
Bacteria employ a diverse array of cellular regulatory mechanisms to successfully adapt and thrive in ever-changing environments, including but not limited to temperature changes, fluctuations in nutrient availability, the presence or absence of electron acceptors such as oxygen, the availability of metal ions crucial for enzyme activity, and the existence of antibiotics. Bacteria can virtually modulate any step of gene expression from transcr!ptional initiation to posttranslational modification of a protein for the control of cellular processes. Furthermore, one gene regulator often controls another in a complex gene regulatory network. Thus, it is not easy to fully understand the intricacies of bacterial regulatory mechanisms in various environments. In this special issue, while acknowledging the challenge of covering all aspects of bacterial regulatory mechanisms across diverse environments, seven review articles are included to provide insight into the recent progress in understanding such mechanisms from different perspectives: positive regulatory mechanisms by secondary messenger (cAMP receptor protein), two-component signal transduction mechanisms (Rcs and Cpx), diverse regulatory mechanisms by a specific environmental factor in specific bacteria (oxygen availability in Mycobacterium and manganese ion availability in Salmonella), diverse regulatory mechanisms by a specific environmental factor (temperature and antibiotics), and regulatory mechanisms by antibiotics in cell wall synthesis. Bacteria, as ubiquitous organisms that can be found in almost every environment, carry out complex cellular processes that allow them to survive and thrive in a variety of different conditions despite their small size and relative simplicity. One of the key factors that allows bacteria to carry out these complex processes is their ability to regulate gene expression through various mechanisms. Gene expression is a fundamental biological process by which the genetic information encoded in a gene is transcribed into an RNA molecule and subsequently translated into a functional gene product, often a protein. Furthermore, the activity levels of proteins may further be altered by posttranslational modification. Regulation of gene expression refers to the control of the amount and timing of gene expression, and thus it can be divided into transcr!ptional, translational, and posttranslational levels.

Citations

Citations to this article as recorded by  
  • The PhoBR two-component system upregulates virulence in Aeromonas dhakensis C4–1
    Wei Feng, Xuesong Li, Nuo Yang, Lixia Fan, Guiying Guo, Jun Xie, Xiuqing Cai, Yuqi Meng, Jifeng Zeng, Yu Han, Jiping Zheng
    Aquaculture.2025; 595: 741665.     CrossRef
  • Molecular mechanisms of cold stress response in cotton: Transcriptional reprogramming and genetic strategies for tolerance
    Washu Dev, Fahmida Sultana, Hongge Li, Daowu Hu, Zhen Peng, Shoupu He, Haobo Zhang, Muhammad Waqas, Xiaoli Geng, Xiongming Du
    Plant Science.2025; 352: 112390.     CrossRef
  • PhoPQ-mediated lipopolysaccharide modification governs intrinsic resistance to tetracycline and glycylcycline antibiotics in Escherichia coli
    Byoung Jun Choi, Umji Choi, Dae-Beom Ryu, Chang-Ro Lee, Mehrad Hamidian, You-Hee Cho
    mSystems.2024;[Epub]     CrossRef
  • Navigating the signaling landscape of Ralstonia solanacearum: a study of bacterial two-component systems
    Mohit Yadav, Janhavi Sathe, Valentina Teronpi, Aditya Kumar
    World Journal of Microbiology and Biotechnology.2024;[Epub]     CrossRef
Reviews
cAMP Activation of the cAMP Receptor Protein, a Model Bacterial Transcription Factor
Hwan Youn , Marcus Carranza
J. Microbiol. 2023;61(3):277-287.   Published online March 9, 2023
DOI: https://doi.org/10.1007/s12275-023-00028-6
  • 70 View
  • 0 Download
  • 5 Web of Science
  • 5 Crossref
AbstractAbstract
The active and inactive structures of the Escherichia coli cAMP receptor protein (CRP), a model bacterial transcr!ption factor, are compared to generate a paradigm in the cAMP-induced activation of CRP. The resulting paradigm is shown to be consistent with numerous biochemical studies of CRP and CRP*, a group of CRP mutants displaying cAMP-free activity. The cAMP affinity of CRP is dictated by two factors: (i) the effectiveness of the cAMP pocket and (ii) the protein equilibrium of apo-CRP. How these two factors interplay in determining the cAMP affinity and cAMP specificity of CRP and CRP* mutants are discussed. Both the current understanding and knowledge gaps of CRP-DNA interactions are also described. This review ends with a list of several important CRP issues that need to be addressed in the future.

Citations

Citations to this article as recorded by  
  • Identification of a cellular role of hemolysin co-regulatory protein (Hcp) in Vibrio alginolyticus modulating substrate metabolism and biofilm formation by cAMP-CRP
    Shuilong Wu, Yu Huang, Minhui Wu, Huapu Chen, Bei Wang, Kwaku Amoah, Jia Cai, Jichang Jian
    International Journal of Biological Macromolecules.2024; 282: 136656.     CrossRef
  • cAMP-independent DNA binding of the CRP family protein DdrI from Deinococcus radiodurans
    Yudong Wang, Jing Hu, Xufan Gao, Yuchen Cao, Shumai Ye, Cheng Chen, Liangyan Wang, Hong Xu, Miao Guo, Dong Zhang, Ruhong Zhou, Yuejin Hua, Ye Zhao, Paul Babitzke
    mBio.2024;[Epub]     CrossRef
  • Unexpected Requirement of Small Amino Acids at Position 183 for DNA Binding in the Escherichia coli cAMP Receptor Protein
    Marcus Carranza, Amanda Rea, Daisy Pacheco, Christian Montiel, Jin Park, Hwan Youn
    Journal of Microbiology.2024; 62(10): 871.     CrossRef
  • Bacterial Regulatory Mechanisms for the Control of Cellular Processes: Simple Organisms’ Complex Regulation
    Jin-Won Lee
    Journal of Microbiology.2023; 61(3): 273.     CrossRef
  • Mechanisms and biotechnological applications of transcription factors
    Hehe He, Mingfei Yang, Siyu Li, Gaoyang Zhang, Zhongyang Ding, Liang Zhang, Guiyang Shi, Youran Li
    Synthetic and Systems Biotechnology.2023; 8(4): 565.     CrossRef
Manganese Transporter Proteins in Salmonella enterica serovar Typhimurium
Nakyeong Ha , Eun-Jin Lee
J. Microbiol. 2023;61(3):289-296.   Published online March 2, 2023
DOI: https://doi.org/10.1007/s12275-023-00027-7
  • 73 View
  • 0 Download
  • 8 Web of Science
  • 8 Crossref
AbstractAbstract
The metal cofactors are essential for the function of many enzymes. The host restricts the metal acquisition of pathogens for their immunity and the pathogens have evolved many ways to obtain metal ions for their survival and growth. Salmonella enterica serovar Typhimurium also needs several metal cofactors for its survival, and manganese has been found to contribute to Salmonella pathogenesis. Manganese helps Salmonella withstand oxidative and nitrosative stresses. In addition, manganese affects glycolysis and the reductive TCA, which leads to the inhibition of energetic and biosynthetic metabolism. Therefore, manganese homeostasis is crucial for full virulence of Salmonella. Here, we summarize the current information about three importers and two exporters of manganese that have been identified in Salmonella. MntH, SitABCD, and ZupT have been shown to participate in manganese uptake. mntH and sitABCD are upregulated by low manganese concentration, oxidative stress, and host NRAMP1 level. mntH also contains a Mn2+- dependent riboswitch in its 5′ UTR. Regulation of zupT expression requires further investigation. MntP and YiiP have been identified as manganese efflux proteins. mntP is transcr!ptionally activated by MntR at high manganese levels and repressed its activity by MntS at low manganese levels. Regulation of yiiP requires further analysis, but it has been shown that yiiP expression is not dependent on MntS. Besides these five transporters, there might be additional transporters that need to be identified.

Citations

Citations to this article as recorded by  
  • Functional characterization of a TerC family protein of Riemerella anatipestifer in manganese detoxification and virulence
    Qinyuan Chen, Fang Guo, Li Huang, Mengying Wang, Chunfeng Shi, Shutong Zhang, Yizhou Yao, Mingshu Wang, Dekang Zhu, Renyong Jia, Shun Chen, Xinxin Zhao, Qiao Yang, Ying Wu, Shaqiu Zhang, Bin Tian, Juan Huang, Xumin Ou, Qun Gao, Di Sun, Ling Zhang, Yanling
    Applied and Environmental Microbiology.2024;[Epub]     CrossRef
  • NO enhances the adaptability to high-salt environments by regulating osmotic balance, antioxidant defense, and ion homeostasis in eelgrass based on transcriptome and metabolome analysis
    Xianyan Wang, Tongtong Wang, Pei Yu, Yuchun Li, Xinfang Lv
    Frontiers in Plant Science.2024;[Epub]     CrossRef
  • High-throughput fitness experiments reveal specific vulnerabilities of human-adapted Salmonella during stress and infection
    Benjamin X. Wang, Dmitry Leshchiner, Lijuan Luo, Miles Tuncel, Karsten Hokamp, Jay C. D. Hinton, Denise M. Monack
    Nature Genetics.2024; 56(6): 1288.     CrossRef
  • Biological characteristics of manganese transporter MntP in Klebsiella pneumoniae
    Wei Peng, Yafei Xu, Yilin Yin, Jichen Xie, Renhui Ma, Guoyuan Song, Zhiqiang Zhang, Qiuhang Quan, Qinggen Jiang, Moran Li, Bei Li, Michael David Leslie Johnson
    mSphere.2024;[Epub]     CrossRef
  • Exploring resource competition by protective lactic acid bacteria cultures to control Salmonella in food: an Achilles’ heel to target?
    Ludovico Screpanti, Nathalie Desmasures, Margot Schlusselhuber
    Critical Reviews in Food Science and Nutrition.2024; : 1.     CrossRef
  • Substrate-Induced Structural Dynamics and Evolutionary Linkage of Siderophore-Iron ABC Transporters of Mycobacterium tuberculosis
    Aisha Farhana, Abdullah Alsrhani, Hasan Ejaz, Muharib Alruwaili, Ayman A. M. Alameen, Emad Manni, Zafar Rasheed, Yusuf Saleem Khan
    Medicina.2024; 60(11): 1891.     CrossRef
  • Structures and coordination chemistry of transporters involved in manganese and iron homeostasis
    Shamayeeta Ray, Rachelle Gaudet
    Biochemical Society Transactions.2023; 51(3): 897.     CrossRef
  • Bacterial Regulatory Mechanisms for the Control of Cellular Processes: Simple Organisms’ Complex Regulation
    Jin-Won Lee
    Journal of Microbiology.2023; 61(3): 273.     CrossRef
Mycobacterial Regulatory Systems Involved in the Regulation of Gene Expression Under Respiration‑Inhibitory Conditions
Yuna Oh , Ha-Na Lee , Eon-Min Ko , Ji-A Jeong , Sae Woong Park , Jeong-Il Oh
J. Microbiol. 2023;61(3):297-315.   Published online February 27, 2023
DOI: https://doi.org/10.1007/s12275-023-00026-8
  • 60 View
  • 0 Download
  • 1 Web of Science
  • 2 Crossref
AbstractAbstract
Mycobacterium tuberculosis is the causative agent of tuberculosis. M. tuberculosis can survive in a dormant state within the granuloma, avoiding the host-mounting immune attack. M. tuberculosis bacilli in this state show increased tolerance to antibiotics and stress conditions, and thus the transition of M. tuberculosis to the nonreplicating dormant state acts as an obstacle to tuberculosis treatment. M. tuberculosis in the granuloma encounters hostile environments such as hypoxia, nitric oxide, reactive oxygen species, low pH, and nutrient deprivation, etc., which are expected to inhibit respiration of M. tuberculosis. To adapt to and survive in respiration-inhibitory conditions, it is required for M. tuberculosis to reprogram its metabolism and physiology. In order to get clues to the mechanism underlying the entry of M. tuberculosis to the dormant state, it is important to understand the mycobacterial regulatory systems that are involved in the regulation of gene expression in response to respiration inhibition. In this review, we briefly summarize the information regarding the regulatory systems implicated in upregulation of gene expression in mycobacteria exposed to respiration-inhibitory conditions. The regulatory systems covered in this review encompass the DosSR (DevSR) two-component system, SigF partner switching system, MprBA-SigE-SigB signaling pathway, cAMP receptor protein, and stringent response.

Citations

Citations to this article as recorded by  
  • Host Immune Pathways to Mycobacterium tuberculosis Infection
    Eun-Jin Park, Insoo Kim, Eun-Kyeong Jo
    Journal of Bacteriology and Virology.2024; 54(3): 167.     CrossRef
  • Bacterial Regulatory Mechanisms for the Control of Cellular Processes: Simple Organisms’ Complex Regulation
    Jin-Won Lee
    Journal of Microbiology.2023; 61(3): 273.     CrossRef
Envelope‑Stress Sensing Mechanism of Rcs and Cpx Signaling Pathways in Gram‑Negative Bacteria
Seung-Hyun Cho , Kilian Dekoninck , Jean-Francois Collet
J. Microbiol. 2023;61(3):317-329.   Published online March 9, 2023
DOI: https://doi.org/10.1007/s12275-023-00030-y
  • 61 View
  • 0 Download
  • 11 Web of Science
  • 10 Crossref
AbstractAbstract
The global public health burden of bacterial antimicrobial resistance (AMR) is intensified by Gram-negative bacteria, which have an additional membrane, the outer membrane (OM), outside of the peptidoglycan (PG) cell wall. Bacterial twocomponent systems (TCSs) aid in maintaining envelope integrity through a phosphorylation cascade by controlling gene expression through sensor kinases and response regulators. In Escherichia coli, the major TCSs defending cells from envelope stress and adaptation are Rcs and Cpx, which are aided by OM lipoproteins RcsF and NlpE as sensors, respectively. In this review, we focus on these two OM sensors. β-Barrel assembly machinery (BAM) inserts transmembrane OM proteins (OMPs) into the OM. BAM co-assembles RcsF, the Rcs sensor, with OMPs, forming the RcsF-OMP complex. Researchers have presented two models for stress sensing in the Rcs pathway. The first model suggests that LPS perturbation stress disassembles the RcsF-OMP complex, freeing RcsF to activate Rcs. The second model proposes that BAM cannot assemble RcsF into OMPs when the OM or PG is under specific stresses, and thus, the unassembled RcsF activates Rcs. These two models may not be mutually exclusive. Here, we evaluate these two models critically in order to elucidate the stress sensing mechanism. NlpE, the Cpx sensor, has an N-terminal (NTD) and a C-terminal domain (CTD). A defect in lipoprotein trafficking
results
in NlpE retention in the inner membrane, provoking the Cpx response. Signaling requires the NlpE NTD, but not the NlpE CTD; however, OM-anchored NlpE senses adherence to a hydrophobic surface, with the NlpE CTD playing a key role in this function.

Citations

Citations to this article as recorded by  
  • Metal-based antimicrobial agents in wound Dressings: Infection management and the challenge of antibiotic resistance
    Haoyang Peng, Deqiao Dong, Shiquan Feng, Yueping Guo, Jiaqi Yu, Changran Gan, Xue Hu, Zhenmao Qin, Yan Liu, Yanan Gao
    Chemical Engineering Journal.2025; 507: 160726.     CrossRef
  • Transcriptome reveals the role of the htpG gene in mediating antibiotic resistance through cell envelope modulation in Vibrio mimicus SCCF01
    Zhenyang Qin, Kun Peng, Yang Feng, Yilin Wang, Bowen Huang, Ziqi Tian, Ping Ouyang, Xiaoli Huang, Defang Chen, Weimin Lai, Yi Geng
    Frontiers in Microbiology.2024;[Epub]     CrossRef
  • Rcs signal transduction system in Escherichia coli: Composition, related functions, regulatory mechanism, and applications
    Zeyu Li, Yingying Zhu, Wenli Zhang, Wanmeng Mu
    Microbiological Research.2024; 285: 127783.     CrossRef
  • Identification of genes used by Escherichia coli to mitigate climatic stress conditions
    Styliani Roufou, Sholeem Griffin, Lydia Katsini, Monika Polańska, Jan F.M. Van Impe, Panagiotis Alexiou, Vasilis P. Valdramidis
    Gene Reports.2024; 36: 101998.     CrossRef
  • The Role of Propionate-Induced Rearrangement of Membrane Proteins in the Formation of the Virulent Phenotype of Crohn’s Disease-Associated Adherent-Invasive Escherichia coli
    Olga V. Pobeguts, Maria A. Galyamina, Elena V. Mikhalchik, Sergey I. Kovalchuk, Igor P. Smirnov, Alena V. Lee, Lyubov Yu. Filatova, Kirill V. Sikamov, Oleg M. Panasenko, Alexey Yu. Gorbachev
    International Journal of Molecular Sciences.2024; 25(18): 10118.     CrossRef
  • CpxAR two-component system contributes to virulence properties of Cronobacter sakazakii
    Tong Jin, Xiangjun Zhan, Liuxin Pang, Bo Peng, Xinpeng Zhang, Wenxiu Zhu, Baowei Yang, Xiaodong Xia
    Food Microbiology.2024; 117: 104393.     CrossRef
  • Breaking Barriers: Exploiting Envelope Biogenesis and Stress Responses to Develop Novel Antimicrobial Strategies in Gram-Negative Bacteria
    Renu Bisht, Pierre D. Charlesworth, Paola Sperandeo, Alessandra Polissi
    Pathogens.2024; 13(10): 889.     CrossRef
  • The protective role of potassium in the adaptation of Pseudomonas protegens SN15-2 to hyperosmotic stress
    Jian Wang, Yaping Wang, Shouquan Lu, Haibo Lou, XiaoBing Wang, Wei Wang
    Microbiological Research.2024; 289: 127887.     CrossRef
  • Bacterial Regulatory Mechanisms for the Control of Cellular Processes: Simple Organisms’ Complex Regulation
    Jin-Won Lee
    Journal of Microbiology.2023; 61(3): 273.     CrossRef
  • Physiological and Transcriptomic Analyses of Escherichia coli Serotype O157:H7 in Response to Rhamnolipid Treatment
    Shuo Yang, Lan Ma, Xiaoqing Xu, Qing Peng, Huiying Zhong, Yuxin Gong, Linbo Shi, Mengxin He, Bo Shi, Yu Qiao
    Microorganisms.2023; 11(8): 2112.     CrossRef
Membrane Proteins as a Regulator for Antibiotic Persistence in Gram‑Negative Bacteria
Jia Xin Yee , Juhyun Kim , Jinki Yeom
J. Microbiol. 2023;61(3):331-341.   Published online February 17, 2023
DOI: https://doi.org/10.1007/s12275-023-00024-w
  • 63 View
  • 0 Download
  • 3 Web of Science
  • 3 Crossref
AbstractAbstract
Antibiotic treatment failure threatens our ability to control bacterial infections that can cause chronic diseases. Persister bacteria are a subpopulation of physiological variants that becomes highly tolerant to antibiotics. Membrane proteins play crucial roles in all living organisms to regulate cellular physiology. Although a diverse membrane component involved in persistence can result in antibiotic treatment failure, the regulations of antibiotic persistence by membrane proteins has not been fully understood. In this review, we summarize the recent advances in our understanding with regards to membrane proteins in Gram-negative bacteria as a regulator for antibiotic persistence, highlighting various physiological mechanisms in bacteria.

Citations

Citations to this article as recorded by  
  • Amino Acid and Au(III) Self-Assembled Supramolecular Nanozymes for Antimicrobial Applications
    Yunzhu Xu, Dahai Hou, Min Zhao, Tong Zhao, Yong Ma, Yafeng Zhang, Yang Guo, Weiwei Tao, Hui Wang
    ACS Applied Nano Materials.2024; 7(19): 22505.     CrossRef
  • PhoPQ-mediated lipopolysaccharide modification governs intrinsic resistance to tetracycline and glycylcycline antibiotics in Escherichia coli
    Byoung Jun Choi, Umji Choi, Dae-Beom Ryu, Chang-Ro Lee, Mehrad Hamidian, You-Hee Cho
    mSystems.2024;[Epub]     CrossRef
  • Bacterial Regulatory Mechanisms for the Control of Cellular Processes: Simple Organisms’ Complex Regulation
    Jin-Won Lee
    Journal of Microbiology.2023; 61(3): 273.     CrossRef
Temperature Matters: Bacterial Response to Temperature Change
Seongjoon Moon , Soojeong Ham , Juwon Jeong , Heechan Ku , Hyunhee Kim , Changhan Lee
J. Microbiol. 2023;61(3):343-357.   Published online April 3, 2023
DOI: https://doi.org/10.1007/s12275-023-00031-x
  • 187 View
  • 0 Download
  • 29 Web of Science
  • 28 Crossref
AbstractAbstract
Temperature is one of the most important factors in all living organisms for survival. Being a unicellular organism, bacterium requires sensitive sensing and defense mechanisms to tolerate changes in temperature. During a temperature shift, the structure and composition of various cellular molecules including nucleic acids, proteins, and membranes are affected. In addition, numerous genes are induced during heat or cold shocks to overcome the cellular stresses, which are known as heat- and cold-shock proteins. In this review, we describe the cellular phenomena that occur with temperature change and bacterial responses from a molecular perspective, mainly in Escherichia coli.

Citations

Citations to this article as recorded by  
  • The bacterial assemblage in the plumage of the Violet-crowned Hummingbird (Ramosomyia violiceps) varies with contrasting environments in Central-Western Mexico
    Lizeth Raygoza-Alcantar, Verónica Rosas-Espinoza, Fabián Rodríguez-Zaragoza, María E. Macías-Rodríguez, Flor Rodríguez-Gómez
    Journal of Ornithology.2025; 166(2): 525.     CrossRef
  • Onion-like carbon based single-atom iron nanozyme for photothermal and catalytic synergistic antibacterial application
    Yuchen Feng, Yuxi Shi, Qi Zhao, Guanyue Gao, Zhiqiang Wang, Jinfang Zhi
    Journal of Colloid and Interface Science.2025; 681: 205.     CrossRef
  • Regulation and response of heterotrophic bacterial production to environmental changes in marginal seas of the Western Pacific Ocean
    Qiao Liu, Jinyan Wang, Xiao-Jun Li, Ni Meng, Gui-Peng Yang, Guiling Zhang, Guang-Chao Zhuang
    Global and Planetary Change.2025; 245: 104678.     CrossRef
  • Quality effects of sodium alginate coating cross-linked with CaCl2 on Mugil liza fillets during storage
    Márcio Vargas-Ramella, Débora da Silva, Guilherme Dilarri, Antonella Valentina Lazzari Zortea, Carolina Rosai Mendes, Gabriel de Souza Laurentino, Paulo Cezar Bastianello Campagnol, Aline Fernandes de Oliveira, Cristian Berto da Silveira
    Food Control.2025; 170: 111048.     CrossRef
  • Decoding bacterial communication: Intracellular signal transduction, quorum sensing, and cross-kingdom interactions
    Shuxun Liu, Xujie Feng, Hangjia Zhang, Ping Li, Baoru Yang, Qing Gu
    Microbiological Research.2025; 292: 127995.     CrossRef
  • Seasonal variations in physicochemical properties, volatile compounds, and microbial community structure of Dajiang fermented using a semi-controlled method
    Xiaojing Zhang, Qiqi Xiao, Xin Wang, Zhehao Zhang, Tao Guo, Bin Wang, Yanshun Xu
    Food Bioscience.2025; 63: 105791.     CrossRef
  • Lipid Production in Streptomyces jeddahensis Is Enhanced by Glucose and Fatty Acid Derivatives, with Temperature Variations Influencing Gene Expression and Biosynthesis
    Pamella Apriliana, Prihardi Kahar, Nova Rachmadona, Witta Kartika Restu, Akihiko Kondo, Chiaki Ogino
    Fermentation.2025; 11(2): 45.     CrossRef
  • Mechanisms of anammox bacteria adaptation to high temperatures: Increased content of bi-ladderane lipids and proteomic insights
    Karmann Christina, Navrátilová Klára, Behner Adam, Noor Tayyaba, Danner Stella, Majchrzak Anastasia, Šantrůček Jiří, Podzimek Tomáš, Lopez Marin Marco A., Hajšlová Jana, Lipovová Petra, Bartáček Jan, Kouba Vojtěch
    Journal of Environmental Chemical Engineering.2025; 13(2): 115628.     CrossRef
  • Synergistic effects of indigenous bacterial consortia on heavy metal tolerance and reduction
    Rahel Khidr, Karzan Qurbani, Vania Muhammed, Sazgar Salim, Shajwan Abdulla, Hevy Wsw
    Environmental Geochemistry and Health.2025;[Epub]     CrossRef
  • Physical communication pathways in bacteria: an extra layer to quorum sensing
    Virgilio de la Viuda, Javier Buceta, Iago Grobas
    Biophysical Reviews.2025;[Epub]     CrossRef
  • Microalgal-bacterial consortia for the treatment of livestock wastewater: Removal of pollutants, interaction mechanisms, influencing factors, and prospects for application
    KhinKhin Phyu, Suli Zhi, Junfeng Liang, Chein-Chi Chang, Jiahua Liu, Yuang Cao, Han Wang, Keqiang Zhang
    Environmental Pollution.2024; 349: 123864.     CrossRef
  • Laser NIR Irradiation Enhances Antimicrobial Photodynamic Inactivation of Biofilms of Staphylococcus aureus
    Leandro Mamone, Roberto Tomás, Gabriela Di Venosa, Lautaro Gándara, Edgardo Durantini, Fernanda Buzzola, Adriana Casas
    Lasers in Surgery and Medicine.2024; 56(9): 783.     CrossRef
  • Comparison of Incubation Conditions for Microbial Contaminant Isolation in Microbiological Environmental Monitoring
    O. V. Gunar, N. G. Sakhno, O. S. Tyncherova
    Regulatory Research and Medicine Evaluation.2024; 14(4): 483.     CrossRef
  • Molecular insights and functional analysis of isocitrate dehydrogenase in two gram-negative pathogenic bacteria
    Wei Xiong, Rui Su, Xueyang Han, Mengxiao Zhu, Hongyiru Tang, Shiping Huang, Peng Wang, Guoping Zhu
    World Journal of Microbiology and Biotechnology.2024;[Epub]     CrossRef
  • The transcriptional response to low temperature is weakly conserved across the Enterobacteriaceae
    Johnson Hoang, Daniel M. Stoebel, Sarah L. Svensson
    mSystems.2024;[Epub]     CrossRef
  • A newly isolated strain for poly(3-hydroxybutyrate) production under anaerobic conditions and the key enzyme analysis
    Rui Ma, Ji Li, R.D. Tyagi, Xiaolei Zhang
    Chemical Engineering Journal.2024; 496: 154200.     CrossRef
  • Construction of a tertiary model and uncertainty analysis for the effect of time, temperature, available chlorine concentration of slightly acidic electrolyzed water on salmonella enteritidis and background total bacteria counts on chicken
    Yao Zang, Yitian Zang, Qiang Zhang, Guosheng Zhang, Jie Hu, Renxin Liu, Mingming Tu, Wenduo Qiao, Mengzhen Hu, Boya Fu, Dengqun Shu, Yanjiao Li, Xianghui Zhao
    LWT.2024; 214: 117166.     CrossRef
  • Assimilatory sulphate reduction by acidogenesis: The key to prevent H2S formation during food and green waste composting for sustainable urbanization
    Xingzu Gao, Zhicheng Xu, Lanxia Zhang, Guoxue Li, Long D. Nghiem, Wenhai Luo
    Chemical Engineering Journal.2024; 499: 156149.     CrossRef
  • A riboswitch-controlled TerC family transporter Alx tunes intracellular manganese concentration in Escherichia coli at alkaline pH
    Ravish Sharma, Tatiana V. Mishanina, Conrad W. Mullineaux
    Journal of Bacteriology.2024;[Epub]     CrossRef
  • Assessing the health of climate-sensitive trees in a subalpine ecosystem through microbial community dynamics
    Bo Ram Kang, Soo Bin Kim, Jin-Kyung Hong, Seok Hyun Ahn, Jinwon Kim, Nayeon Lee, Tae Kwon Lee
    Science of The Total Environment.2024; 957: 177724.     CrossRef
  • Enhancing polycyclic aromatic hydrocarbon soil remediation in cold climates using immobilized low-temperature-resistant mixed microorganisms
    Dan Su, YiHan Liu, FengFei Liu, YuShan Dong, Yu Pu
    Science of The Total Environment.2024; 939: 173414.     CrossRef
  • Investigating Escherichia coli habitat transition from sediments to water in tropical urban lakes
    Boyu Liu, Choon Weng Lee, Chui Wei Bong, Ai-Jun Wang
    PeerJ.2024; 12: e16556.     CrossRef
  • Bacterial bioaugmentation for paracetamol removal from water and sewage sludge. Genomic approaches to elucidate biodegradation pathway
    A. Lara-Moreno, A. Vargas-Ordóñez, J. Villaverde, F. Madrid, J.D. Carlier, J.L. Santos, E. Alonso, E. Morillo
    Journal of Hazardous Materials.2024; 480: 136128.     CrossRef
  • Dietary supplementation with host-associated low-temperature potential probiotics improves the growth, immunity, digestive enzyme activity, and intestinal microbial population of olive flounder (Paralichthys olivaceus)
    Su-Jeong Lee, Young-Sun Lee, Da-In Noh, Md Tawheed Hasan, Sang Woo Hur, Seunghan Lee, Seong-Mok Jeong, Kang-Woong Kim, Jong Min Lee, Eun-Woo Lee, Won Je Jang
    Aquaculture Reports.2024; 36: 102128.     CrossRef
  • Soil Organic Matter and Total Nitrogen Reshaped Root-Associated Bacteria Community and Synergistic Change the Stress Resistance of Codonopsis pilosula
    Xiaokang Huo, Yumeng Zhou, Ning Zhu, Xiaopeng Guo, Wen Luo, Yan Zhuang, Feifan Leng, Yonggang Wang
    Molecular Biotechnology.2024;[Epub]     CrossRef
  • Global biochemical profiling of fast-growing Antarctic bacteria isolated from meltwater ponds by high-throughput FTIR spectroscopy
    Volha Akulava, Valeria Tafintseva, Uladzislau Blazhko, Achim Kohler, Uladzislau Miamin, Leonid Valentovich, Volha Shapaval, Marcos Pileggi
    PLOS ONE.2024; 19(6): e0303298.     CrossRef
  • Phyletic patterns of bacterial growth temperature in Pseudomonas and Paenibacillus reveal gradual and sporadic evolution towards cold adaptation
    Kihyun Lee, Seong-Hyeon Kim, Seongjoon Moon, Sangha Kim, Changhan Lee
    ISME Communications.2024;[Epub]     CrossRef
  • Bacterial Regulatory Mechanisms for the Control of Cellular Processes: Simple Organisms’ Complex Regulation
    Jin-Won Lee
    Journal of Microbiology.2023; 61(3): 273.     CrossRef
Assembly of Bacterial Surface Glycopolymers as an Antibiotic Target
Hongbaek Cho
J. Microbiol. 2023;61(3):359-367.   Published online March 23, 2023
DOI: https://doi.org/10.1007/s12275-023-00032-w
  • 67 View
  • 0 Download
  • 4 Web of Science
  • 4 Crossref
AbstractAbstract
Bacterial cells are covered with various glycopolymers such as peptidoglycan (PG), lipopolysaccharides (LPS), teichoic acids, and capsules. Among these glycopolymers, PG assembly is the target of some of our most effective antibiotics, consistent with its essentiality and uniqueness to bacterial cells. Biosynthesis of other surface glycopolymers have also been acknowledged as potential targets for developing therapies to control bacterial infections, because of their importance for bacterial survival in the host environment. Moreover, biosynthesis of most surface glycopolymers are closely related to PG assembly because the same lipid carrier is shared for glycopolymer syntheses. In this review, I provide an overview of PG assembly and antibiotics that target this pathway. Then, I discuss the implications of a common lipid carrier being used for assembly of PG and other surface glycopolymers in antibiotic development.

Citations

Citations to this article as recorded by  
  • Diversity of sugar-diphospholipid-utilizing glycosyltransferase families
    Ida K. S. Meitil, Garry P. Gippert, Kristian Barrett, Cameron J. Hunt, Bernard Henrissat
    Communications Biology.2024;[Epub]     CrossRef
  • Metalation of Extracytoplasmic Proteins and Bacterial Cell Envelope Homeostasis
    Bixi He, John D. Helmann
    Annual Review of Microbiology .2024; 78(1): 83.     CrossRef
  • A hierarchical approach towards identification of novel inhibitors against L, D-transpeptidase YcbB as an anti-bacterial therapeutic target
    Abdullah S. Alawam, Lina M. Alneghery, Maher S. Alwethaynani, Mubarak A. Alamri
    Journal of Biomolecular Structure and Dynamics.2024; : 1.     CrossRef
  • Bacterial Regulatory Mechanisms for the Control of Cellular Processes: Simple Organisms’ Complex Regulation
    Jin-Won Lee
    Journal of Microbiology.2023; 61(3): 273.     CrossRef

Journal of Microbiology : Journal of Microbiology
TOP