Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Previous issues

Page Path
HOME > Browse Articles > Previous issues
10 Previous issues
Filter
Filter
Article category
Keywords
Volume 59(12); December 2021
Prev issue Next issue
Journal Articles
Transposon insertion site sequencing (TIS) of Pseudomonas aeruginosa
Hongbaek Cho
J. Microbiol. 2021;59(12):1067-1074.   Published online December 4, 2021
DOI: https://doi.org/10.1007/s12275-021-1565-y
  • 19 View
  • 0 Download
  • 2 Citations
AbstractAbstract
Transposon insertion site sequencing (TIS) is a technique that determines the insertion profile of a transposon mutant library by massive parallel sequencing of transposon-genomic DNA junctions. Because the transposon insertion profile reflects the abundance of each mutant in the library, it provides information to assess the fitness contribution of each genetic locus of a bacterial genome in a specific growth condition or strain background. Although introduced only about a dozen years ago, TIS has become an important tool in bacterial genetics that provides clues to study biological functions and regulatory mechanisms. Here, I describe a protocol for generating high density transposon insertion mutant libraries and preparing Illumina sequencing samples for mapping the transposon junctions of the transposon mutant libraries using Pseudomonas aeruginosa as an example.
Non-mitochondrial aconitase regulates the expression of iron-uptake genes by controlling the RNA turnover process in fission yeast
Soo-Yeon Cho , Soo-Jin Jung , Kyoung-Dong Kim , Jung-Hye Roe
J. Microbiol. 2021;59(12):1075-1082.   Published online October 26, 2021
DOI: https://doi.org/10.1007/s12275-021-1438-4
  • 17 View
  • 0 Download
  • 3 Citations
AbstractAbstract
Aconitase, a highly conserved protein across all domains of life, functions in converting citrate to isocitrate in the tricarboxylic acid cycle. Cytosolic aconitase is also known to act as an iron regulatory protein in mammals, binding to the RNA hairpin structures known as iron-responsive elements within the untranslated regions of specific RNAs. Aconitase-2 (Aco2) in fission yeast is a fusion protein consisting of an aconitase and a mitochondrial ribosomal protein, bL21, residing not only in mitochondria but also in cytosol and the nucleus. To investigate the role of Aco2 in the nucleus and cytoplasm of fission yeast, we analyzed the transcriptome of aco2ΔN mutant that is deleted of nuclear localization signal (NLS). RNA sequencing revealed that the aco2ΔN mutation caused increase in mRNAs encoding iron uptake transporters, such as Str1, Str3, and Shu1. The half-lives of mRNAs for these genes were found to be significantly longer in the aco2ΔN mutant than the wild-type strain, suggesting the role of Aco2 in mRNA turnover. The three conserved cysteines required for the catalytic activity of aconitase were not necessary for this role. The UV cross-linking RNA immunoprecipitation analysis revealed that Aco2 directly bound to the mRNAs of iron uptake transporters. Aco2-mediated degradation of iron-uptake mRNAs appears to utilize exoribonuclease pathway that involves Rrp6 as evidenced by genetic interactions. These results reveal a novel role of non-mitochondrial aconitase protein in the mRNA turnover in fission yeast to fine-tune iron homeostasis, independent of regulation by transcriptional repressor Fep1.
Regulation of iron homeostasis by peroxide-sensitive CatR, a Fur-family regulator in Streptomyces coelicolor
Yeonbum Kim , Jung-Hye Roe , Joo-Hong Park , Yong-Joon Cho , Kang-Lok Lee
J. Microbiol. 2021;59(12):1083-1091.   Published online December 4, 2021
DOI: https://doi.org/10.1007/s12275-021-1457-1
  • 21 View
  • 0 Download
  • 3 Citations
AbstractAbstract
CatR, a peroxide-sensing transcriptional repressor of Fur family, can de-repress the transcription of the catA gene encoding catalase upon peroxide stress in Streptomyces coelicolor. Since CatR-regulated genes other than catA and its own gene catR have not been identified in detail, the understanding of the role of CatR regulon is very limited. In this study, we performed transcriptomic analysis to identify genes influenced by both 􀈟􀂊atR mutation and hydrogen peroxide treatment. Through ChIP-qPCR and other analyses, a new consensus sequence was found in CatR-responsive promoter region of catR gene and catA operon for direct regulation. In addition, vtlA (SCO2027) and SCO4983 were identified as new members of the CatR regulon. Expression levels of iron uptake genes were reduced by hydrogen peroxide and a DmdR1 binding sequence was identified in promoters of these genes. The increase in free iron by hydrogen peroxide was thought to suppress the iron import system by DmdR1. A putative exporter protein VtlA regulated by CatR appeared to reduce intracellular iron to prevent oxidative stress. The name vtlA (VIT1-like transporter) was proposed for iron homeostasis related gene SCO2027.
Lactiplantibacillus plantarum LRCC5314 includes a gene for serotonin biosynthesis via the tryptophan metabolic pathway
Jiseon Jeong , Yunjeong Lee , Seokmin Yoon , Jong-Hwa Kim , Wonyong Kim
J. Microbiol. 2021;59(12):1092-1103.   Published online December 4, 2021
DOI: https://doi.org/10.1007/s12275-021-1472-2
  • 21 View
  • 0 Download
  • 4 Citations
AbstractAbstract
As the functions of probiotics within the same species may not be shared, it is important to analyze the genetic characteristics of strains to determine their safety and usefulness before industrial applications. Hence the present study was undertaken to determine functional genes, and beneficial activities of strain LRCC5314, a bacterial strain isolated from kimchi through comparative genomic analysis. Phylogenetic analysis based on the 16S rRNA gene sequence showed that strain LRCC5314 was a member of the species L. plantarum. Whole genome size of strain LRCC5314 was sequence was 3.25 Mb long, with a G + C content of 44.5 mol% and 3,031 predicted genes. Strain LRCC5314 could metabolize hexoses through homofermentation, which produces only lactic acid from hexoses. According to gene annotation, strain LRCC- 5314 contained genes of EPS production and CRISPR. Moreover, the strain contained genes that could encode a complete biosynthetic pathway for the production of tryptophan, which can be used as a precursor of serotonin. Notably, the tryptophan and serotonin activities strain LRCC5314 were higher than those of reference strains, L. plantarum ATCC 14917T, DSM 20246, DSM 2601, and ATCC 8014, which reach tryptophan amount of 0.784 ± 0.045 μM/ml in MRS broth and serotonin concentration of 19.075 ± 0.295 ng/ml in HT-22 cells. These findings indicated that L. plantarum LRCC5314 could provide a source for serotonin production and could be used as a functional probiotic for stress regulation.
Adaptation of Pseudomonas helmanticensis to fat hydrolysates and SDS: fatty acid response and aggregate formation
Ilya N. Zubkov , Anatoly P. Nepomnyshchiy , Vadim D. Kondratyev , Pavel N. Sorokoumov , Konstantin V. Sivak , Edward S. Ramsay , Sergey M. Shishlyannikov
J. Microbiol. 2021;59(12):1104-1111.   Published online October 26, 2021
DOI: https://doi.org/10.1007/s12275-021-1214-5
  • 17 View
  • 0 Download
  • 3 Citations
AbstractAbstract
An essential part of designing any biotechnological process is examination of the physiological state of producer cells in different phases of cultivation. The main marker of a bacterial cell’s state is its fatty acid (FA) profile, reflecting membrane lipid composition. Consideration of FA composition enables assessment of bacterial responses to cultivation conditions and helps biotechnologists understand the most significant factors impacting cellular metabolism. In this work, soil SDS-degrading Pseudomonas helmanticensis was studied at the fatty acid profile level, including analysis of rearrangement between planktonic and aggregated forms. The set of substrates included fat hydrolysates, SDS, and their mixtures with glucose. Such media are useful in bioplastic production since they can help incrementally lower overall costs. Conventional gas chromatography-mass spectrometry was used for FA analysis. Acridine orange-stained aggregates were observed by epifluorescence microscopy. The bacterium was shown to change fatty acid composition in the presence of hydrolyzed fats or SDS. These changes seem to be driven by the depletion of metabolizable substrates in the culture medium. Cell aggregation has also been found to be a defense strategy, particularly with anionic surfactant (SDS) exposure. It was shown that simple fluidity indices (such as saturated/ unsaturated FA ratios) do not always sufficiently characterize a cell's physiological state, and morphological examination is essential in cases where complex carbon sources are used.
Antibacterial pathway of cefquinome against Staphylococcus aureus based on label-free quantitative proteomics analysis
Linglin Gao , Hao Zhu , Yun Chen , Yuhui Yang
J. Microbiol. 2021;59(12):1112-1124.   Published online November 9, 2021
DOI: https://doi.org/10.1007/s12275-021-1201-x
  • 18 View
  • 0 Download
  • 3 Citations
AbstractAbstract
Cefquinome (CEQ) is a novel β-lactam antibiotic that exhibits excellent antibacterial activity against Staphylococcus aureus. However, the bacterial protein targets of CEQ are unclear. To evaluate the relationship between the pharmacokinetic/ pharmacodynamic (PK/PD) parameters of CEQ and strains with varying degrees of resistance and to elucidate bacterial protein responses to CEQ treatment, label-free quantitative proteomics analysis was conducted. The sensitive S. aureus ATCC6538 and the resistant 2MIC and 8MIC were tested for differentially expressed proteins. An in vitro model was treated with different concentrations of CEQ (3, 5, or 10 μg/ml) with different terminal half-lives (2.5 or 5 h) at different intervals (12 or 24 h). Differentially expressed proteins were evaluated using Gene Ontology analysis followed by KEGG pathway enrichment analysis and STRING network analysis. RT-qPCR was performed to validate the differentially expressed proteins at the molecular level. The results showed that the degree of resistance increased in a cumulative manner and increased gradually with the extension of administration time. The resistant strain would not have appeared in the model only if %T > mutant prevention concentration ≥ 50%. The expression of 45 proteins significantly changed following CEQ treatment, among which 42 proteins were obviously upregulated and 3 were downregulated. GO analysis revealed that the differentially expressed proteins were mainly present on cells and the cell membrane, participated in metabolic and intracellular processes, and had catalytic and binding activities. The RPSO, SDHB, CITZ, ADK, and SAOUHSC 00113 genes in S. aureus may play important roles in the development of resistance to CEQ. These results provided important reference candidate proteins as targets for overcoming S. aureus resistance to CEQ.
Geographic diversity in Helicobacter pylori oipA genotype between Korean and United States isolates
Aeryun Kim , Jing Lai , D. Scott Merrell , Ji-Hye Kim , Hanfu Su , Jeong-Heon Cha
J. Microbiol. 2021;59(12):1125-1132.   Published online October 31, 2021
DOI: https://doi.org/10.1007/s12275-021-1450-8
  • 20 View
  • 0 Download
  • 3 Citations
AbstractAbstract
Helicobacter pylori outer membrane inflammatory protein A (OipA) was originally named for its role in inducing inflammation in the host, as evidenced by high mucosal IL-8 levels. Expression of OipA is regulated by phase variation of a CT dinucleotide-repeat located in the 5􍿁􀁇region of the gene. However, little is known about OipA geographic diversity across isolates. To address this gap, we conducted a large-scale molecular epidemiologic analysis using H. pylori clinical isolates obtained from two geographically distinct populations: Korea and the United States (US). Most Korean isolates (98.7%) possessed two copies of oipA located at two specific loci (A and B) while all US isolates contained only one copy of oipA at locus A. Furthermore, most Korean oipA (94.8%) possessed three or less CT repeats while most US oipA (96.6%) contained five or more CT repeats. Among the two copies, all Korean H. pylori possessed at least one oipA ‘on’ phase variant while the single copy of oipA in US isolates showed 56.2% ‘on’ and 43.8% ‘off.’ Thus, host differences seem to have driven geographic diversification of H. pylori across these populations such that OipA expression in US isolates is still regulated by phase variation with 5 or more CT repeats, while Korean isolates always express OipA; duplication of the oipA combined with a reduction of CT repeats to three or less ensures continued expression. En masse, these findings suggest that diversity in the oipA gene copy number, CT repeats, and phase variation among H. pylori from different populations may confer a benefit in adaptation to particular host populations.
Regulator of ribonuclease activity modulates the pathogenicity of Vibrio vulnificus
Jaejin Lee , Eunkyoung Shin , Jaeyeong Park , Minho Lee , Kangseok Lee
J. Microbiol. 2021;59(12):1133-1141.   Published online November 9, 2021
DOI: https://doi.org/10.1007/s12275-021-1518-5
  • 22 View
  • 0 Download
  • 4 Citations
AbstractAbstract
RraA, a protein regulator of RNase E activity, plays a unique role in modulating the mRNA abundance in Escherichia coli. The marine pathogenic bacterium Vibrio vulnificus also possesses homologs of RNase E (VvRNase E) and RraA (VvRraA1 and VvRraA2). However, their physiological roles have not yet been investigated. In this study, we demonstrated that VvRraA1 expression levels affect the pathogenicity of V. vulnificus. Compared to the wild-type strain, the VvrraA1-deleted strain (ΔVvrraA1) showed decreased motility, invasiveness, biofilm formation ability as well as virulence in mice; these phenotypic changes of ΔVvrraA1 were restored by the exogenous expression of VvrraA1. Transcriptomic analysis indicated that VvRraA1 expression levels affect the abundance of a large number of mRNA species. Among them, the halflives of mRNA species encoding virulence factors (e.g., smcR and htpG) that have been previously shown to affect VvrraA1 expression-dependent phenotypes were positively correlated with VvrraA1 expression levels. These findings suggest that VvRraA1 modulates the pathogenicity of V. vulnificus by regulating the abundance of a subset of mRNA species.
Short-chain fatty acids inhibit the biofilm formation of Streptococcus gordonii through negative regulation of competence-stimulating peptide signaling pathway
Taehwan Park , Jintaek Im , A Reum Kim , Dongwook Lee , Sungho Jeong , Cheol-Heui Yun , Seung Hyun Han
J. Microbiol. 2021;59(12):1142-1149.   Published online December 4, 2021
DOI: https://doi.org/10.1007/s12275-021-1576-8
  • 21 View
  • 0 Download
  • 13 Citations
AbstractAbstract
Streptococcus gordonii, a Gram-positive commensal bacterium, is an opportunistic pathogen closely related to initiation and progression of various oral diseases, such as periodontitis and dental caries. Its biofilm formation is linked with the development of such diseases by enhanced resistance against antimicrobial treatment or host immunity. In the present study, we investigated the effect of short-chain fatty acids (SCFAs) on the biofilm formation of S. gordonii. SCFAs, including sodium acetate (NaA), sodium propionate (NaP), and sodium butyrate (NaB), showed an effective inhibitory activity on the biofilm formation of S. gordonii without reduction in bacterial growth. SCFAs suppressed S. gordonii biofilm formation at early time points whereas SCFAs did not affect its preformed biofilm. A quorum-sensing system mediated by competence-stimulating peptide (CSP) is known to regulate biofilm formation of streptococci. Interestingly, SCFAs substantially decreased mRNA expression of comD and comE, which are CSP-sensor and its response regulator responsible for CSP pathway, respectively. Although S. gordonii biofilm formation was enhanced by exogenous synthetic CSP treatment, such effect was not observed in the presence of SCFAs. Collectively, these results suggest that SCFAs have an anti-biofilm activity on S. gordonii through inhibiting comD and comE expression which results in negative regulation of CSP quorum-sensing system. SCFAs could be an effective anti-biofilm agent against S. gordonii for the prevention of oral diseases.
Randomized Controlled Trial
Ulmus macrocarpa Hance extract modulates intestinal microbiota in healthy adults: a randomized, placebo-controlled clinical trial
Kwangmin Kim , Karpagam Veerappan , Nahyun Woo , Bohyeon Park , Sathishkumar Natarajan , Hoyong Chung , Cheolmin Kim , Junhyung Park
J. Microbiol. 2021;59(12):1150-1156.   Published online October 26, 2021
DOI: https://doi.org/10.1007/s12275-021-1329-8
  • 19 View
  • 0 Download
  • 6 Citations
AbstractAbstract
The stem and root bark of Ulmus macrocarpa Hance has been used as traditional pharmacological agent against inflammation related disorders. The objective of this study was to explore the impact of Ulmus macrocarpa Hance extract (UME) on human gut microbiota. A randomized placebo-controlled clinical study was conducted in healthy adults. The study subjects were given 500 mg/day of UME or placebo orally for 4 weeks. Eighty fecal samples were collected at baseline and 4 weeks of UME or placebo intervention. The gut microbiota variation was evaluated by 16S rRNA profiling. The microbial response was highly personalized, and no statistically significant differences was observed in both species richness and abundance. The number of bacterial species identified in study subjects ranged from 86 to 182 species. The analysis for taxonomical changes revealed an increase in Eubacterium ventriosum, Blautia faecis, Ruminococcus gnavus in the UME group. Functional enrichment of bacterial genes showed an increase in primary and secondary bile acid biosynthesis in UME group. Having known from previous studies Eubacterium regulated bile acid homeostasis in protecting gut microbial architecture and immunity, we suggest that UME supplementation might enhance host immunity by modulating gut microbiota. This is the first stage study and forthcoming clinical studies with larger participants are needed to confirm these findings.

Journal of Microbiology : Journal of Microbiology
TOP