Previous issues
- Page Path
-
HOME
> Browse Articles
> Previous issues
- Volume 61(12); December 2023
-
Review
- Signification and Application of Mutator and Antimutator Phenotype‑Induced Genetic Variations in Evolutionary Adaptation and Cancer Therapeutics
-
Woo-Hyun Chung
-
J. Microbiol. 2023;61(12):1013-1024. Published online December 15, 2023
-
DOI: https://doi.org/10.1007/s12275-023-00091-z
-
-
Abstract
- Mutations present a dichotomy in their implications for cellular processes. They primarily arise from DNA replication errors
or damage repair processes induced by environmental challenges. Cumulative mutations underlie genetic variations and
drive evolution, yet also contribute to degenerative diseases such as cancer and aging. The mutator phenotype elucidates the
heightened mutation rates observed in malignant tumors. Evolutionary adaptation, analogous to bacterial and eukaryotic
systems, manifests through mutator phenotypes during changing environmental conditions, highlighting the delicate balance
between advantageous mutations and their potentially detrimental consequences. Leveraging the genetic tractability
of Saccharomyces cerevisiae offers unique insights into mutator phenotypes and genome instability akin to human cancers.
Innovative reporter assays in yeast model organisms enable the detection of diverse genome alterations, aiding a comprehensive
analysis of mutator phenotypes. Despite significant advancements, our understanding of the intricate mechanisms
governing spontaneous mutation rates and preserving genetic integrity remains incomplete. This review outlines various
cellular pathways affecting mutation rates and explores the role of mutator genes and mutation-derived phenotypes, particularly
prevalent in malignant tumor cells. An in-depth comprehension of mutator and antimutator activities in yeast and
higher eukaryotes holds promise for effective cancer control strategies.
Journal Articles
- Genetic and Functional Characterization of a Salicylate 1‑monooxygenase Located on an Integrative and Conjugative Element (ICE) in Pseudomonas stutzeri AJR13
-
Igor Ivanovski , Gerben J. Zylstra
-
J. Microbiol. 2023;61(12):1025-1032. Published online December 15, 2023
-
DOI: https://doi.org/10.1007/s12275-023-00093-x
-
-
Abstract
- Pseudomonas stutzeri strain AJR13 was isolated for growth on the related compounds biphenyl (BPH) and diphenylmethane
(DPM). The BPH and DPM degradative pathway genes are present on an integrative and conjugative element (ICE) in the
chromosome. Examination of the genome sequence of AJR13 revealed a gene encoding a salicylate 1-monooxygenase (salA)
associated with the ICE even though AJR13 did not grow on salicylate. Transfer of the ICE to the well-studied Pseudomonas
putida KT2440 resulted in a KT2440 strain that could grow on salicylate. Knockout mutagenesis of the salA gene on the
ICE in KT2440 eliminated the ability to grow on salicylate. Complementation of the knockout with the cloned salA gene
restored growth on salicylate. Transfer of the cloned salA gene under control of the lac promoter to KT2440 resulted in a
strain that could grow on salicylate. Heterologous expression of the salA gene in E. coli BL21 DE3 resulted in the production
of catechol from salicylate, confirming that it is indeed a salicylate 1-monooxygenase. Interestingly, transfer of the cloned
salA gene under control of the lac promoter to AJR13 resulted in a strain that could now grow on salicylate, suggesting that
gene expression for the downstream catechol pathway is intact.
- Structural and Functional Analyses of the Flavoprotein Disulfide Reductase FN0820 of Fusobacterium nucleatum
-
Hyunwoo Shin , Yeongjin Baek , Dukwon Lee , Yongbin Xu , Yonghoon Kwon , Inseong Jo , Nam-Chul Ha
-
J. Microbiol. 2023;61(12):1033-1041. Published online December 20, 2023
-
DOI: https://doi.org/10.1007/s12275-023-00095-9
-
-
27
View
-
0
Download
-
1
Citations
-
Abstract
- Escherichia coli RclA and Staphylococcus aureus MerA are part of the Group I flavoprotein disulfide reductase (FDR) family
and have been implicated in the contribution to bacterial pathogenesis by defending against the host immune response.
Fusobacterium nucleatum is a pathogenic, anaerobic Gram-negative bacterial species commonly found in the human oral
cavity and gastrointestinal tract. In this study, we discovered that the F. nucleatum protein FN0820, belonging to the Group I
FDR family, exhibited a higher activity of a Cu2+-
dependent NADH oxidase than E. coli RclA. Moreover, FN0820 decreased
the dissolved oxygen level in the solution with higher NADH oxidase activity. We found that L-tryptophan and its analog
5-hydroxytryptophan inhibit the FN0820 activities of NADH oxidase and the concomitant reduction of oxygen. Our results
have implications for developing new treatment strategies against pathogens that defend the host immune response with
Group I FDRs.
- Transcription Factors Tec1 and Tec2 Play Key Roles in the Hyphal Growth and Virulence of Mucor lusitanicus Through Increased Mitochondrial Oxidative Metabolism
-
Viridiana Alejandre-Castañeda , J. Alberto Patiño-Medina , Marco I. Valle-Maldonado , Alexis García , Rafael Ortiz-Alvarado , León F. Ruíz-Herrera , Karla Viridiana Castro-Cerritos , Joel Ramírez-Emiliano , Martha I. Ramírez-Díaz , Victoriano Garre , Soo Chan Lee , Víctor Meza-Carmen
-
J. Microbiol. 2023;61(12):1043-1062. Published online December 19, 2023
-
DOI: https://doi.org/10.1007/s12275-023-00096-8
-
-
22
View
-
0
Download
-
1
Citations
-
Abstract
- Mucormycosis is a lethal and difficult-to-treat fungal infection caused by fungi of the order Mucorales. Mucor lusitanicus,
a member of Mucorales, is commonly used as a model to understand disease pathogenesis. However, transcriptional control
of hyphal growth and virulence in Mucorales is poorly understood. This study aimed to investigate the role of Tec proteins,
which belong to the TEA/ATTS transcription factor family, in the hyphal development and virulence of M. lusitanicus. Unlike
in the genome of Ascomycetes and Basidiomycetes, which have a single Tec homologue, in the genome of Mucorales, two
Tec homologues, Tec1 and Tec2, were found, except in that of Phycomyces blakesleeanus, with only one Tec homologue.
tec1 and tec2 overexpression in M. lusitanicus increased mycelial growth, mitochondrial content and activity, expression of
the rhizoferrin synthetase-encoding gene rfs, and virulence in nematodes and wax moth larvae but decreased cAMP levels
and protein kinase A (PKA) activity. Furthermore, tec1- and tec2-overexpressing strains required adequate mitochondrial
metabolism to promote the virulent phenotype. The heterotrimeric G beta subunit 1-encoding gene deletant strain (Δgpb1)
increased cAMP-PKA activity, downregulation of both tec genes, decreased both virulence and hyphal development, but tec1
and tec2 overexpression restored these defects. Overexpression of allele-mutated variants of Tec1(S332A) and Tec2(S168A)
in the putative phosphorylation sites for PKA increased both virulence and hyphal growth of Δgpb1. These findings suggest
that Tec homologues promote mycelial development and virulence by enhancing mitochondrial metabolism and rhizoferrin
accumulation, providing new information for the rational control of the virulent phenotype of M. lusitanicus.
- Prevalence of Indigenous Antibiotic‑Resistant Salmonella Isolates and Their Application to Explore a Lytic Phage vB_SalS_KFSSM with an Intra‑Broad Specificity
-
Jaein Choe , Su-Hyeon Kim , Ji Min Han , Jong-Hoon Kim , Mi-Sun Kwak , Do-Won Jeong , Mi-Kyung Park
-
J. Microbiol. 2023;61(12):1063-1073. Published online January 2, 2024
-
DOI: https://doi.org/10.1007/s12275-023-00098-6
-
-
Abstract
- The consumption of fresh produce has led to increase in antibiotic-resistant (AR) Salmonella outbreaks. In this study, indigenous
Salmonella was isolated from a total of two hundred-two samples including fresh produce and agricultural environmental
samples in Korea. After biochemical confirmation using the Indole, Methyl Red, Voges-Proskauer, Citrate tests, presumable
Salmonella isolates were identified by 16S rRNA sequencing. Identified Salmonella isolates were evaluated for antibiotic
susceptibility against twenty-two antibiotics. The specificity and the efficiency of plating (EOP) of vB_SalS_KFSSM were
evaluated against fifty-three bacterial strains. Twenty-five suspected Salmonella were isolated and confirmed by the positive
result
for methyl red and citrate, of which ten were identified as Salmonella spp. through 16S rRNA gene sequencing. Eight
Salmonella isolates (4.0%, n = 8/202) were resistant to at least one antibiotic, among which five were multi-drug resistant. As
a lytic phage against Salmonella spp. CMGS-1, vB_SalS_KFSSM was isolated from cow manure. The phage was observed as
a tailed phage belonging to the class Caudoviricetes. It exhibited an intra-broad specificity against four indigenous AR Salmonella
isolates, two indigenous Salmonella isolates, and five other Salmonella serotypes with great efficiencies (EOP ≥ 0.75).
Thus, this study suggested the potential of vB_SalS_KFSSM to combat indigenous AR Salmonella.
TOP