Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Previous issues

Page Path
HOME > Browse Articles > Previous issues
12 Previous issues
Filter
Filter
Article category
Keywords
Volume 57(4); April 2019
Prev issue Next issue
Review
[MINIREVIEW] The nature of meiotic chromosome dynamics and recombination in budding yeast
Soogil Hong , Jeong Hwan Joo , Hyeseon Yun , Keunpil Kim
J. Microbiol. 2019;57(4):221-231.   Published online January 22, 2019
DOI: https://doi.org/10.1007/s12275-019-8541-9
  • 47 View
  • 0 Download
  • 20 Web of Science
  • 19 Crossref
AbstractAbstract
During meiosis, crossing over allows for the exchange of genes between homologous chromosomes, enabling their segregation and leading to genetic variation in the resulting gametes. Spo11, a topoisomerase-like protein expressed in eukaryotes, and diverse accessory factors induce programmed doublestrand breaks (DSBs) to initiate meiotic recombination during the early phase of meiosis after DNA replication. DSBs are further repaired via meiosis-specific homologous recombination. Studies on budding yeast have provided insights into meiosis and genetic recombination and have improved our understanding of higher eukaryotic systems. Cohesin, a chromosome-associated multiprotein complex, mediates sister chromatid cohesion (SCC), and is conserved from yeast to humans. Diverse cohesin subunits in budding yeast have been identified in DNA metabolic pathways, such as DNA replication, chromosome segregation, recombination, DNA repair, and gene regulation. During cell cycle, SCC is established by multiple cohesin subunits, which physically bind sister chromatids together and modulate proteins that involve in the capturing and separation of sister chromatids. Cohesin components include at least four core subunits that establish and maintain SCC: two structural maintenance chromosome subunits (Smc1 and Smc3), an α-kleisin subunit (Mcd1/Scc1 during mitosis and Rec8 during meiosis), and Scc3/Irr1 (SA1 and SA2). In addition, the cohesin-associated factors Pds5 and Rad61 regulate structural modifications and cell cyclespecific dynamics of chromatin to ensure accurate chromosome segregation. In this review, we discuss SCC and the recombination pathway, as well as the relationship between the two processes in budding yeast, and we suggest a possible conserved mechanism for meiotic chromosome dynamics from yeast to humans.

Citations

Citations to this article as recorded by  
  • RPA interacts with Rad52 to promote meiotic crossover and noncrossover recombination
    Jeong H Joo, Soogil Hong, Mika T Higashide, Eui-Hwan Choi, Seobin Yoon, Min-Su Lee, Hyun Ah Kang, Akira Shinohara, Nancy Kleckner, Keun P Kim
    Nucleic Acids Research.2024; 52(7): 3794.     CrossRef
  • Elevated expression of exogenous RAD51 enhances the CRISPR/Cas9-mediated genome editing efficiency
    Seo Jung Park, Seobin Yoon, Eui-Hwan Choi, Hana Hyeon, Kangseok Lee, Keun Pil Kim
    BMB Reports.2023; 56(2): 102.     CrossRef
  • Strategies to improve genome editing efficiency in crop plants
    B. Aravind, Kutubuddin Molla, Satendra K. Mangrauthia, Gireesha Mohannath
    Journal of Plant Biochemistry and Biotechnology.2023; 32(4): 661.     CrossRef
  • A Method for Physical Analysis of Recombination Intermediates in Saccharomyces cerevisiae
    Kiwon Rhee, Hyungseok Choi, Keun P. Kim, Jeong H. Joo
    Journal of Microbiology.2023; 61(11): 939.     CrossRef
  • The Kleisin Subunits of Cohesin Are Involved in the Fate Determination of Embryonic Stem Cells
    Young Eun Koh, Eui-Hwan Choi, Jung-Woong Kim, Keun Pil Kim
    Molecules and Cells.2022; 45(11): 820.     CrossRef
  • Gametogenesis: Exploring an Endogenous Rejuvenation Program to Understand Cellular Aging and Quality Control
    Tina L. Sing, Gloria A. Brar, Elçin Ünal
    Annual Review of Genetics.2022; 56(1): 89.     CrossRef
  • Yeast polyubiquitin unit regulates synaptonemal complex formation and recombination during meiosis
    Min-Kyung Jo, Kiwon Rhee, Keun Pil Kim, Soogil Hong
    Journal of Microbiology.2022; 60(7): 705.     CrossRef
  • Histone variant H2A.Z promotes meiotic chromosome axis organization in Saccharomyces cerevisiae
    Lorencia Chigweshe, Amy J MacQueen, Scott G Holmes, J Berman
    G3 Genes|Genomes|Genetics.2022;[Epub]     CrossRef
  • Meiosis-specific cohesin complexes display essential and distinct roles in mitotic embryonic stem cell chromosomes
    Eui-Hwan Choi, Seobin Yoon, Young Eun Koh, Tae Kyung Hong, Jeong Tae Do, Bum-Kyu Lee, Yoonsoo Hahn, Keun P. Kim
    Genome Biology.2022;[Epub]     CrossRef
  • Meiotic prophase roles of Pds5 in recombination and chromosome condensation in budding yeast
    Jeong Hwan Joo, Hyun Ah Kang, Keun Pil Kim, Soogil Hong
    Journal of Microbiology.2022; 60(2): 177.     CrossRef
  • The multiple roles of RAB GTPases in female and male meiosis
    Meng-Meng Shan, Shao-Chen Sun
    Human Reproduction Update.2021; 27(6): 1013.     CrossRef
  • The synaptonemal complex central region modulates crossover pathways and feedback control of meiotic double-strand break formation
    Min-Su Lee, Mika T Higashide, Hyungseok Choi, Ke Li, Soogil Hong, Kangseok Lee, Akira Shinohara, Miki Shinohara, Keun P Kim
    Nucleic Acids Research.2021; 49(13): 7537.     CrossRef
  • Maintenance of genome integrity and active homologous recombination in embryonic stem cells
    Eui-Hwan Choi, Seobin Yoon, Young Eun Koh, Young-Jin Seo, Keun Pil Kim
    Experimental & Molecular Medicine.2020; 52(8): 1220.     CrossRef
  • From coins to cancer therapy: Gold, silver and copper complexes targeting human topoisomerases
    Jessica Ceramella, Annaluisa Mariconda, Domenico Iacopetta, Carmela Saturnino, Alexia Barbarossa, Anna Caruso, Camillo Rosano, Maria Stefania Sinicropi, Pasquale Longo
    Bioorganic & Medicinal Chemistry Letters.2020; 30(3): 126905.     CrossRef
  • E2F1 facilitates DNA break repair by localizing to break sites and enhancing the expression of homologous recombination factors
    Eui-Hwan Choi, Keun Pil Kim
    Experimental & Molecular Medicine.2019; 51(9): 1.     CrossRef
  • Recruitment of Rec8, Pds5 and Rad61/Wapl to meiotic homolog pairing, recombination, axis formation and S-phase
    Soogil Hong, Jeong H Joo, Hyeseon Yun, Nancy Kleckner, Keun P Kim
    Nucleic Acids Research.2019;[Epub]     CrossRef
  • Meiotic prophase-like pathway for cleavage-independent removal of cohesin for chromosome morphogenesis
    Kiran Challa, Miki Shinohara, Akira Shinohara
    Current Genetics.2019; 65(4): 817.     CrossRef
  • Twist and Turn—Topoisomerase Functions in Mitochondrial DNA Maintenance
    Steffi Goffart, Anu Hangas, Jaakko L. O. Pohjoismäki
    International Journal of Molecular Sciences.2019; 20(8): 2041.     CrossRef
  • A Transcriptome-based Perspective of Meiosis in Dinoflagellates
    David Morse
    Protist.2019; 170(4): 397.     CrossRef
Journal Articles
Paraburkholderia lacunae sp. nov., isolated from soil near an artificial pond
Tingye Feng , Sang Eun Jeong , Jin Ju Lim , Seogang Hyun , Che Ok Jeon
J. Microbiol. 2019;57(4):232-237.   Published online January 16, 2019
DOI: https://doi.org/10.1007/s12275-019-8463-6
  • 50 View
  • 0 Download
  • 6 Web of Science
  • 6 Crossref
AbstractAbstract
A Gram-stain-negative, strictly aerobic bacterial strain, designated strain S27T, was isolated from soil near an artificial pond in South Korea. Cells were non-motile short rods showing oxidase- and catalase-positive activities. Growth of strain S27T was observed at 20–40°C (optimum, 30°C), pH 5.0–7.0 (optimum, pH 6.0), and 0–0.5% (w/v) NaCl (optimum, 0%). Ubiquinone-8 was detected as the sole respiratory quinone and the major fatty acids were C16:0, cyclo-C17:0, and cyclo- C19:0 ω8c. The G + C content of the genomic DNA was 62.4 mol%. Phosphatidylglycerol, phosphatidylethanolamine, and an unidentified aminophospholipid were detected as the major polar lipids. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain S27T formed a clearly distinct phyletic lineage from closely related Paraburkholderia species within the genus Paraburkholderia. Strain S27T was most closely related to Paraburkholderia rhynchosiae WSM3937T, Paraburkholderia ginsengiterrae DCY85T, Paraburkholderia fungorum NBRC 102489T, and Paraburkholderia graminis C4D1MT with 98.8%, 98.4%, 98.4%, and 97.7% 16S rRNA gene sequence similarities, respectively. The DNA-DNA relatedness level between strain S27T and the type strain of P. rhynchosiae was 36.8 ± 2.6%. On the basis of phenotypic, chemotaxonomic and molecular properties, strain S27T represents a novel species of the genus Paraburkholderia, for which the name Paraburkholderia lacunae sp. nov. is proposed. The type strain is S27T (KACC 19714 T = JCM 32721T).

Citations

Citations to this article as recorded by  
  • International Committee on Systematics of Prokaryotes, Subcommittee on the taxonomy of Rhizobia and Agrobacteria, minutes of the annual meeting by videoconference, 5 July 2021, followed by online discussion until 31 December 2021
    Seyed Abdollah Mousavi, J. Peter W. Young
    International Journal of Systematic and Evolutionary Microbiology.2022;[Epub]     CrossRef
  • Lysobacter arenosi sp. nov. and Lysobacter solisilvae sp. nov. isolated from soil
    Kyeong Ryeol Kim, Kyung Hyun Kim, Shehzad Abid Khan, Hyung Min Kim, Dong Min Han, Che Ok Jeon
    Journal of Microbiology.2021; 59(8): 709.     CrossRef
  • The history and distribution of nodulating Paraburkholderia, a potential inoculum for Fynbos forage species
    Chrizelle W. Beukes, Stephanus N. Venter, Emma T. Steenkamp
    Grass and Forage Science.2021; 76(1): 10.     CrossRef
  • International Committee on Systematics of Prokaryotes Subcommittee on the Taxonomy of Rhizobia and Agrobacteria Minutes of the closed meeting by videoconference, 17 July 2019
    Philippe de Lajudie, J. Peter W. Young
    International Journal of Systematic and Evolutionary Microbiology .2020; 70(5): 3563.     CrossRef
  • Flavihumibacter soli sp. nov., Isolated from Soil
    Ye Lin Seo, Jaejoon Jung, Shehzad Abid Khan, Kyung Hyun Kim, Che Ok Jeon
    Current Microbiology.2020; 77(10): 3179.     CrossRef
  • List of new names and new combinations that have appeared in effective publications outside of the IJSEM and are submitted for valid publication
    Aharon Oren, George M. Garrity
    International Journal of Systematic and Evolutionary Microbiology .2019;[Epub]     CrossRef
Mesorhizobium denitrificans sp. nov., a novel denitrifying bacterium isolated from sludge
Muhammad Zubair Siddiqi , Ngo Thi Phuong Thao , Gyumin Choi , Dae-Cheol Kim , Young-Woo Lee , Sang Young Kim , Ji-Hyang Wee , Wan-Taek Im
J. Microbiol. 2019;57(4):238-242.   Published online March 30, 2019
DOI: https://doi.org/10.1007/s12275-019-8590-0
  • 50 View
  • 0 Download
  • 14 Web of Science
  • 14 Crossref
AbstractAbstract
A Gram-stain-negative, non-spore-forming, facultative, rodshaped bacterium (designated LA-28T) was isolated from a sludge sample from a wastewater treatment plant in Hanam city, Republic of Korea. On the basis of 16S rRNA gene sequencing, strain LA-28T clustered with species of the genus Mesorhizobium and appeared closely related to M. jarvisii LMG 28313T (96.8%), M. waimense ICMP 19557T (96.7%), and M. huakuii LMG 14107T (96.7%). Growth occurs at 18– 40°C on R2A medium in the presence of 1–4% NaCl (w/v) and at pH 6–8. The DNA G+C content was 61.2 mol%, and the predominant quinone was ubiquinone-10 (Q-10). The major cellular fatty acids (> 5%) were C16:0, C19:0 ω8c cyclo, C18:1 ω7c 11-methyl, and C18:1 ω7c and/or C18:1 ω6c (summed feature 8). Major polar lipids were phosphatidylglycerol (PG), phosphatidylethanolamine (PE), phosphatidyl-N-methylethanolamine (PME), and phosphatidylcholine (PC). Physiological and biochemical characteristics indicated that strain LA-28T represents a novel species of the genus Mesorhizobium, for which the name Mesorhizobium denitrificans sp. nov. is proposed. The type strain is LA-28T (= KACC 19675T = LMG 30806T).

Citations

Citations to this article as recorded by  
  • Bioaugmented biological contact oxidation reactor for treating simulated textile dyeing wastewater
    Hongyu Dong, Yonglan Tian, Jianjiang Lu, Jie Zhao, Yanbin Tong, Junfeng Niu
    Bioresource Technology.2024; 404: 130916.     CrossRef
  • Manganese reductive dissolution coupled to Sb mobilization in contaminated shooting range soil
    Lara Costa, Mathieu Martinez, Marcel Suleiman, Rolf Keiser, Moritz Lehmann, Markus Lenz
    Applied Microbiology and Biotechnology.2024;[Epub]     CrossRef
  • Evaluation of the performance of new plastic packing materials from plastic waste in biotrickling filters for odour removal
    S. Sáez-Orviz, R. Lebrero, L. Terrén, S. Doñate, M.D. Esclapez, L. Saúco, R. Muñoz
    Process Safety and Environmental Protection.2024; 191: 2361.     CrossRef
  • Mesorhizobium koreense sp. nov., Isolated from Soil
    Hyosun Lee, Dhiraj Kumar Chaudhary, Dong-Uk Kim
    Journal of Microbiology and Biotechnology.2024; 34(9): 1819.     CrossRef
  • Population genomics of Australian indigenous Mesorhizobium reveals diverse nonsymbiotic genospecies capable of nitrogen-fixing symbioses following horizontal gene transfer
    Elena Colombi, Yvette Hill, Rose Lines, John T. Sullivan, MacLean G. Kohlmeier, Claus T. Christophersen, Clive W. Ronson, Jason J. Terpolilli, Joshua P. Ramsay
    Microbial Genomics .2023;[Epub]     CrossRef
  • Aquibium microcysteis gen. nov., sp. nov., isolated from a Microcystis aeruginosa culture and reclassification of Mesorhizobium carbonis as Aquibium carbonis comb. nov. and Mesorhizobium oceanicum as Aquibium oceanicum comb. nov
    Minkyung Kim, Wonjae Kim, Woojun Park
    International Journal of Systematic and Evolutionary Microbiology .2022;[Epub]     CrossRef
  • The structure and assembly of rhizobacterial communities are influenced by poplar genotype
    Qi Liang Zhu, Kun Yan, Nian Zhao Wang, Shu Qi Ma, De Shan Lu, Xiao Hua Su, Zheng Sai Yuan, Yu Feng Dong, Yan Ping Wang, Chang Jun Ding
    Frontiers in Microbiology.2022;[Epub]     CrossRef
  • Shifts of microbial community structure along substrate concentration gradients in immobilized biomass for nitrogen removal
    Shao-Wei Tsai, Larissa Schwinghammer, Chien-Hsien Lee, Cheng-Fang Lin, Chia-Hung Hou
    npj Clean Water.2022;[Epub]     CrossRef
  • Inoculation effect of Pseudomonas sp. TF716 on N2O emissions during rhizoremediation of diesel-contaminated soil
    Ji-Yoon Kim, Kyung-Suk Cho
    Scientific Reports.2022;[Epub]     CrossRef
  • Aerobic granulation of nitrifying activated sludge enhanced removal of 17α-ethinylestradiol
    Lili Wang, Zhifang Liu, Xiaoman Jiang, Anjie Li
    Science of The Total Environment.2021; 801: 149546.     CrossRef
  • Combined impacts of diclofenac and divalent copper on the nitrogen removal, bacterial activity and community from a sequencing batch reactor
    Huan Yang, Zichao Wang, Shengyu Yuan, Yueyue Wang, Youtao Song, Naishun Bu, Lin Wang, Lu Zhang
    Journal of Water Process Engineering.2021; 43: 102212.     CrossRef
  • Nitrogen removal bacterial strains, MSNA-1 and MSD4, with wide ranges of salinity and pH resistances
    Xiaoying Zeng, Jinhui Jeanne Huang, Binbin Hua, Pascale Champagne
    Bioresource Technology.2020; 310: 123309.     CrossRef
  • Metabolomics and metagenomics characteristic of historic beeswax seals
    Justyna Szulc, Ivona Jablonskaja, Elżbieta Jabłońska, Tomasz Ruman, Joanna Karbowska-Berent, Beata Gutarowska
    International Biodeterioration & Biodegradation.2020; 152: 105012.     CrossRef
  • International Committee on Systematics of Prokaryotes Subcommittee on the Taxonomy of Rhizobia and Agrobacteria Minutes of the closed meeting by videoconference, 17 July 2019
    Philippe de Lajudie, J. Peter W. Young
    International Journal of Systematic and Evolutionary Microbiology .2020; 70(5): 3563.     CrossRef
Growth of cyanobacterial soil crusts during diurnal freeze-thaw cycles
Steven K. Schmidt , Lara Vimercati
J. Microbiol. 2019;57(4):243-251.   Published online February 5, 2019
DOI: https://doi.org/10.1007/s12275-019-8359-5
  • 47 View
  • 0 Download
  • 16 Web of Science
  • 13 Crossref
AbstractAbstract
Various Nostoc spp. and related cyanobacteria are able to survive extreme temperatures and are among the most successful colonists of high-elevation sites being exposed due to glacial retreat. It is unclear, however, if cyanobacteria can grow during the extreme freeze-thaw cycles that occur on a yearround basis at high-elevation, peri-glacial sites or if they only grow during the rare periods when freeze-thaw cycles do not occur. We conducted several experiments to determine if cyanobacteria that form biological soil crusts (BSCs) at highelevation sites (> 5,000 m.a.s.l.) in the Andes can grow during diurnal freeze-thaw cycles on a par with those that occur in the field. Here we show that a soil crust that had been frozen at -20°C for five years was able to increase from 40% to 100% soil coverage during a 45-day incubation during which the soil temperature cycled between -12°C and 26°C every day. In a second, experiment an undeveloped soil with no visible BSCs showed a statistically significant shift in the bacterial community from one containing few cyanobacterial sequences (8% of sequences) to one dominated (27%) by Nostoc, Microcoleus, and Leptolyngbya phylotypes during a 77-day incubation with daily freeze-thaw cycles. In addition, counts of spherical Nostoc-like colonies increased significantly on the soil surface during the experiment, especially in microcosms receiving phosphorus. Taken together these results show that freeze-thaw cycles alone do not limit the growth of BSCs in high-elevation soils, and provide new insight into how life is able to thrive in one of the most extreme terrestrial environments on Earth.

Citations

Citations to this article as recorded by  
  • Controlling enhanced surface runoff components as a result of a freezing-thawing cycle by inoculating soil bacteria and cyanobacteria
    Sudabeh Gharemahmudli, Seyed Hamidreza Sadeghi, Ali Najafinejad, Behrouz Zarei Darki, Ali Mohammadian Behbahani, Hossein Kheirfam
    Soil and Tillage Research.2024; 237: 105989.     CrossRef
  • Cyanobacterial Biocrust on Biomineralized Soil Mitigates Freeze–Thaw Effects and Preserves Structure and Ecological Functions
    Keiichi Kimura, Toshiya Okuro
    Microbial Ecology.2024;[Epub]     CrossRef
  • Cyanobacterial biocrust alters soil physical properties reducing soil erosion and aerosol production
    Amir Karimi, Arezoo Tahmourespour, Mehran Hoodaji
    Brazilian Journal of Microbiology.2024; 55(3): 2453.     CrossRef
  • Bacterial and plant community successional pathways in glacier forefields of the Western Himalaya
    Adam T. Ruka, Kateřina Čapková, Klára Řeháková, Roey Angel, Alica Chroňáková, Martin Kopecký, Martin Macek, Miroslav Dvorský, Jiří Doležal
    European Journal of Soil Biology.2023; 119: 103565.     CrossRef
  • Biocrusts from Iceland and Svalbard: Does microbial community composition differ substantially?
    Ekaterina Pushkareva, Josef Elster, Andreas Holzinger, Sarina Niedzwiedz, Burkhard Becker
    Frontiers in Microbiology.2022;[Epub]     CrossRef
  • Effect of snow cover on water content, carbon and nutrient availability, and microbial biomass in complexes of biological soil crusts and subcrust soil in the desert
    Rong Hui, Ruiming Zhao, Lichao Liu, Xinrong Li
    Geoderma.2022; 406: 115505.     CrossRef
  • Reduction in soil loss caused by a freeze-thaw cycle through inoculation of endemic soil microorganisms
    Seyed Hamidreza Sadeghi, Ali Najafinejad, Sudabeh Gharemahmudli, Behrouz Zarei Darki, Ali Mohammadian Behbahani, Hossein Kheirfam
    Applied Soil Ecology.2021; 157: 103770.     CrossRef
  • Diversity of microbial phototrophs and heterotrophs in Icelandic biocrusts and their role in phosphorus-rich Andosols
    Ekaterina Pushkareva, Karen Baumann, Anh Tu Van, Tatiana Mikhailyuk, Christel Baum, Katarzyna Hrynkiewicz, Eduard Demchenko, Dominika Thiem, Tina Köpcke, Ulf Karsten, Peter Leinweber
    Geoderma.2021; 386: 114905.     CrossRef
  • Multiple‐trophic patterns of primary succession following retreat of a high‐elevation glacier
    Weiming Hu, Steven K. Schmidt, Pacifica Sommers, John L. Darcy, Dorota L. Porazinska
    Ecosphere.2021;[Epub]     CrossRef
  • Freeze-thaw cycles change the physiological sensitivity of Syntrichia caninervis to snow cover
    Benfeng Yin, Jiwen Li, Qing Zhang, Nan Wu, Jing Zhang, Xiaoying Rong, Ye Tao, Yongxin Zang, Yonggang Li, Xiaobing Zhou, Yuanming Zhang
    Journal of Plant Physiology.2021; 266: 153528.     CrossRef
  • Cyanobacteria in early soil development of deglaciated forefields: Dominance of non-heterocytous filamentous cyanobacteria and phosphorus limitation of N-fixing Nostocales
    Joseph E. Knelman, Steve K. Schmidt, Emily B. Graham
    Soil Biology and Biochemistry.2021; 154: 108127.     CrossRef
  • Snowpack shifts cyanobacterial community in biological soil crusts
    Bingchang Zhang, Yongqing Zhang, Xiaobing Zhou, Xiangzhen Li, Yuanming Zhang
    Journal of Arid Land.2021; 13(3): 239.     CrossRef
  • The Role of Cyanobacterial External Layers in Mass Transfer: Evidence from Temperature Shock Experiments by Noninvasive Microtest Technology
    Yan Xiao, Lingxin Liu, Zhe Li, Yuran Cheng
    Microorganisms.2020; 8(6): 861.     CrossRef
Co-occurrence patterns between phytoplankton and bacterioplankton across the pelagic zone of Lake Baikal during spring
Ivan S. Mikhailov , Yuri S. Bukin , Yulia R. Zakharova , Marina V. Usoltseva , Yuri P. Galachyants , Maria V. Sakirko , Vadim V. Blinov , Yelena V. Likhoshway
J. Microbiol. 2019;57(4):252-262.   Published online March 30, 2019
DOI: https://doi.org/10.1007/s12275-019-8531-y
  • 49 View
  • 0 Download
  • 19 Web of Science
  • 16 Crossref
AbstractAbstract
Phytoplankton and bacterioplankton play a key role in carbon cycling of aquatic ecosystems. In this study, we found that co-occurrence patterns between different types of phytoplankton, bacterioplankton, and environmental parameters in Lake Baikal during spring were different over the course of three consecutive years. The composition of phytoplankton and bacterial communities was investigated using microscopy and 16S rRNA gene pyrosequencing, respectively. Non-metric multidimensional scaling (NMDS) revealed a relationship between the structure of phytoplankton and bacterial communities and temperature, location, and sampling year. Associations of bacteria with diatoms, green microalgae, chrysophyte, and cryptophyte were identified using microscopy. Cluster analysis revealed similar correlation patterns between phytoplankton abundance, number of attached bacteria, ratio of bacteria per phytoplankton cell and environmental parameters. Positive and negative correlations between different species of phytoplankton, heterotrophic bacteria and environmental parameters may indicate mutualistic or competitive relationships between microorganisms and their preferences to the environment.

Citations

Citations to this article as recorded by  
  • Genomic Insights into the Bactericidal and Fungicidal Potential of Bacillus mycoides b12.3 Isolated in the Soil of Olkhon Island in Lake Baikal, Russia
    Maria N. Romanenko, Anton E. Shikov, Iuliia A. Savina, Fedor M. Shmatov, Anton A. Nizhnikov, Kirill S. Antonets
    Microorganisms.2024; 12(12): 2450.     CrossRef
  • Free-Living and Particle-Associated Microbial Communities of Lake Baikal Differ by Season and Nutrient Intake
    Maria Bashenkhaeva, Yelena Yeletskaya, Irina Tomberg, Artyom Marchenkov, Lubov Titova, Yuri Galachyants
    Diversity.2023; 15(4): 572.     CrossRef
  • Revealing the Differences in Ulnaria acus and Fragilaria radians Distribution in Lake Baikal via Analysis of Existing Metabarcoding Data
    Alexey Morozov, Yuri Galachyants, Artem Marchenkov, Yulia Zakharova, Darya Petrova
    Diversity.2023; 15(2): 280.     CrossRef
  • Testing the effect of the submerged macrophyte Ceratophyllum demersum (L.) on heterotrophic bacterioplankton densities under different levels of nitrogen and phosphorus concentrations in shallow lake mesocosms
    Deshou Cun, Yanran Dai, Yaocheng Fan, Feihua Wang, Wei Liang
    Journal of Freshwater Ecology.2022; 37(1): 313.     CrossRef
  • An investigation on phytoplankton composition and bacterial load relationship in a drinking water resource: Büyükçekmece Dam Lake (Istanbul, Türkiye)
    Nese Yilmaz, Cumhur Haldun Yardimci, Remziye Eda Yardimci, Mohamed Elhag
    Desalination and Water Treatment.2022; 273: 203.     CrossRef
  • Monitoring harmful microalgal species and their appearance in Tokyo Bay, Japan, using metabarcoding
    Sirje Sildever, Noriko Nishi, Nobuharu Inaba, Taiga Asakura, Jun Kikuchi, Yasuhito Asano, Takanori Kobayashi, Takashi Gojobori, Satoshi Nagai
    Metabarcoding and Metagenomics.2022;[Epub]     CrossRef
  • Vertically Exported Phytoplankton (< 20 µm) and Their Correlation Network With Bacterioplankton Along a Deep-Sea Seamount
    Hanshuang Zhao, Zenghu Zhang, Shailesh Nair, Jiulong Zhao, Shanli Mou, Kuidong Xu, Yongyu Zhang
    Frontiers in Marine Science.2022;[Epub]     CrossRef
  • Environmental drivers of plankton protist communities along latitudinal and vertical gradients in the oldest and deepest freshwater lake
    Gwendoline M. David, David Moreira, Guillaume Reboul, Nataliia V. Annenkova, Luis J. Galindo, Paola Bertolino, Ana I. López‐Archilla, Ludwig Jardillier, Purificación López‐García
    Environmental Microbiology.2021; 23(3): 1436.     CrossRef
  • Diversity of Aerobic Anoxygenic Phototrophs and Rhodopsin-Containing Bacteria in the Surface Microlayer, Water Column and Epilithic Biofilms of Lake Baikal
    Agnia Dmitrievna Galachyants, Andrey Yurjevich Krasnopeev, Galina Vladimirovna Podlesnaya, Sergey Anatoljevich Potapov, Elena Viktorovna Sukhanova, Irina Vasiljevna Tikhonova, Ekaterina Andreevna Zimens, Marsel Rasimovich Kabilov, Natalia Albertovna Zhuch
    Microorganisms.2021; 9(4): 842.     CrossRef
  • Environmental influences shaping microbial communities in a low oxygen, highly stratified marine embayment
    RRP Da Silva, CA White, JP Bowman, E Raes, A Bisset, C Chapman, L Bodrossy, DJ Ross
    Aquatic Microbial Ecology.2021; 87: 185.     CrossRef
  • Covariation patterns of phytoplankton and bacterioplankton in hypertrophic shallow lakes
    M R Schiaffino, P Huber, M Sagua, C A Sabio y García, M Reissig
    FEMS Microbiology Ecology.2020;[Epub]     CrossRef
  • Comparative analysis of free-living and particle-associated bacterial communities of Lake Baikal during the ice-covered period
    Maria V. Bashenkhaeva, Yuri P. Galachyants, Igor V. Khanaev, Maria V. Sakirko, Darya P. Petrova, Yelena V. Likhoshway, Yulia R. Zakharova
    Journal of Great Lakes Research.2020; 46(3): 508.     CrossRef
  • Interconnection of bacterial and phytoplanktonic communities with hydrochemical parameters from ice and under-ice water in coastal zone of Lake Baikal
    Yu. S. Bukin, N. A. Bondarenko, I. I. Rusanov, N. V. Pimenov, S. V. Bukin, T. V. Pogodaeva, S. M. Chernitsyna, O. V. Shubenkova, V. G. Ivanov, A. S. Zakharenko, T. I. Zemskaya
    Scientific Reports.2020;[Epub]     CrossRef
  • Microorganisms of Lake Baikal—the deepest and most ancient lake on Earth
    Tamara I. Zemskaya, Pedro J. Cabello-Yeves, Olga N. Pavlova, Francisco Rodriguez-Valera
    Applied Microbiology and Biotechnology.2020; 104(14): 6079.     CrossRef
  • Isolation and genome analysis of Winogradskyella algicola sp. nov., the dominant bacterial species associated with the green alga Dunaliella tertiolecta
    Jaeho Song, Yeonjung Lim, Hye-Jin Jang, Yochan Joung, Ilnam Kang, Seong-Joo Hong, Choul-Gyun Lee, Jang-Cheon Cho
    Journal of Microbiology.2019; 57(11): 982.     CrossRef
  • Short-term succession of marine microbial fouling communities and the identification of primary and secondary colonizers
    Raeid M. M. Abed, Dhikra Al Fahdi, Thirumahal Muthukrishnan
    Biofouling.2019; 35(5): 526.     CrossRef
β-1,3-Glucan/CR3/SYK pathway-dependent LC3B-II accumulation enhanced the fungicidal activity in human neutrophils
Ding Li , Changsen Bai , Qing Zhang , Zheng Li , Di Shao , Xichuan Li
J. Microbiol. 2019;57(4):263-270.   Published online February 5, 2019
DOI: https://doi.org/10.1007/s12275-019-8298-1
  • 47 View
  • 0 Download
  • 6 Web of Science
  • 7 Crossref
AbstractAbstract
Since molecular genotyping has been established for the Candida species, studies have found that a single Candida strain (endemic strain) can persist over a long period of time and results in the spread of nosocomial invasive candidiasis without general characteristics of horizontal transmissions. Our previous study also found the existence of endemic strains in a cancer center in Tianjin, China. In the current study, we performed further investigation on endemic and non-endemic Candida albicans strains, with the aim of explaining the higher morbidity of endemic strains. In an in vivo experiment, mice infected with endemic strains showed significantly shorter survival time and higher kidney fungal burdens compared to mice infected with non-endemic strains. In an in vitro experiment, the killing percentage of neutrophils to endemic strains was significantly lower than that to non-endemic strains, which is positively linked to the ratio of LC3B-II/I in neutrophils. An immunofluorescence assay showed more β-1,3-glucan exposure on the cell walls of nonendemic strains compared to endemic strains. After blocking the β-glucan receptor (CR3) or inhibiting downstream kinase (SYK) in neutrophils, the killing percent to C. albicans (regardless of endemic and non-endemic strains) and the ratio of LC3B-II/I of neutrophils were significantly decreased. These data suggested that the killing capability of neutrophils to C. albicans was monitored by β-1,3-glucan via CR3/SYK pathway-dependent LC3B-II accumulation and provided an explanation for the variable killing capability of neutrophils to different strains of C. albicans, which would be beneficial in improving infection control and therapeutic strategies for invasive candidiasis.

Citations

Citations to this article as recorded by  
  • LC3B: A microtubule-associated protein influences disease progression and prognosis
    Yan Chen, Hong Yi, Shan Liao, Junyu He, Yanhong Zhou, Yan Lei
    Cytokine & Growth Factor Reviews.2024;[Epub]     CrossRef
  • Autophagy and LC3-associated phagocytosis contribute negatively to the killing capability of THP-1-derived macrophages against Candida albicans at the mid-stage
    Ding Li, Lin Wang, Zhihong Zhao, Changsen Bai, Xichuan Li
    Immunology Letters.2023; 263: 25.     CrossRef
  • Metabolism and Biodegradation of β-Glucan in vivo
    Ziming Zheng, Wenqi Tang, Weipeng Lu, Xu Mu, Yuxuan Liu, Xianglin Pan, Kaiping Wang, Yu Zhang
    Frontiers in Veterinary Science.2022;[Epub]     CrossRef
  • Biological Effects of β-Glucans on Osteoclastogenesis
    Wataru Ariyoshi, Shiika Hara, Ayaka Koga, Yoshie Nagai-Yoshioka, Ryota Yamasaki
    Molecules.2021; 26(7): 1982.     CrossRef
  • Interaction Between Dendritic Cells and Candida krusei β-Glucan Partially Depends on Dectin-1 and It Promotes High IL-10 Production by T Cells
    Truc Thi Huong Dinh, Phawida Tummamunkong, Panuwat Padungros, Pranpariya Ponpakdee, Lawan Boonprakong, Wilasinee Saisorn, Asada Leelahavanichkul, Patipark Kueanjinda, Patcharee Ritprajak
    Frontiers in Cellular and Infection Microbiology.2021;[Epub]     CrossRef
  • Insights on the Functional Role of Beta-Glucans in Fungal Immunity Using Receptor-Deficient Mouse Models
    Mark Joseph Maranan Desamero, Soo-Hyun Chung, Shigeru Kakuta
    International Journal of Molecular Sciences.2021; 22(9): 4778.     CrossRef
  • Immunomodulatory Effect of Structurally Characterized Mushroom Sclerotial Polysaccharides Isolated from Polyporus rhinocerus on Bone Marrow Dendritic Cells
    Chaoran Liu, Man Wing Choi, Xingkui Xue, Peter C. K. Cheung
    Journal of Agricultural and Food Chemistry.2019; 67(43): 12137.     CrossRef
Genomic surveillance links livestock production with the emergence and spread of multi-drug resistant non-typhoidal Salmonella in Mexico
Enrique Jesús Delgado-Suárez , Rocío Ortíz-López , Wondwossen A. Gebreyes , Marc W. Allard , Francisco Barona-Gómez , María Salud Rubio-Lozano
J. Microbiol. 2019;57(4):271-280.   Published online February 5, 2019
DOI: https://doi.org/10.1007/s12275-019-8421-3
  • 51 View
  • 0 Download
  • 8 Web of Science
  • 5 Crossref
AbstractAbstract
Multi-drug resistant (MDR) non-typhoidal Salmonella (NTS) is increasingly common worldwide. While food animals are thought to contribute to the growing antimicrobial resistance (AMR) problem, limited data is documenting this relationship, especially in low and middle-income countries (LMIC). Herein, we aimed to assess the role of non-clinical NTS of bovine origin as reservoirs of AMR genes of human clinical significance. We evaluated the phenotypic and genotypic AMR profiles in a set of 44 bovine-associated NTS. For comparative purposes, we also included genotypic AMR data of additional isolates from Mexico (n = 1,067) that are publicly available. The most frequent AMR phenotypes in our isolates involved tetracycline (40/44), trimethoprim-sulfamethoxazole (26/44), chloramphenicol (19/44), ampicillin (18/44), streptomycin (16/44), and carbenicillin (13/44), while nearly 70% of the strains were MDR. These phenotypes were correlated with a widespread distribution of AMR genes (i.e. tetA, aadA, dfrA12, dfrA17, sul1, sul2, bla-TEM-1, blaCARB-2) against multiple antibiotic classes, with some of them contributed by plasmids and/or class-1 integrons. We observed different AMR genotypes for betalactams and tetracycline resistance, providing evidence of convergent evolution and adaptive AMR. The probability of MDR genotype occurrence was higher in meat-associated isolates than in those from other sources (odds ratio 11.2, 95% confidence interval 4.5–27.9, P < 0.0001). The study shows that beef cattle are a significant source of MDR NTS in Mexico, highlighting the role of animal production on the emergence and spread of MDR Salmonella in LMIC.

Citations

Citations to this article as recorded by  
  • Geography, Antimicrobial Resistance, and Genomics of Salmonella enterica (Serotypes Newport and Anatum) from Meat in Mexico (2021–2023)
    Eduardo Canek Reynoso, Enrique Jesús Delgado-Suárez, Cindy Fabiola Hernández-Pérez, Yaselda Chavarin-Pineda, Elizabeth Ernestina Godoy-Lozano, Geny Fierros-Zárate, Omar Alejandro Aguilar-Vera, Santiago Castillo-Ramírez, Luz del Carmen Sierra Gómez-Pedroso
    Microorganisms.2024; 12(12): 2485.     CrossRef
  • Genomic analysis of the MLST population structure and antimicrobial resistance genes associated with Salmonella enterica in Mexico
    Adrián Gómez-Baltazar, Angélica Godínez-Oviedo, Gerardo Vázquez-Marrufo, Ma. Soledad Vázquez-Garcidueñas, Montserrat Hernández-Iturriaga
    Genome.2023; 66(12): 319.     CrossRef
  • Comparative Genomic Analysis Discloses Differential Distribution of Antibiotic Resistance Determinants between Worldwide Strains of the Emergent ST213 Genotype of Salmonella Typhimurium
    Elda Araceli Hernández-Díaz, Ma. Soledad Vázquez-Garcidueñas, Andrea Monserrat Negrete-Paz, Gerardo Vázquez-Marrufo
    Antibiotics.2022; 11(7): 925.     CrossRef
  • Genomic surveillance of antimicrobial resistance shows cattle and poultry are a moderate source of multi-drug resistant non-typhoidal Salmonella in Mexico
    Enrique Jesús Delgado-Suárez, Tania Palós-Guitérrez, Francisco Alejandro Ruíz-López, Cindy Fabiola Hernández Pérez, Nayarit Emérita Ballesteros-Nova, Orbelín Soberanis-Ramos, Rubén Danilo Méndez-Medina, Marc W. Allard, María Salud Rubio-Lozano, Iddya Karu
    PLOS ONE.2021; 16(5): e0243681.     CrossRef
  • Class 1 integron-borne cassettes harboring blaCARB-2 gene in multidrug-resistant and virulent Salmonella Typhimurium ST19 strains recovered from clinical human stool samples, United States
    Daniel F. M. Monte, Fábio P. Sellera, Ralf Lopes, Shivaramu Keelara, Mariza Landgraf, Shermalyn Greene, Paula J. Fedorka-Cray, Siddhartha Thakur, Iddya Karunasagar
    PLOS ONE.2020; 15(10): e0240978.     CrossRef
Analysis of the L-malate biosynthesis pathway involved in poly(β-L-malic acid) production in Aureobasidium melanogenum GXZ-6 by addition of metabolic intermediates and inhibitors
Wei Zeng , Bin Zhang , Qi Liu , Guiguang Chen , Zhiqun Liang
J. Microbiol. 2019;57(4):281-287.   Published online February 5, 2019
DOI: https://doi.org/10.1007/s12275-019-8424-0
  • 43 View
  • 0 Download
  • 12 Web of Science
  • 13 Crossref
AbstractAbstract
Poly(β-L-malic acid) (PMA) is a promising polyester formed from L-malate in microbial cells. Malate biosynthesis is crucial for PMA production. Previous studies have shown that the non-oxidative pathway or oxidative pathway (TCA cycle) is the main biosynthetic pathway of malate in most of PMAproducing strains, while the glyoxylate cycle is only a supplementary pathway. In this study, we investigated the effect of exogenous metabolic intermediates and inhibitors of the malate biosynthetic pathway on PMA production by Aureobasidium melanogenum GXZ-6. The results showed that PMA production was stimulated by maleic acid (a fumarase inhibitor) and sodium malonate (a succinate dehydrogenase inhibitor) but inhibited by succinic acid and fumaric acid. This indicated that the TCA cycle might not be the only biosynthetic pathway of malate. In addition, the PMA titer increased by 18.1% upon the addition of glyoxylic acid after 72 h of fermentation, but the PMA titer decreased by 7.5% when itaconic acid (an isocitrate lyase inhibitor) was added, which indicated that malate for PMA production was synthesized significantly via the glyoxylate cycle rather than the TCA cycle. Furthermore, in vitro enzyme activities of the TCA and glyoxylate cycles suggested that the glyoxylate cycle significantly contributed to the PMA production, which is contradictory to what has been reported previously in other PMA-producing A. pullulans.

Citations

Citations to this article as recorded by  
  • De novo transcriptome assembly of Aureobasidium melanogenum CGMCC18996 to analyze the β-poly(L-malic acid) biosynthesis pathway under the CaCO3 addition
    Genan Wang, Haisong Yin, Tingbin Zhao, Donglin Yang, Shiru Jia, Changsheng Qiao
    Food Science and Human Wellness.2023; 12(4): 1248.     CrossRef
  • Microbial L-malic acid production: History, current progress, and perspectives
    Yongyan Xi, Feiyu Fan, Xueli Zhang
    Green Carbon.2023; 1(2): 118.     CrossRef
  • Evaluation of enhancing effect of soybean oil on polymalic acid production by Aureobasidium pullulans HA-4D
    Jun Xia, Sili Liu, Jiali Jiao, Zhongyang Qiu, Xiaoyang Liu, Aiyong He, Ning Xu, Jiaxing Xu
    Bioprocess and Biosystems Engineering.2022; 45(10): 1673.     CrossRef
  • Cell-Free Supernatant of Odoribacter splanchnicus Isolated From Human Feces Exhibits Anti-colorectal Cancer Activity
    Byeong Seob Oh, Won Jung Choi, Ji-Sun Kim, Seoung Woo Ryu, Seung Yeob Yu, Jung-Sook Lee, Seung-Hwan Park, Se Won Kang, Jiyoung Lee, Won Yong Jung, Young-Min Kim, Jae-Ho Jeong, Ju Huck Lee
    Frontiers in Microbiology.2021;[Epub]     CrossRef
  • Small-Sized Co-Polymers for Targeted Delivery of Multiple Imaging and Therapeutic Agents
    Julia Y. Ljubimova, Arshia Ramesh, Liron L. Israel, Eggehard Holler
    Nanomaterials.2021; 11(11): 2996.     CrossRef
  • Biosynthetic Polymalic Acid as a Delivery Nanoplatform for Translational Cancer Medicine
    Jianguo Zhang, Deyu Chen, Guoxin Liang, Wenrong Xu, Zhimin Tao
    Trends in Biochemical Sciences.2021; 46(3): 213.     CrossRef
  • Polymalate (PMA) biosynthesis and its molecular regulation in Aureobasidium spp.
    Cong-Yan Qi, Shu-Lei Jia, Guang-Lei Liu, Lu Chen, Xin Wei, Zhong Hu, Zhen-Ming Chi, Zhe Chi
    International Journal of Biological Macromolecules.2021; 174: 512.     CrossRef
  • Bioconversion of Untreated Corn Hull into L-Malic Acid by Trifunctional Xylanolytic Enzyme from Paenibacillus curdlanolyticus B-6 and Acetobacter tropicalis H-1
    Thi Bich Huong Duong, Prattana Ketbot, Paripok Phitsuwan, Rattiya Waeonukul, Chakrit Tachaapaikoon, Akihiko Kosugi, Khanok Ratanakhanokchai, Patthra Pason
    Journal of Microbiology and Biotechnology.2021; 31(9): 1262.     CrossRef
  • Comparative genome analysis proposes three new Aureobasidium species isolated from grape juice
    Cristobal A Onetto, Simon A Schmidt, Michael J Roach, Anthony R Borneman
    FEMS Yeast Research.2020;[Epub]     CrossRef
  • Effects of corn steep liquor on β-poly(l-malic acid) production in Aureobasidium melanogenum
    Genan Wang, Bingyi Shi, Pan Zhang, Tingbin Zhao, Haisong Yin, Changsheng Qiao
    AMB Express.2020;[Epub]     CrossRef
  • A novel PMA synthetase is the key enzyme for polymalate biosynthesis and its gene is regulated by a calcium signaling pathway in Aureobasidium melanogenum ATCC62921
    Kai Wang, Zhe Chi, Guang-Lei Liu, Cong-Yan Qi, Hong Jiang, Zhong Hu, Zhen-Ming Chi
    International Journal of Biological Macromolecules.2020; 156: 1053.     CrossRef
  • Poly(malic acid) production from liquefied corn starch by simultaneous saccharification and fermentation with a novel isolated Aureobasidium pullulans GXL-1 strain and its techno-economic analysis
    Wei Zeng, Bin Zhang, Li Jiang, Yao Liu, Su Ding, Guiguang Chen, Zhiqun Liang
    Bioresource Technology.2020; 304: 122990.     CrossRef
  • Recent progress on bio-based production of dicarboxylic acids in yeast
    Xi Zhang, Yunying Zhao, Yingli Liu, Jing Wang, Yu Deng
    Applied Microbiology and Biotechnology.2020; 104(10): 4259.     CrossRef
Antimicrobial effect and proposed action mechanism of cordycepin against Escherichia coli and Bacillus subtilis
Qi Jiang , Zaixiang Lou , Hongxin Wang , Chen Chen
J. Microbiol. 2019;57(4):288-297.   Published online March 30, 2019
DOI: https://doi.org/10.1007/s12275-019-8113-z
  • 51 View
  • 0 Download
  • 38 Web of Science
  • 39 Crossref
AbstractAbstract
The detailed antibacterial mechanism of cordycepin efficacy against food-borne germs remains ambiguous. In this study, the antibacterial activity and action mechanism of cordycepin were assessed. The results showed that cordycepin effectively inhibited the growth of seven bacterial pathogens including both Gram-positive and Gram-negative bacterial pathogens; the minimum inhibitory concentrations (MIC) were 2.5 and 1.25 mg/ml against Escherichia coli and Bacillus subtilis, respectively. Scanning electron microscope and transmission electron microscope examination confirmed that cordycepin caused obvious damages in the cytoplasmatic membranes of both E. coli and B. subtilis. Outer membrane permeability assessment indicated the loss of barrier function and the leakage of cytoplasmic contents. Propidium iodide and carboxyfluorescein diacetate double staining approach coupled with flow cytometry analysis indicated that the integrity of cell membrane was severely damaged during a short time, while the intracellular enzyme system still remained active. This clearly suggested that membrane damage was one of the reasons for cordycepin efficacy against bacteria. Additionally, results from circular dichroism and fluorescence analysis indicated cordycepin could insert to genome DNA base and double strand, which disordered the structure of genomic DNA. Basis on these results, the mode of bactericidal action of cordycepin against E. coli and B. subtilis was found to be a dual mechanism, disrupting bacterial cell membranes and binding to bacterial genomic DNA to interfere in cellular functions, ultimately leading to cell death.

Citations

Citations to this article as recorded by  
  • Prospects for cordycepin biosynthesis in microbial cell factories
    Xiang Li, Rongshuai Jiang, Shenghou Wang, Chenyang Li, Yongping Xu, Shuying Li, Qian Li, Liang Wang
    Frontiers in Chemical Engineering.2024;[Epub]     CrossRef
  • Dopamine-grafted oxidized hyaluronic acid/gelatin/cordycepin nanofiber membranes modulate the TLR4/NF-kB signaling pathway to promote diabetic wound healing
    Ning Wang, Bo Hong, Yingchun Zhao, Chuanbo Ding, Guodong Chai, Yue Wang, Jiali Yang, Lifeng Zhang, Weimin Yu, Yang Lu, Shuang Ma, Shuai Zhang, Xinglong Liu
    International Journal of Biological Macromolecules.2024; 262: 130079.     CrossRef
  • Research Progress in Understanding the Molecular Biology of Cordyceps militaris
    Lihong Wang, Ganghua Li, Xueqin Tian, Yitong Shang, Huanhuan Yan, Lihua Yao, Zhihong Hu
    Fermentation.2024; 10(3): 167.     CrossRef
  • Screening and evaluation of antibacterial active strains of Actinomycetes isolated from Northern Indian soil for biofilm inhibition against selected ESKAPE pathogens
    Muzammil Sharief Dar, Iqbal Ahmad
    Journal of Umm Al-Qura University for Applied Sciences.2024;[Epub]     CrossRef
  • Cordycepin Enhanced Therapeutic Potential of Gemcitabine against Cholangiocarcinoma via Downregulating Cancer Stem-Like Properties
    Hong Kyu Lee, Yun-Jung Na, Su-Min Seong, Dohee Ahn, Kyung-Chul Choi
    Biomolecules & Therapeutics.2024; 32(3): 368.     CrossRef
  • Cordycepin alleviates hepatic fibrosis in association with the inhibition of glutaminolysis to promote hepatic stellate cell senescence
    Zhu Liang, Keyan Zhang, Hongli Guo, Xujiao Tang, Mingzhu Chen, Jinsong Shi, Jing Yang
    International Immunopharmacology.2024; 132: 111981.     CrossRef
  • 16S amplicon sequencing and untargeted metabolomics reveal changes in rumen microorganisms and metabolic pathways involved in the reduction of methane by cordycepin
    Haokai Ma, Dengke Liu, Rui Liu, Yang Li, Modinat Tolani Lambo, Baisheng Dai, Weizheng Shen, Yongli Qu, Yonggen Zhang
    Journal of Integrative Agriculture.2024;[Epub]     CrossRef
  • Synergistic fermentation of Cordyceps militaris and herbal substrates boosts grower pig antioxidant and immune function
    Chia-Chen Pi, Yu-Chieh Cheng, Chun-Chia Chen, Jai-Wei Lee, Chao-Nan Lin, Ming-Tang Chiou, Hui-Wen Chen, Chiu-Hsia Chiu
    BMC Veterinary Research.2024;[Epub]     CrossRef
  • Silkworm pupae globulin promotes Cordyceps militaris fermentation: Regulation of metabolic pathways enhances cordycepin synthesis and extends the synthesis phase
    Yi-Tong Li, Hao-Tian Yao, Ze-Lai Huang, Lu-Chan Gong, Richard A. Herman, Fu-An Wu, Jun Wang
    Food Bioscience.2024; 59: 103971.     CrossRef
  • Promising ingredients used for kimchi fermentation: Effects of cordyceps militaris fermentation products on the over-acidification and quality of kimchi
    Tiejun Chen, Dejian Jiao, Zhe Wang, Meizi Piao
    Food Bioscience.2024; 61: 104941.     CrossRef
  • Evidence for Regulation of Cordycepin Biosynthesis by Transcription Factors Krüppel-Like Factor 4 and Retinoid X Receptor Alpha in Caterpillar Medicinal Mushroom Cordyceps militaris (Ascomycetes)
    Hucheng Zhang, Lina Deng, Shuai Luo, Linying Liu, Guowei Yang, Yuning Zhang, Bo Gao, Dongqing Yang, Xiaojie Wang, Shuangshi Li, Xingjuan Li, Yaguang Jiang, Wenyan Lao, Frank Vriesekoop
    International Journal of Medicinal Mushrooms.2024; 26(10): 19.     CrossRef
  • Ethanolic extract from fruiting bodies of Cordyceps militaris HL8 exhibits cytotoxic activities against cancer cells, skin pathogenic yeasts, and postharvest pathogen Penicillium digitatum
    Tao Xuan Vu, Tram Bao Tran, Hong-Ha Vu, Yen Thi Hoang Le, Phu Hung Nguyen, Thao Thi Do, Thu-Huong Nguyen, Van-Tuan Tran
    Archives of Microbiology.2024;[Epub]     CrossRef
  • Paecilomyces cicadae : a systematic overview of the biological activities and potential mechanisms of its active metabolites
    Di Feiqian, Zhang Jiachan, Cheng Wenjing, Li Luyao, Li Meng, Wang Changtao
    Food and Agricultural Immunology.2023;[Epub]     CrossRef
  • Design, synthesis, antibacterial/antitumor activity and in vitro stability of novel cordycepin derivatives with unsaturated fatty acid chain
    Shuhao Qu, Qiang Wang, Yanli Wang, Lihong Li, Lifei Zhu, Xiuhua Kuang, Xiaoli Wang, Huijuan Li, Longxuan Zhao, Hong Dai
    European Journal of Pharmaceutical Sciences.2023; 187: 106466.     CrossRef
  • Development of an efficient method for separation and purification of cordycepin from liquid fermentation of Cordyceps militaris and analysis of cordycepin antitumor activity
    Peng-xiao Liu, Jie-xin Ma, Rui-na Liang, Xiang-wei He, Guo-zhu Zhao
    Heliyon.2023; 9(3): e14184.     CrossRef
  • A novel complementary pathway of cordycepin biosynthesis in Cordyceps militaris
    Hucheng Zhang, Jun Yang, Shuai Luo, Linying Liu, Guowei Yang, Bo Gao, Haitao Fan, Lina Deng, Ming Yang
    International Microbiology.2023; 27(4): 1009.     CrossRef
  • Antifungal Mechanism of Cinnamon Essential Oil against Chinese Yam-Derived Aspergillus niger
    Mingcheng Wang, Huiyuan Liu, Yuanyuan Dang, Dahong Li, Zhu Qiao, Gailing Wang, Guo Liu, Jin Xu, Enzhong Li, Anand Babu Perumal
    Journal of Food Processing and Preservation.2023; 2023: 1.     CrossRef
  • Characterization of a Plant Growth-Promoting Endohyphal Bacillus subtilis in Fusarium acuminatum from Spiranthes sinensis
    LAN FANG, XIAO ZHENG, ZHENGXIANG SUN, YANYAN LI, JIANXIN DENG, YI ZHOU
    Polish Journal of Microbiology.2023; 72(1): 29.     CrossRef
  • Cordycepin: A review of strategies to improve the bioavailability and efficacy
    Min Chen, Jiahao Luo, Wenming Jiang, Lijing Chen, Longxing Miao, Chunchao Han
    Phytotherapy Research.2023; 37(9): 3839.     CrossRef
  • Efficient de novo production of bioactive cordycepin by Aspergillus oryzae using a food-grade expression platform
    Sukanya Jeennor, Jutamas Anantayanon, Sarocha Panchanawaporn, Chanikul Chutrakul, Wanwipa Vongsangnak, Kobkul Laoteng
    Microbial Cell Factories.2023;[Epub]     CrossRef
  • Effects of Acremonium terricola Culture on the Growth, Slaughter Yield, Immune Organ, Serum Biochemical Indexes, and Antioxidant Indexes of Geese
    Jinyuan Chen, Yawen Guo, Yang Lu, Zhaoyuan He, Yali Zhu, Shuyu Liu, Kaizhou Xie
    Animals.2022; 12(9): 1164.     CrossRef
  • Plant and fungi derived analgesic natural products targeting voltage-gated sodium and calcium channels
    Aida Calderon-Rivera, Santiago Loya-Lopez, Kimberly Gomez, Rajesh Khanna
    Channels.2022; 16(1): 198.     CrossRef
  • Multifunctional dynamic toolbox: cordycepin plays a therapeutic role in various disorders
    Nur Syahirah H.S. Hadi, Anis A. Jamaludin, Tharani Kalaiyarasan, Kartikeya Tiwari
    Reviews in Medical Microbiology.2022; 33(1): e23.     CrossRef
  • Cordycepin exhibits anti-bacterial and anti-inflammatory effects against gastritis in Helicobacter pylori-infected mice
    Wenjie Kong, Weidong Liu, Man Wang, Wenjia Hui, Yan Feng, Jiajie Lu, Buya Miranbieke, Huan Liu, Feng Gao
    Pathogens and Disease.2022;[Epub]     CrossRef
  • Gene rppA co-regulated by LRR, SigA, and CcpA mediates antibiotic resistance in Bacillus thuringiensis
    Xia Cai, Xuelian Li, Jiaxin Qin, Yizhuo Zhang, Bing Yan, Jun Cai
    Applied Microbiology and Biotechnology.2022; 106(17): 5687.     CrossRef
  • Chinese Cordyceps: Bioactive Components, Antitumor Effects and Underlying Mechanism—A Review
    Yan Liu, Zhi-Jian Guo, Xuan-Wei Zhou
    Molecules.2022; 27(19): 6576.     CrossRef
  • Gold nanoparticle-DNA aptamer-assisted delivery of antimicrobial peptide effectively inhibits Acinetobacter baumannii infection in mice
    Jaeyeong Park, Eunkyoung Shin, Ji-Hyun Yeom, Younkyung Choi, Minju Joo, Minho Lee, Je Hyeong Kim, Jeehyeon Bae, Kangseok Lee
    Journal of Microbiology.2022; 60(1): 128.     CrossRef
  • Cordycepin enhances hyperthermia-induced apoptosis and cell cycle arrest by modulating the MAPK pathway in human lymphoma U937 cells
    Liying Shi, He Cao, Siyu Fu, Zixian Jia, Xuan Lu, Zhengguo Cui, Dayong Yu
    Molecular Biology Reports.2022; 49(9): 8673.     CrossRef
  • Research Progress on Cordycepin Synthesis and Methods for Enhancement of Cordycepin Production in Cordyceps militaris
    Li Wang, Huanhuan Yan, Bin Zeng, Zhihong Hu
    Bioengineering.2022; 9(2): 69.     CrossRef
  • Cordycepin as a Metabolite with Pharmacological Potential: A Review
    Shivani Sharma, Kashish Madaan, Ravneet Kaur
    International Journal of Medicinal Mushrooms.2022; 24(8): 1.     CrossRef
  • Study on the Inhibitory Activity and Possible Mechanism of Myriocin on Clinically Relevant Drug-Resistant Candida albicans and Its Biofilms
    Xin Yang, Zejun Pei, Renjing Hu, Zhehao Zhang, Zaixiang Lou, Xin Sun
    Biological and Pharmaceutical Bulletin.2021; 44(3): 305.     CrossRef
  • Label free-based proteomic analysis of the food spoiler Pseudomonas fluorescens response to lactobionic acid by SWATH-MS
    Shimo Kang, Chunlei Shi, Jiang Chang, Fanhua Kong, Mohan Li, Boyuan Guan, Zhenghan Zhang, Xinyang Shi, Huiwen Zhao, Yanqi Peng, Yan Zheng, Xiqing Yue
    Food Control.2021; 123: 107834.     CrossRef
  • Isolation, identification, and control of a resistant bacterium strain found in Ku shui rose pure dew
    Lijun Ling, Caiyun Yang, Wenxia Ma, Yunhua Zhao, Shenglai Feng, Yixin Tu, Nan Wang, Zibin Li, Lu Lu
    Journal of Food Processing and Preservation.2021;[Epub]     CrossRef
  • The Antibacterial Properties of 4, 8, 4′, 8′-Tetramethoxy (1,1′-biphenanthrene) -2,7,2′,7′-Tetrol from Fibrous Roots of Bletilla striata
    Xue-Jiao Huang, Nan Xiong, Bo-Chen Chen, Fan Luo, Min Huang, Zhi-Shan Ding, Chao-Dong Qian
    Indian Journal of Microbiology.2021; 61(2): 195.     CrossRef
  • Drug Delivery of Natural Products Through Nanocarriers for Effective Breast Cancer Therapy: A Comprehensive Review of Literature
    Kah Min Yap, Mahendran Sekar, Shivkanya Fuloria, Yuan Seng Wu, Siew Hua Gan, Nur Najihah Izzati Mat Rani, Vetriselvan Subramaniyan, Chandrakant Kokare, Pei Teng Lum, M Yasmin Begum, Shankar Mani, Dhanalekshmi Unnikrishnan Meenakshi, Kathiresan V Sathasiva
    International Journal of Nanomedicine.2021; Volume 16: 7891.     CrossRef
  • Evaluation of Anti-Biofilm Capability of Cordycepin Against Candida albicans
    Yu Wang, Zejun Pei, Zaixiang Lou, Hongxin Wang
    Infection and Drug Resistance.2021; Volume 14: 435.     CrossRef
  • Enhanced production of cordycepin in Ophiocordyceps sinensis using growth supplements under submerged conditions
    Vikas Kaushik, Amanvir Singh, Aditi Arya, Sangeeta Chahal Sindhu, Anil Sindhu, Ajay Singh
    Biotechnology Reports.2020; 28: e00557.     CrossRef
  • A How-To Guide for Mode of Action Analysis of Antimicrobial Peptides
    Ann-Britt Schäfer, Michaela Wenzel
    Frontiers in Cellular and Infection Microbiology.2020;[Epub]     CrossRef
  • Synthesis of cordycepin: Current scenario and future perspectives
    Liyang Yang, Guilan Li, Zhi Chai, Qiang Gong, Jianquan Guo
    Fungal Genetics and Biology.2020; 143: 103431.     CrossRef
Role of putative virulence traits of Campylobacter jejuni in regulating differential host immune responses
Ankita Singh , Amirul Islam Mallick
J. Microbiol. 2019;57(4):298-309.   Published online February 22, 2019
DOI: https://doi.org/10.1007/s12275-019-8165-0
  • 44 View
  • 0 Download
  • 13 Web of Science
  • 10 Crossref
AbstractAbstract
Among the major enteric pathogens, Campylobacter jejuni is considered an important source of diarrheal illness in humans. In contrast to the acute gastroenteritis in humans, C. jejuni exhibits prolonged cecal colonization at a high level with little or no pathology in chickens. Although several known virulence determinants of C. jejuni have been found to be associated with a higher degree of pathogenesis in humans, to date, little is known about their functions in the persistent colonization of chickens. The present study was undertaken to assess the role of C. jejuni in imparting differential host immune responses in human and chicken cells. Based on the abundance of major genes encoding virulence factors (GEVFs), we used a particular isolate that harbors the cadF, flaA, peb1, racR, ciaB, cdtB, and hcp genes. This study showed that hypervirulent C. jejuni isolate that encodes a functional type VI secretion system (T6SS) has a greater ability to invade and create characteristic “attaching and effacing” lesions in human INT407 compared to primary chicken embryo intestinal cells (CEICs). Furthermore, we demonstrated that the higher bacterial invasion in human INT407 triggered higher levels of expression of major proinflammatory cytokines, such as IL- 1β and IL-6, and significant downregulation of IL-17A gene expression (P ≤ 0.05). The findings of the present study suggest that the enhanced ability of C. jejuni to invade human cells is tightly regulated by proinflammatory cytokines in the gut and possibly holds the keys to the observed differences in pathogenesis between human and chicken cells.

Citations

Citations to this article as recorded by  
  • Targeted Bioimaging of Microencapsulated Recombinant LAB Vector Expressing Fluorescent Reporter Protein: A Non-invasive Approach for Microbial Tracking
    Prakash Biswas, Afruja Khan, Amirul Islam Mallick
    ACS Biomaterials Science & Engineering.2024; 10(8): 5210.     CrossRef
  • Identification and functional characterization of putative ligand binding domain(s) of JlpA protein of Campylobacter jejuni
    Chandan Gorain, Subhadeep Gupta, S.S. Mahafujul Alam, Mehboob Hoque, Andrey V. Karlyshev, Amirul Islam Mallick
    International Journal of Biological Macromolecules.2024; 264: 130388.     CrossRef
  • Heterogeneity and Compositional Diversities of Campylobacter jejuni Outer Membrane Vesicles (OMVs) Drive Multiple Cellular Uptake Processes
    Afruja Khan, Avijit Sardar, Pradip K. Tarafdar, Amirul I. Mallick
    ACS Infectious Diseases.2023; 9(11): 2325.     CrossRef
  • Multimodal Biofilm Inactivation Using a Photocatalytic Bismuth Perovskite–TiO2–Ru(II)polypyridyl-Based Multisite Heterojunction
    Noufal Kandoth, Sonu Pratap Chaudhary, Subhadeep Gupta, Kumari Raksha, Atin Chatterjee, Shresth Gupta, Safakath Karuthedath, Catherine S. P. De Castro, Frédéric Laquai, Sumit Kumar Pramanik, Sayan Bhattacharyya, Amirul Islam Mallick, Amitava Das
    ACS Nano.2023; 17(11): 10393.     CrossRef
  • In Silico and In Vitro Analysis of Helicobacter pullorum Type Six Secretory Protein Hcp and Its Role in Bacterial Invasion and Pathogenesis
    Kashaf Javed, Farzana Gul, Rashda Abbasi, Sidra Batool, Zobia Noreen, Habib Bokhari, Sundus Javed
    Current Microbiology.2022;[Epub]     CrossRef
  • Gut Microbe-Derived Outer Membrane Vesicles: A Potential Platform to Control Cecal Load of Campylobacter jejuni
    Ankita Singh, Afruja Khan, Tamal Ghosh, Samiran Mondal, Amirul I. Mallick
    ACS Infectious Diseases.2021; 7(5): 1186.     CrossRef
  • Mucosal delivery of live Lactococcus lactis expressing functionally active JlpA antigen induces potent local immune response and prevent enteric colonization of Campylobacter jejuni in chickens
    Chandan Gorain, Ankita Singh, Sudipta Bhattacharyya, Anirban Kundu, Aritraa Lahiri, Subhadeep Gupta, Amirul I. Mallick
    Vaccine.2020; 38(7): 1630.     CrossRef
  • Immunopathological properties of the Campylobacter jejuni flagellins and the adhesin CadF as assessed in a clinical murine infection model
    Anna-Maria Schmidt, Ulrike Escher, Soraya Mousavi, Nicole Tegtmeyer, Manja Boehm, Steffen Backert, Stefan Bereswill, Markus M. Heimesaat
    Gut Pathogens.2019;[Epub]     CrossRef
  • A One Health approach to prevention, treatment, and control of campylobacteriosis
    Francesca Schiaffino, James Platts-Mills, Margaret N. Kosek
    Current Opinion in Infectious Diseases.2019; 32(5): 453.     CrossRef
  • Immunogenicity and protective efficacy of mucosal delivery of recombinant hcp of Campylobacter jejuni Type VI secretion system (T6SS) in chickens
    Ankita Singh, Khairun Nisaa, Sudipta Bhattacharyya, Amirul Islam Mallick
    Molecular Immunology.2019; 111: 182.     CrossRef
Lipoteichoic acids of lactobacilli inhibit Enterococcus faecalis biofilm formation and disrupt the preformed biofilm
Solmin Jung , Ok-Jin Park , A Reum Kim , Ki Bum Ahn , Dongwook Lee , Kee-Yeon Kum , Cheol-Heui Yun , Seung Hyun Han
J. Microbiol. 2019;57(4):310-315.   Published online January 22, 2019
DOI: https://doi.org/10.1007/s12275-019-8538-4
  • 50 View
  • 0 Download
  • 49 Web of Science
  • 47 Crossref
AbstractAbstract
Enterococcus faecalis, a Gram-positive bacterium commonly isolated in patients with refractory apical periodontitis, invades dentin tubules easily and forms biofilms. Bacteria in biofilms, which contribute to recurrent and/or chronic inflammatory diseases, are more resistant to antimicrobial agents than planktonic cells and easily avoid phagocytosis. Although Lactobacillus plantarum lipoteichoic acid (Lp.LTA) is associated with biofilm formation, the effect of Lp.LTA on biofilm formation by E. faecalis is not clearly understood. In this study, we investigated whether Lp.LTA inhibits E. faecalis biofilm formation. The degree of biofilm formation was determined by using crystal violet assay and LIVE/DEAD bacteria staining. The quantification of bacterial growth was determined by measuring the optical density at 600 nm with a spectrophotometer. Formation of biofilms on human dentin slices was observed under a scanning electron microscope. E. faecalis biofilm formation was reduced by Lp.LTA treatment in a dose-dependent manner. Lp.LTA inhibited biofilm development of E. faecalis at the early stage without affecting bacterial growth. LTA from other Lactobacillus species such as Lactobacillus acidophilus, Lactobacillus casei, or Lactobacillus rhamnosus GG also inhibited E. faecalis biofilm formation. In particular, among LTAs from various lactobacilli, Lp.LTA showed the highest inhibitory effect on biofilms formed by E. faecalis. Interestingly, LTAs from lactobacilli could remove the biofilm preformed by E. faecalis. These inhibitory effects were also observed on the surface of human dentin slices. In conclusion, Lactobacillus species LTA inhibits biofilm formation caused by E. faecalis and it could be used as an anti-biofilm agent for prevention or treatment against E. faecalis-associated diseases.

Citations

Citations to this article as recorded by  
  • Inhibitory effect and mechanism of violacein on planktonic growth, spore germination, biofilm formation and toxin production of Bacillus cereus and its application in grass carp preservation
    Xiangdi Lou, Qiang Zhou, Qiyue Jiang, Liping Lin, Wenwu Zhu, Xiaoyu Mei, Jianhua Xiong, Yanyan Gao
    International Journal of Food Microbiology.2025; 426: 110917.     CrossRef
  • The effects of Lactiplantibacillus plantarum 3-19 and Pediococcus pentosaceus 18-1 on preventing the accumulation of biogenic amines and promoting the production of volatile organic compounds during sour meat fermentation
    Hao Shang, Ying Yue, Bingrui Guo, Chaofan Ji, Sufang Zhang, Liang Dong, Ilario Ferrocino, Luca Simone Cocolin, Xinping Lin
    International Journal of Food Microbiology.2024; 421: 110806.     CrossRef
  • Small cyclic dipeptide produced by Lactobacillus rhamnosus with anti-biofilm properties against Streptococcus mutans biofilm
    Rashmi Niranjan, Sachin Patil, Amrita Dubey, Bimlesh Lochab, Richa Priyadarshini
    Biofilm.2024; 8: 100237.     CrossRef
  • Enterococcus Phage vB_EfaS_HEf13 as an Anti-Biofilm Agent Against Enterococcus faecalis
    Dongwook Lee, Jintaek Im, A Reum Kim, Woohyung Jun, Cheol-Heui Yun, Seung Hyun Han
    Journal of Microbiology.2024; 62(8): 683.     CrossRef
  • Extracellular Proteins Isolated from L. acidophilus as an Osteomicrobiological Therapeutic Agent to Reduce Pathogenic Biofilm Formation, Regulate Chronic Inflammation, and Augment Bone Formation In Vitro
    Abinaya Sindu Pugazhendhi, Anouska Seal, Megan Hughes, Udit Kumar, Elayaraja Kolanthai, Fei Wei, Jonathan D. Schwartzman, Melanie J. Coathup
    Advanced Healthcare Materials.2024;[Epub]     CrossRef
  • Strategies and mechanisms targeting Enterococcus faecalis biofilms associated with endodontic infections: a comprehensive review
    Shipeng Yang, Xiuping Meng, Yuqi Zhen, Quzhen Baima, Yu Wang, Xinmiao Jiang, Zhibo Xu
    Frontiers in Cellular and Infection Microbiology.2024;[Epub]     CrossRef
  • Lipoteichoic Acid from Lacticaseibacillus rhamnosus GG as a Novel Intracanal Medicament Targeting Enterococcus faecalis Biofilm Formation
    Ji-Young Yoon, Somin Park, Dongwook Lee, Ok-Jin Park, WooCheol Lee, Seung Hyun Han
    Journal of Microbiology.2024; 62(10): 897.     CrossRef
  • Isolation, Identification and Antibacterial Characteristics of Lacticaseibacillus rhamnosus YT
    Chengran Guan, Feng Li, Peng Yu, Xuan Chen, Yongqi Yin, Dawei Chen, Ruixia Gu, Chenchen Zhang, Bo Pang
    Foods.2024; 13(17): 2706.     CrossRef
  • Lactobacillus-derived components for inhibiting biofilm formation in the food industry
    Jiaxun Li, Qiuxiang Zhang, Jianxin Zhao, Hao Zhang, Wei Chen
    World Journal of Microbiology and Biotechnology.2024;[Epub]     CrossRef
  • Natural aggregation of Lactobacillus: Mechanisms and influencing factors
    Shunhe Wang, Lulu Li, Leilei Yu, Fengwei Tian, Jianxin Zhao, Qixiao Zhai, Wei Chen
    Food Bioscience.2024; 62: 105007.     CrossRef
  • Hypericum perforatum L. (St. John's Wort) in broilers diet improve growth performance, intestinal microflora and immunity
    Ziya İlhan, Muhittin Zengin, Oğuz Koray Bacaksız, Ergün Demir, İsmail Hakkı Ekin, Mehmet Ali Azman
    Poultry Science.2024; 103(12): 104419.     CrossRef
  • The role of Lactobacillus plantarum in oral health: a review of current studies
    Xinyan Huang, Jianhang Bao, Mingzhen Yang, Yingying Li, Youwen Liu, Yuankun Zhai
    Journal of Oral Microbiology.2024;[Epub]     CrossRef
  • Antibacterial effectiveness of multi-strain probiotics supernatants intracanal medication on Enterococcus faecalis biofilm in a tooth model
    Shymaa Shaaban, Salma Genena, Alaaeldin Elraggal, Gamal M. Hamad, Marwa A. Meheissen, Sybel Moussa
    BMC Oral Health.2023;[Epub]     CrossRef
  • Antioxidant Effects and Probiotic Properties of Latilactobacillus sakei MS103 Isolated from Sweet Pickled Garlic
    Heng Li, Changlin Chen, Yuanxin Li, Zhengqiang Li, Chen Li, Chang Luan
    Foods.2023; 12(23): 4276.     CrossRef
  • Postbiotics in Human Health: A Narrative Review
    Linxi Ma, Huaijun Tu, Tingtao Chen
    Nutrients.2023; 15(2): 291.     CrossRef
  • Influence of dietary supplementation with new Lactobacillus strains on hematology, serum biochemistry, nutritional status, digestibility, enzyme activities, and immunity in dogs
    Kamonporn Panja, Sathita Areerat, Pipatpong Chundang, Pornsucha Palaseweenun, Nattaphong Akrimajirachoote, Jaruwan Sitdhipo, Punnathorn Thaveethaptaikul, Pennapa Chonpathompikunlert, Kanidta Niwasabutra, Pongsathon Phapugrangkul, Attawit Kovitvadhi
    Veterinary World.2023; : 834.     CrossRef
  • Antibacterial and antibiofilm potential of Lacticaseibacillus rhamnosus YT and its cell-surface extract
    Chengran Guan, Wenjuan Zhang, Jianbo Su, Feng Li, Dawei Chen, Xia Chen, Yujun Huang, Ruixia Gu, Chenchen Zhang
    BMC Microbiology.2023;[Epub]     CrossRef
  • Mechanisms of microbial interactions between probiotic microorganisms and Helicobacter pylori
    Guzel Sh. Isaeva, R.A. Isaeva
    Clinical Microbiology and Antimicrobial Chemotherapy.2023; 25(3): 225.     CrossRef
  • Preparation of branched RG-I-rich pectin from red dragon fruit peel and the characterization of its probiotic properties
    Meng-yuan Zhang, Jun Cai
    Carbohydrate Polymers.2023; 299: 120144.     CrossRef
  • The potential of paraprobiotics and postbiotics to modulate the immune system: A Review
    Jeet P. Mehta, Sonal Ayakar, Rekha S. Singhal
    Microbiological Research.2023; 275: 127449.     CrossRef
  • Identification of soybean peptides and their effect on the growth and metabolism of Limosilactobacillus reuteri LR08
    Chi Zhang, Shaoqi Xia, Yinxiao Zhang, Shuya Zhu, He Li, Xinqi Liu
    Food Chemistry.2022; 369: 130923.     CrossRef
  • Acquisition of Daptomycin Resistance by Enterococcus faecium Confers Collateral Sensitivity to Glycopeptides
    Weiliang Zeng, Luozhu Feng, Changrui Qian, Tao Chen, Sipei Wang, Ying Zhang, Xiangkuo Zheng, Lingbo Wang, Shixing Liu, Tieli Zhou, Yao Sun
    Frontiers in Microbiology.2022;[Epub]     CrossRef
  • Regulator of RNase E activity modulates the pathogenicity of Salmonella Typhimurium
    Jaejin Lee, Eunkyoung Shin, Ji-Hyun Yeom, Jaeyoung Park, Sunwoo Kim, Minho Lee, Kangseok Lee
    Microbial Pathogenesis.2022; 165: 105460.     CrossRef
  • Subgingival microbiome in periodontitis and type 2 diabetes mellitus: an exploratory study using metagenomic sequencing
    Xianjun Lu, Tingjun Liu, Jiani Zhou, Jia Liu, Zijian Yuan, Lihong Guo
    Journal of Periodontal & Implant Science.2022; 52(4): 282.     CrossRef
  • Hidden Agenda of Enterococcus Faecalis Lifestyle Transition: Planktonic To Sessile State
    Parvathy Venkateswaran, Priya M Lakshmanan, Sudhiksha Muthukrishnan, Hema Bhagavathi, Sahana Vasudevan, Prasanna Neelakantan, Adline P Solomon
    Future Microbiology.2022; 17(13): 1051.     CrossRef
  • Probiotics in the treatment of Helicobacter pylori infection: reality and perspective
    Guzel ISAEVA, Regina ISAEVA
    Minerva Gastroenterology.2022;[Epub]     CrossRef
  • Algal polysaccharide’s potential to combat respiratory infections caused by Klebsiella pneumoniae and Serratia marcescens biofilms
    Jyoti Vishwakarma, Bhumika Waghela, Berness Falcao, Sirisha L. Vavilala
    Applied Biochemistry and Biotechnology.2022; 194(2): 671.     CrossRef
  • Phage therapy for refractory periapical periodontitis caused by Enterococcus faecalis in vitro and in vivo
    Yingying Xiang, Chunlan Ma, Shuang Yin, Fei Song, Kunhao Qin, Yafang Ding, Xianghong Yang, Pengfei Song, Xiuling Ji, Yunlin Wei
    Applied Microbiology and Biotechnology.2022; 106(5-6): 2121.     CrossRef
  • Gram Positive Bacterial Lipoteichoic Acid Role in a Root Canal Infection – A Literature Review
    Vinoo Subramaniam Ramachandran, Mensudar Rathakrishnan, Malathy Balaraman Ravindrran, Alargarsamy Venkatesh, Vidhya Shankari Shanmugasundaram, Karpagavinayagam Kumaraguru
    Journal of Pure and Applied Microbiology.2021; 15(2): 534.     CrossRef
  • In Vitro Effects of Lactobacillus plantarum LN66 and Antibiotics Used Alone or in Combination on Helicobacter pylori Mature Biofilm
    Jianfu Ji, Hong Yang
    Microorganisms.2021; 9(2): 424.     CrossRef
  • Effects of Rose Bengal‐ and Methylene Blue‐Mediated Potassium Iodide‐Potentiated Photodynamic Therapy on Enterococcus faecalis: A Comparative Study
    Ruijie Li, Lintian Yuan, Weiqian Jia, Man Qin, Yuguang Wang
    Lasers in Surgery and Medicine.2021; 53(3): 400.     CrossRef
  • HEMA-induced oxidative stress inhibits NF-κB nuclear translocation and TNF release from LTA- and LPS-stimulated immunocompetent cells
    Helmut Schweikl, Margaritha Birke, Marialucia Gallorini, Christine Petzel, Carola Bolay, Claudia Waha, Karl-Anton Hiller, Wolfgang Buchalla
    Dental Materials.2021; 37(1): 175.     CrossRef
  • Lactobacillus rhamnosus and Lactobacillus casei Affect Various Stages of Gardnerella Species Biofilm Formation
    Yuanhui He, Risu Na, Xiaoxi Niu, Bingbing Xiao, Huixia Yang
    Frontiers in Cellular and Infection Microbiology.2021;[Epub]     CrossRef
  • Cell-Free Lactobacillus sp Supernatants Modulate Staphylococcus aureus Growth, Adhesion and Invasion to Human Osteoblast (HOB) Cells
    Fatma Kalaycı Yüksek, Defne Gümüş, Gül İpek Gündoğan, Mine Anğ Küçüker
    Current Microbiology.2021; 78(1): 125.     CrossRef
  • Comparison of solithromycin with erythromycin in Enterococcus faecalis and Enterococcus faecium from China: antibacterial activity, clonality, resistance mechanism, and inhibition of biofilm formation
    Yu Wang, Yanpeng Xiong, Zhanwen Wang, Jinxin Zheng, Guangjian Xu, Qiwen Deng, Zewen Wen, Zhijian Yu
    The Journal of Antibiotics.2021; 74(2): 143.     CrossRef
  • Regulator of ribonuclease activity modulates the pathogenicity of Vibrio vulnificus
    Jaejin Lee, Eunkyoung Shin, Jaeyeong Park, Minho Lee, Kangseok Lee
    Journal of Microbiology.2021; 59(12): 1133.     CrossRef
  • Lactobacillus plantarum Lipoteichoic Acids Possess Strain-Specific Regulatory Effects on the Biofilm Formation of Dental Pathogenic Bacteria
    Dongwook Lee, Jintaek Im, Dong Hyun Park, Sungho Jeong, Miri Park, Seokmin Yoon, Jaewoong Park, Seung Hyun Han
    Frontiers in Microbiology.2021;[Epub]     CrossRef
  • Can Probiotics Emerge as Effective Therapeutic Agents in Apical Periodontitis? A Review
    Gaurav Kumar, Sanjay Tewari, John Tagg, Michael Leonidas Chikindas, Igor V Popov, Santosh Kumar Tiwari
    Probiotics and Antimicrobial Proteins.2021; 13(2): 299.     CrossRef
  • Lactobacilli as Anti-biofilm Strategy in Oral Infectious Diseases: A Mini-Review
    Barbara Giordani, Carola Parolin, Beatrice Vitali
    Frontiers in Medical Technology.2021;[Epub]     CrossRef
  • Interplay between Candida albicans and Lactic Acid Bacteria in the Gastrointestinal Tract: Impact on Colonization Resistance, Microbial Carriage, Opportunistic Infection, and Host Immunity
    Karen D. Zeise, Robert J. Woods, Gary B. Huffnagle
    Clinical Microbiology Reviews.2021;[Epub]     CrossRef
  • Postbiotics-parabiotics: the new horizons in microbial biotherapy and functional foods
    Basavaprabhu H. Nataraj, Syed Azmal Ali, Pradip V. Behare, Hariom Yadav
    Microbial Cell Factories.2020;[Epub]     CrossRef
  • Vaginal microbiota and the potential of Lactobacillus derivatives in maintaining vaginal health
    Wallace Jeng Yang Chee, Shu Yih Chew, Leslie Thian Lung Than
    Microbial Cell Factories.2020;[Epub]     CrossRef
  • Enhanced biofilm formation of Streptococcus gordonii with lipoprotein deficiency
    Ok‐Jin Park, Solmin Jung, Taehwan Park, A Reum Kim, Dongwook Lee, Hyun Jung Ji, Ho Seong Seo, Cheol‐Heui Yun, Seung Hyun Han
    Molecular Oral Microbiology.2020; 35(6): 271.     CrossRef
  • Lactobacillus plantarum lipoteichoic acid disrupts mature Enterococcus faecalis biofilm
    A. Reum Kim, Minji Kang, Yeon-Jee Yoo, Cheol-Heui Yun, Hiran Perinpanayagam, Kee-Yeon Kum, Seung Hyun Han
    Journal of Microbiology.2020; 58(4): 314.     CrossRef
  • Streptococcus gordonii: Pathogenesis and Host Response to Its Cell Wall Components
    Ok-Jin Park, Yeongkag Kwon, Chaeyeon Park, Yoon Ju So, Tae Hwan Park, Sungho Jeong, Jintaek Im, Cheol-Heui Yun, Seung Hyun Han
    Microorganisms.2020; 8(12): 1852.     CrossRef
  • Using Probiotics as Supplementation for Helicobacter pylori Antibiotic Therapy
    Jianfu Ji, Hong Yang
    International Journal of Molecular Sciences.2020; 21(3): 1136.     CrossRef
  • In-vitro effect of vaginal lactobacilli against group B Streptococcus
    Giacomo Marziali, Claudio Foschi, Carola Parolin, Beatrice Vitali, Antonella Marangoni
    Microbial Pathogenesis.2019; 136: 103692.     CrossRef
Genetic characterization of African swine fever virus in Cameroon, 2010–2018
Abel Wade , Jenna Elizabeth Achenbach , Carmina Gallardo , Tirumala Bharani K. Settypalli , Abdoulkadiri Souley , Gaston Djonwe , Angelika Loitsch , Gwenaelle Dauphin , Jean Justin Essia Ngang , Onana Boyomo , Giovanni Cattoli , Adama Diallo , Charles Euloge Lamien
J. Microbiol. 2019;57(4):316-324.   Published online March 30, 2019
DOI: https://doi.org/10.1007/s12275-019-8457-4
  • 44 View
  • 0 Download
  • 31 Web of Science
  • 26 Crossref
AbstractAbstract
African swine fever (ASF) is a highly lethal haemorrhagic disease in domestic and wild swine that has acquired great importance in sub-Saharan Africa since 1997. ASF was first reported in Cameroon in 1982 and was detected only in Southern Cameroon (South, West, East, Northwest, Southwest, Littoral, and Centre regions) until February 2010 when suspected ASF outbreaks were reported in the North and Far North regions. We investigated those outbreaks by analysing samples that were collected from sick pigs between 2010 and 2018. We confirmed 428 positive samples by ELISA and realtime PCR and molecularly characterized 48 representative isolates. All the identified virus isolates were classified as ASFV genotype I based on the partial B646L gene (C-terminal end of VP72 gene) and the full E183L gene encoding p54 protein analysis. Furthermore, analysis of the central variable region (CVR) within the B602L gene demonstrated that there were 3 different variants of ASFV genotype I, with 19, 20, and 21 tetrameric tandem repeat sequences (TRSs), that were involved in the 2010–2018 outbreaks in Cameroon. Among them, only variant A (19 TRSs) was identical to the Cam/82 isolate found in the country during the first outbreaks in 1981–1982. This study demonstrated that the three variants of ASFV isolates involved in these outbreaks were similar to those of neighbouring countries, suggesting a movement of ASFV strains across borders. Designing common control measures in affected regions and providing a compensation programme for farmers will help reduce the incidence and spread of this disease.

Citations

Citations to this article as recorded by  
  • African swine fever; insights into genomic aspects, reservoirs and transmission patterns of virus
    Bader S. Alotaibi, Chia-Hung Wu, Majid Khan, Mohsin Nawaz, Chien-Chin Chen, Abid Ali
    Frontiers in Veterinary Science.2024;[Epub]     CrossRef
  • Assessment of Nine Real-Time PCR Kits for African Swine Fever Virus Approved in Republic of Korea
    Siwon Lee, Tae Uk Han, Jin-Ho Kim
    Viruses.2024; 16(10): 1627.     CrossRef
  • A multi gene-approach genotyping method identifies 24 genetic clusters within the genotype II-European African swine fever viruses circulating from 2007 to 2022
    Carmina Gallardo, Nadia Casado, Alejandro Soler, Igor Djadjovski, Laura Krivko, Encarnación Madueño, Raquel Nieto, Covadonga Perez, Alicia Simon, Emiliya Ivanova, Daniel Donescu, Vesna Milicevik, Eleni Chondrokouki, Imbi Nurmoja, Maciej Frant, Francesco F
    Frontiers in Veterinary Science.2023;[Epub]     CrossRef
  • Internal Validation of the ASFV MONODOSE dtec-qPCR Kit for African Swine Fever Virus Detection under the UNE-EN ISO/IEC 17025:2005 Criteria
    Gema Bru, Marta Martínez-Candela, Paloma Romero, Aaron Navarro, Antonio Martínez-Murcia
    Veterinary Sciences.2023; 10(9): 564.     CrossRef
  • Porcine circovirus‐2 in Africa: Identification of continent‐specific clusters and evidence of independent viral introductions from Europe, North America and Asia
    Giovanni Franzo, Tirumala B.K. Settypalli, Ebere Roseann Agusi, Clement Meseko, Germaine Minoungou, Bruno Lalidia Ouoba, Zerbo Lamouni Habibata, Abel Wade, José Luís de Barros, Curé Georges Tshilenge, Esayas Gelaye, Martha Yami, Daniel Gizaw, Tesfaye Rufa
    Transboundary and Emerging Diseases.2022;[Epub]     CrossRef
  • A QP509L/QP383R-Deleted African Swine Fever Virus Is Highly Attenuated in Swine but Does Not Confer Protection against Parental Virus Challenge
    Dan Li, Panxue Wu, Huanan Liu, Tao Feng, Wenping Yang, Yi Ru, Pan Li, Xiaolan Qi, Zhengwang Shi, Haixue Zheng, Tom Gallagher
    Journal of Virology.2022;[Epub]     CrossRef
  • Comparison of the sensitivity, specificity, correlation and inter‐assay agreement of eight diagnostic in vitro assays for the detection of African swine fever virus
    Agathe Auer, Tirumala B.K. Settypalli, Beatrice Mouille, Angelique Angot, Cristian De Battisti, Charles E. Lamien, Giovanni Cattoli
    Transboundary and Emerging Diseases.2022;[Epub]     CrossRef
  • Review of the Pig-Adapted African Swine Fever Viruses in and Outside Africa
    Mary-Louise Penrith, Juanita Van Heerden, Livio Heath, Edward Okoth Abworo, Armanda D. S. Bastos
    Pathogens.2022; 11(10): 1190.     CrossRef
  • Molecular characterization of African swine fever viruses from Burkina Faso, 2018
    Moctar Sidi, Habibata Lamouni Zerbo, Bruno Lalidia Ouoba, Tirumala Bharani K. Settypalli, Gregorie Bazimo, Hamidou Sandaogo Ouandaogo, Boubacar N’paton Sie, Ilboudo Sidwatta Guy, Drabo Dji-tombo Adama, Joseph Savadogo, Anne Kabore-Ouedraogo, Marietou Guit
    BMC Veterinary Research.2022;[Epub]     CrossRef
  • Functional Analysis and Proteomics Profiling of Extracellular Vesicles From Swine Plasma Infected by African Swine Fever Virus
    Guowei Xu, Xijuan Shi, Huanan Liu, Chaochao Shen, Bo Yang, Ting Zhang, Xuehui Chen, Dengshuai Zhao, Jinke Yang, Yu Hao, Huimei Cui, Xingguo Yuan, Xiangtao Liu, Keshan Zhang, Haixue Zheng
    Frontiers in Cellular and Infection Microbiology.2022;[Epub]     CrossRef
  • Molecular Characterization of African Swine Fever Virus From 2019-2020 Outbreaks in Guangxi Province, Southern China
    Kaichuang Shi, Huixin Liu, Yanwen Yin, Hongbin Si, Feng Long, Shuping Feng
    Frontiers in Veterinary Science.2022;[Epub]     CrossRef
  • Molecular Characterization of ASFV and Differential Diagnosis of Erysipelothrix in ASFV-Infected Pigs in Pig Production Regions in Cameroon
    Ebanja Joseph Ebwanga, Stephen Mbigha Ghogomu, Jan Paeshuyse
    Veterinary Sciences.2022; 9(8): 440.     CrossRef
  • Risk factors of African swine fever virus in suspected infected pigs in smallholder farming systems in South-Kivu province, Democratic Republic of Congo
    Patrick N. Bisimwa, Michel Dione, Bisimwa Basengere, Ciza Arsène Mushagalusa, Lucilla Steinaa, Juliette Ongus
    Journal of Veterinary Science.2021;[Epub]     CrossRef
  • Molecular characterization of African Swine fever viruses in Burkina Faso, Mali, and Senegal 1989–2016
    Germaine L. Minoungou, Mariame Diop, Marthin Dakouo, Abdoul Karim Ouattara, Tirumala Bharani K. Settypalli, Modou M. Lo, Satigui Sidibe, Estelle Kanyala, Yaya Sidi Kone, Moctar Sidi Diallo, Anne Ouedraogo, Kadiatou Coulibaly, Victorine Ouedraogo, Ibrahim
    Transboundary and Emerging Diseases.2021; 68(5): 2842.     CrossRef
  • Advance of African swine fever virus in recent years
    Fengxue Wang, He Zhang, Lina Hou, Chao Yang, Yongjun Wen
    Research in Veterinary Science.2021; 136: 535.     CrossRef
  • African Swine Fever Virus (ASFV): Biology, Genomics and Genotypes Circulating in Sub-Saharan Africa
    Emma P. Njau, Eunice M. Machuka, Sarah Cleaveland, Gabriel M. Shirima, Lughano J. Kusiluka, Edward A. Okoth, Roger Pelle
    Viruses.2021; 13(11): 2285.     CrossRef
  • African Swine Fever in Cameroon: A Review
    Ebanja Joseph Ebwanga, Stephen Mbigha Ghogomu, Jan Paeshuyse
    Pathogens.2021; 10(4): 421.     CrossRef
  • African Swine Fever: Prevalence, Farm Characteristics, Farmer’s Insight and Attitude toward Reporting of African Swine Fever Cases in the Northwest, West, Littoral and Southwest Regions of Cameroon
    Ebanja Joseph Ebwanga, Stephen Mbigha Ghogomu, Jan Paeshuyse
    Agriculture.2021; 12(1): 44.     CrossRef
  • Isolation and Genetic Characterization of African Swine Fever Virus from Domestic Pig Farms in South Korea, 2019
    Hyun-Joo Kim, Ki-Hyun Cho, Ji-Hyoung Ryu, Min-Kyung Jang, Ha-Gyeong Chae, Ji-Da Choi, Jin-Ju Nah, Yong-Joo Kim, Hae-Eun Kang
    Viruses.2020; 12(11): 1237.     CrossRef
  • Genetic Analysis of African Swine Fever Virus From the 2018 Outbreak in South-Eastern Burundi
    Jean N. Hakizimana, Lionel Nyabongo, Jean B. Ntirandekura, Clara Yona, Désiré Ntakirutimana, Olivier Kamana, Hans Nauwynck, Gerald Misinzo
    Frontiers in Veterinary Science.2020;[Epub]     CrossRef
  • A Pool of Eight Virally Vectored African Swine Fever Antigens Protect Pigs against Fatal Disease
    Lynnette C. Goatley, Ana Luisa Reis, Raquel Portugal, Hannah Goldswain, Gareth L. Shimmon, Zoe Hargreaves, Chak-Sum Ho, María Montoya, Pedro J. Sánchez-Cordón, Geraldine Taylor, Linda K. Dixon, Christopher L. Netherton
    Vaccines.2020; 8(2): 234.     CrossRef
  • Epidemiology of African Swine Fever in Piggeries in the Center, South and South-West of Cameroon
    Victor Ngu Ngwa, Abdelrazak Abouna, André Pagnah Zoli, Anna-Rita Attili
    Veterinary Sciences.2020; 7(3): 123.     CrossRef
  • A seven-gene-deleted African swine fever virus is safe and effective as a live attenuated vaccine in pigs
    Weiye Chen, Dongming Zhao, Xijun He, Renqiang Liu, Zilong Wang, Xianfeng Zhang, Fang Li, Dan Shan, Hefeng Chen, Jiwen Zhang, Lulu Wang, Zhiyuan Wen, Xijun Wang, Yuntao Guan, Jinxiong Liu, Zhigao Bu
    Science China Life Sciences.2020; 63(5): 623.     CrossRef
  • African swine fever – A review of current knowledge
    Sandra Blome, Kati Franzke, Martin Beer
    Virus Research.2020; 287: 198099.     CrossRef
  • Molecular Characterization of African Swine Fever Virus Isolates in Estonia in 2014–2019
    Annika Vilem, Imbi Nurmoja, Tarmo Niine, Taavi Riit, Raquel Nieto, Arvo Viltrop, Carmina Gallardo
    Pathogens.2020; 9(7): 582.     CrossRef
  • Molecular characterization of African swine fever virus from outbreaks in Namibia in 2018
    Umberto Molini, Borden Mushonga, Tirumala B. K. Settypalli, William G. Dundon, Siegfried Khaiseb, Mark Jago, Giovanni Cattoli, Charles E. Lamien
    Transboundary and Emerging Diseases.2020; 67(2): 1008.     CrossRef

Journal of Microbiology : Journal of Microbiology
TOP