Previous issues
- Page Path
-
HOME
> Browse Articles
> Previous issues
- Volume 60(8); August 2022
-
Review
- [MINIREVIEW]Glaciers as microbial habitats: current knowledge and implication
-
Soyeon Kim , Hanbyul Lee , Soon-Do Hur , Woo Jun Sul , Ok-Sun Kim
-
J. Microbiol. 2022;60(8):767-779. Published online July 29, 2022
-
DOI: https://doi.org/10.1007/s12275-022-2275-9
-
-
16
View
-
0
Download
-
8
Citations
-
Abstract
- Glaciers, formed from the gradual accumulation of snow,
can be continuous records representing past environments
and recognized as a time capsule of our planetary evolution.
Due to extremely harsh conditions, glacial ice has long been
considered an uninhabitable ecosystem for microorganisms
to sustain their life. However, recent developments in microbiological
analysis techniques revealed the presence of unexpectedly
diverse microbial strains. Glacial microorganisms
could also provide valuable information, including not only
biological diversity and structure but also molecular systematics,
metabolic profiles, and evolutionary changes from the
past climate and ecosystem. However, there are several obstacles
in investigating the glacier environment, such as low
regional accessibility, technical difficulties of ice coring, potential
contamination during the sampling process, and low
microbial biomass. This review aims to summarize recent
knowledge on decontamination methods, biomass, diversity
based on culture-dependent and -independent methods, application
of biological proxies, greenhouse gas production
and adaptive strategies in glaciers from various regions and to
imply further directions for a comprehensive understanding
of habitatility in an icy world including outer of our planet.
Journal Articles
- Dynamic colonization of gut microbiota and its influencing factors among the breast-feeding infants during the first two years of life
-
Ping Li , Xuelian Chang , Xiaoyu Chen , Tiantian Tang , Yajing Liu , Yu Shang , Kemin Qi
-
J. Microbiol. 2022;60(8):780-794. Published online May 27, 2022
-
DOI: https://doi.org/10.1007/s12275-022-1641-y
-
-
17
View
-
0
Download
-
2
Citations
-
Abstract
- The maturation of infant gut microbiota has lifelong implications
on health, which has been proposed as the major events
during the first year of life. However, little is known about
their dynamic colonization and influencing elements among
the first two-year infancy as well as into the adulthood. So
based on the 16S rRNA sequencing data among 30 healthy
breast-feeding mother-infant pairs with normal ranges of
growth and development indicators from birth to two years
old, the dynamic colonization of gut microbiota and its influencing
factors were discussed using this birth cohort. Among
these, we identified that the diversity of gut microbiota was
significantly increased from six-month to two-year subgroups.
The significantly dynamic trends of gut microbiota at the phylum
(genus) level were that the percents of Firmicutes (Faecalibacterium,
Blautia, Enterococcus, Subdoligranulum, Agathobacter,
unidentified_Erysipelotrichaceae, Staphylococcus,
unidentified_Ruminococcaceae, and Fusicatenibacter), Bacteroidetes
and Verrucomicrobia were increased, while Actinobacteria
(Bifidobacterium) and Proteobacteria (unidentified-
Enterobacteriaceae and Klebsiella) were decreased with
the increased ages from six months to two years old, which
might simultaneously modulate the host pathways, such as
the higher percents of chemoheterotrophy and fermentation,
and lower percentages of nitrate_reduction, aerobic_chemoheterotrophy
and so on. Furthermore, there were significant
associations between maternal (milk microbiota, pre-pregnancy
BMI, BMI increment during the pregnancy)/infant
characteristics (BMI at birth and BMI gain), and the compositions
of gut microbiota. However, no differences of gut
microbiota were shown between the different sex and productive
mode subgroups. Overall, the colonization of gut microbiota
is significantly matured into the adulthood with the
increased ages to two-years old and regulated by the above
maternal/infant characteristics, which will provide a new direction
for the host-gut microbiota interplay during the first
two years of life.
- Analysis of phylogenetic markers for classification of a hydrogen peroxide producing Streptococcus oralis isolated from saliva by a newly devised differential medium
-
Ha Pham , Thi Dieu Thuy Tran , Youri Yang , Jae-Hyung Ahn , Hor-Gil Hur , Yong-Hak Kim
-
J. Microbiol. 2022;60(8):795-805. Published online July 14, 2022
-
DOI: https://doi.org/10.1007/s12275-022-2261-2
-
-
15
View
-
0
Download
-
1
Citations
-
Abstract
- Hydrogen peroxide (H2O2) is produced by alpha-hemolytic
streptococci in aerobic conditions. However, the suitable method
for detection of H2O2-producing streptococci in oral
microbiota has not been setup. Here we show that o-dianisidine
dye and horseradish peroxidase were useful in tryptic
soy agar medium to detect and isolate H2O2-producing
bacteria with the detection limit of one target colony in > 106
colony-forming units. As a proof, we isolated the strain HP01
(KCTC 21190) from a saliva sample using the medium and
analyzed its characteristics. Further tests showed that the strain
HP01 belongs to Streptococcus oralis in the Mitis group and
characteristically forms short-chain streptococcal cells with
a high capacity of acid tolerance and biofilm formation. The
genome analysis revealed divergence of the strain HP01 from
the type strains of S. oralis. They showed distinctive phylogenetic
distances in their ROS-scavenging proteins, including
superoxide dismutase SodA, thioredoxin TrxA, thioredoxin
reductase TrxB, thioredoxin-like protein YtpP, and glutaredoxin-
like protein NrdH, as well as a large number of antimicrobial
resistance genes and horizontally transferred genes.
The concatenated ROS-scavenging protein sequence can be
used to identify and evaluate Streptococcus species and subspecies
based on phylogenetic analysis.
- Flavihumibacter fluminis sp. nov. and Flavihumibacter rivuli sp. nov., isolated from a freshwater stream
-
Miri S. Park , Hyeonuk Sa , Ilnam Kang , Jang-Cheon Cho
-
J. Microbiol. 2022;60(8):806-813. Published online July 29, 2022
-
DOI: https://doi.org/10.1007/s12275-022-2298-2
-
-
18
View
-
0
Download
-
5
Citations
-
Abstract
- Two Gram-stain-positive, aerobic, chemoheterotrophic, nonmotile,
rod-shaped, and yellow-pigmented bacterial strains,
designated IMCC34837T and IMCC34838T, were isolated from
a freshwater stream. Results of 16S rRNA gene-based phylogenetic
analyses showed that strains IMCC34837T and IMCC-
34838T shared 96.3% sequence similarity and were most closely
related to Flavihumibacter profundi Chu64-6-1T (99.6%)
and Flavihumibacter cheonanensis WS16T (96.4%), respectively.
Complete whole-genome sequences of strains IMCC-
34837T and IMCC34838T were 5.0 Mbp and 4.3 Mbp of genome
size with 44.5% and 47.9% of DNA G + C contents,
respectively. Average nucleotide identity (ANI) and digital
DNA- DNA hybridization (dDDH) values between the two
strains were 70.0% and 17.9%, repectively, revealing that they
are independent species. The two strains showed ≤ 75.2% ANI
and ≤ 19.3% dDDH values to each closely related species of the
genus Flavihumibacter, indicating that the two strains represent
each novel species. Major fatty acid constituents of
strain IMCC34837T were iso-C15:0, iso-C15:1 G and anteiso-C15:0
and those of strain IMCC34838T were iso-C15:0 and iso-C15:1
G. The predominant isoprenoid quinone detected in both
strains was menaquinone-7 (MK-7). Major polar lipids of
both strains were phosphatidylethanolamine, aminolipids,
and glycolipids. Based on the phylogenetic and phenotypic
characterization, strains IMCC34837T and IMCC34838T were
considered to represent two novel species within the genus
Flavihumibacter, for which the names Flavihumibacter fluminis
sp. nov. and Flavihumibacter rivuli sp. nov. are proposed
with IMCC34837T (= KACC 21752T = NBRC 115292T)
and IMCC34838T (= KACC 21753T = NBRC 115293T) as
the type strains, respectively.
- Differences in the methanogen community between the nearshore and offshore sediments of the South Yellow Sea
-
Ye Chen , Yu Zhen , Jili Wan , Siqi Li , Jiayin Liu , Guodong Zhang , Tiezhu Mi
-
J. Microbiol. 2022;60(8):814-822. Published online July 14, 2022
-
DOI: https://doi.org/10.1007/s12275-022-2022-2
-
-
20
View
-
0
Download
-
3
Citations
-
Abstract
- The differences in methanogen abundance and community
composition were investigated between nearshore and offshore
sediments in the South Yellow Sea (SYS). Shannon,
Simpson, and Chao1 indices revealed a higher diversity of
methanogens in the nearshore sediments than in the offshore
sediments. The Mann–Whitney U test demonstrated that the
relative abundance of Methanococcoides was significantly
higher in the offshore sediments, while the relative abundances
of Methanogenium, Methanosarcina, Methanosaeta,
Methanolinea, and Methanomassiliicoccus were significantly
higher in the nearshore sediments (P < 0.05). The abundance
of the mcrA gene in the nearshore sediments was significantly
higher than that in the offshore sediments. Furthermore, a
similar vertical distribution of the methanogen and sulfatereducing
bacteria (SRB) abundances was observed in the SYS
sediments, implying there is potential cooperation between
these two functional microbes in this environment. Finally,
total organic carbon (TOC) was significantly correlated with
methanogen community composition.
- Pat- and Pta-mediated protein acetylation is required for horizontallyacquired virulence gene expression in Salmonella Typhimurium
-
Hyojeong Koo , Eunna Choi , Shinae Park , Eun-Jin Lee , Jung-Shin Lee
-
J. Microbiol. 2022;60(8):823-831. Published online May 27, 2022
-
DOI: https://doi.org/10.1007/s12275-022-2095-y
-
-
Abstract
- Salmonella Typhimurium is a Gram-negative facultative pathogen
that causes a range of diseases, from mild gastroenteritis
to severe systemic infection in a variety of animal
hosts. S. Typhimurium regulates virulence gene expression
by a silencing mechanism using nucleoid-associated proteins
such as Histone-like Nucleoid Structuring protein (H-NS)
silencing. We hypothesize that the posttranslational modification,
specifically protein acetylation, of proteins in gene
silencing systems could affect the pathogenic gene expression
of S. Typhimurium. Therefore, we created acetylation-deficient
mutant by deleting two genes, pat and pta, which are
involved in the protein acetylation pathway. We observed
that the pat and pta deletion attenuates mouse virulence and
also decreases Salmonella’s replication within macrophages.
In addition, the Δpat Δpta strain showed a decreased expression
of the horizontally-acquired virulence genes, mgtC,
pagC, and ugtL, which are highly expressed in low Mg2+. The
decreased virulence gene expression is possibly due to higher
H-NS occupancy to those promoters because the pat and
pta deletion increases H-NS occupancy whereas the same
mutation decreases occupancy of RNA polymerase. Our results
suggest that Pat- and Pta-mediated protein acetylation
system promotes the expression of virulence genes by regulating
the binding affinity of H-NS in S. Typhimurium.
- Effects of tryptophan and phenylalanine on tryptophol production in Saccharomyces cerevisiae revealed by transcriptomic and metabolomic analyses
-
Xiaowei Gong , Huajun Luo , Liu Hong , Jun Wu , Heng Wu , Chunxia Song , Wei Zhao , Yi Han , Ya Dao , Xia Zhang , Donglai Zhu , Yiyong Luo
-
J. Microbiol. 2022;60(8):832-842. Published online May 27, 2022
-
DOI: https://doi.org/10.1007/s12275-022-2059-2
-
-
16
View
-
0
Download
-
3
Citations
-
Abstract
- Tryptophol (TOL) is a metabolic derivative of tryptophan
(Trp) and shows pleiotropic effects in humans, plants and
microbes. In this study, the effect of Trp and phenylalanine
(Phe) on TOL production in Saccharomyces cerevisiae was determined,
and a systematic interpretation of TOL accumulation
was offered by transcriptomic and metabolomic analyses.
Trp significantly promoted TOL production, but the output
plateaued (231.02−266.31 mg/L) at Trp concentrations ≥ 0.6
g/L. In contrast, Phe reduced the stimulatory effect of Trp,
which was strongly dependent on the Phe concentration. An
integrated genomic, transcriptomic, and metabolomic analysis
revealed that the effect of Trp and Phe on TOL production
was mainly related to the transamination and decarboxylation
of the Ehrlich pathway. Additionally, other genes, including
thiamine regulon genes (this), the allantoin catabolic
genes dal1, dal2, dal4, and the transcriptional activator gene
aro80, may play important roles. These findings were partly
supported by the fact that the thi4 gene was involved in TOL
production, as shown by heterologous expression analysis. To
the best of our knowledge, this novel biological function of thi4
in S. cerevisiae is reported here for the first time. Overall, our
findings provide insights into the mechanism of TOL production,
which will contribute to TOL production using metabolic
engineering strategies.
- Fus3 and Tpk2 protein kinases regulate the phosphorylation-dependent functions of RNA helicase Dhh1 in yeast mating and Ste12 protein expression
-
Jaehee Hwang , Daehee Jung , Jinmi Kim
-
J. Microbiol. 2022;60(8):843-848. Published online July 14, 2022
-
DOI: https://doi.org/10.1007/s12275-022-2213-x
-
-
Abstract
- Decapping of mRNA is a key regulatory step for mRNA decay
and translation. The RNA helicase, Dhh1, is known as a
decapping activator and translation repressor in yeast Saccharomyces
cerevisiae. Dhh1 also functions as a gene-specific
positive regulator in the expression of Ste12, a mating-specific
transcription factor. A previous study showed that the Nerminal
phosphorylation of Dhh1 regulates its association
with the mRNA-binding protein, Puf6, to affect the protein
translation of Ste12. Here, we investigated the roles of the
phosphorylated residues of Dhh1 in yeast mating process and
Ste12 expression. The phospho-deficient mutation, DHH1-
T10A, was associated with decreased diploid formation during
mating and decreased level of the Ste12 protein in response
to α-mating pheromone. A kinase overexpression analysis
revealed that Ste12 protein expression was affected by
overexpression of Fus3 MAP kinase or Tpk2 kinase. Tpk2
was shown to be responsible for phosphorylation of Dhh1 at
Thr10. Our study shows that overexpression of Fus3 or Tpk2
alters the Dhh1-Puf6 protein interaction and thereby affects
Ste12 protein expression.
- Helicobacter pylori-mediated gastric pathogenesis is attenuated by treatment of 2-deoxyglucose and metformin
-
Hanfu Su , Eun-Jung Bak , Aeryun Kim , Kavinda Tissera , Jeong-Heon Cha , Sungil Jang
-
J. Microbiol. 2022;60(8):849-858. Published online June 22, 2022
-
DOI: https://doi.org/10.1007/s12275-022-2130-z
-
-
17
View
-
0
Download
-
3
Citations
-
Abstract
- Helicobacter pylori infection causes chronic inflammation
in the stomach, which is linked to the development of gastric
cancer. The anti-inflammatory and anticancer effects of a
glycolysis inhibitor 2-deoxyglucose (2DG) and an antidiabetic
medication metformin (Met) have gotten attention. Using a
Mongolian gerbil animal model, we investigated H. pylorimediated
gastric pathogenesis and how this pathogenesis is
influenced by 2DG and Met. Five-week-old male gerbils were
infected with H. pylori strain 7.13. After 2 weeks of infection,
gerbils were fed 2DG-containing food (0.03% w/w), Met-containing
water (0.5% w/v), or both (Combi) for 2 (short-term)
or 10 weeks (long-term). Gastric pathogenesis and host response
to H. pylori infection were examined by macroscopic
and histopathologic analysis of gerbils’ stomach. As a result,
indicators of gastric pathogenesis by H. pylori infection including
infiltration of polymorphonuclear neutrophils and
lymphocytes, intestinal metaplasia, atrophy, and proliferation
of gastric epithelial cells were attenuated by short-term administration
of 2DG, Met, or Combi. When the infection was
sustained for long-term, gastric pathogenesis in drug-treated
gerbils was equivalent to that in untreated gerbils, with the
exception that the infiltration of neutrophil was reduced by
2DG. Colonization of H. pylori in stomach was unaffected
by both short- and long-term treatments. Our findings demonstrate
that the progression of gastric pathogenesis induced
by H. pylori infection can be attenuated by the shortterm
individual or combinational treatment of 2DG and
Met, implying that 2DG or Met could be considered as a
treatment option for gastric diseases in the early stages of
infection.
- Eradication of drug-resistant Acinetobacter baumannii by cell-penetrating peptide fused endolysin
-
Jeonghyun Lim , Jaeyeon Jang , Heejoon Myung , Miryoung Song
-
J. Microbiol. 2022;60(8):859-866. Published online May 25, 2022
-
DOI: https://doi.org/10.1007/s12275-022-2107-y
-
-
23
View
-
0
Download
-
9
Citations
-
Abstract
- Antimicrobial agents targeting peptidoglycan have shown
successful results in eliminating bacteria with high selective
toxicity. Bacteriophage encoded endolysin as an alternative
antibiotics is a peptidoglycan degrading enzyme with a low
rate of resistance. Here, the engineered endolysin was developed
to defeat multiple drug-resistant (MDR) Acinetobacter
baumannii. First, putative endolysin PA90 was predicted by
genome analysis of isolated Pseudomonas phage PBPA. The
His-tagged PA90 was purified from BL21(DE3) pLysS and
tested for the enzymatic activity using Gram-negative pathogens
known for having a high antibiotic resistance rate including
A. baumannii. Since the measured activity of PA90
was low, probably due to the outer membrane, cell-penetrating
peptide (CPP) DS4.3 was introduced at the N-terminus
of PA90 to aid access to its substrate. This engineered endolysin,
DS-PA90, completely killed A. baumannii at 0.25 μM,
at which concentration PA90 could only eliminate less than
one log in CFU/ml. Additionally, DS-PA90 has tolerance to
NaCl, where the ~50% of activity could be maintained in the
presence of 150 mM NaCl, and stable activity was also observed
with changes in pH or temperature. Even MDR A. baumannii
strains were highly susceptible to DS-PA90 treatment:
five out of nine strains were entirely killed and four strains
were reduced by 3–4 log in CFU/ml. Consequently, DS-PA90
could protect waxworm from A. baumannii-induced death
by ~70% for ATCC 17978 or ~44% for MDR strain 1656-2
infection. Collectively, our data suggest that CPP-fused endolysin
can be an effective antibacterial agent against Gramnegative
pathogens regardless of antibiotics resistance mechanisms.
TOP