Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
74 "1"
Filter
Filter
Article category
Keywords
Publication year
Authors
Review
The Role of Extracellular Vesicles in Pandemic Viral Infections.
Woosung Shim, Anjae Lee, Jung-Hyun Lee
J. Microbiol. 2024;62(6):419-427.   Published online June 25, 2024
DOI: https://doi.org/10.1007/s12275-024-00144-x
  • 5 View
  • 0 Download
AbstractAbstract
Extracellular vesicles (EVs), of diverse origin and content, are membranous structures secreted by a broad range of cell types. Recent advances in molecular biology have highlighted the pivotal role of EVs in mediating intercellular communication, facilitated by their ability to transport a diverse range of biomolecules, including proteins, lipids, DNA, RNA and metabolites. A striking feature of EVs is their ability to exert dual effects during viral infections, involving both proviral and antiviral effects. This review explores the dual roles of EVs, particularly in the context of pandemic viruses such as HIV-1 and SARS-CoV-2. On the one hand, EVs can enhance viral replication and exacerbate pathogenesis by transferring viral components to susceptible cells. On the other hand, they have intrinsic antiviral properties, including activation of immune responses and direct inhibition of viral infection. By exploring these contrasting functions, our review emphasizes the complexity of EV-mediated interactions in viral pathogenesis and highlights their potential as targets for therapeutic intervention. The insights obtained from investigating EVs in the context of HIV-1 and SARS-CoV-2 provide a deeper understanding of viral mechanisms and pathologies, and offer a new perspective on managing and mitigating the impact of these global health challenges.
Journal Articles
Identification of avaC from Human Gut Microbial Isolates that Converts 5AVA to 2-Piperidone.
Qiudi Zhou, Lihui Feng
J. Microbiol. 2024;62(5):367-379.   Published online June 17, 2024
DOI: https://doi.org/10.1007/s12275-024-00141-0
  • 7 View
  • 0 Download
AbstractAbstract
2-piperidone is a crucial industrial raw material of high-value nylon-5 and nylon-6,5. Currently, a major bottleneck in the biosynthesis of 2-piperidone is the identification of highly efficient 2-piperidone synthases. In this study, we aimed to identify specific strains among 51 human gut bacterial strains capable of producing 2-piperidone and to elucidate its synthetic mechanism. Our findings revealed that four gut bacterial strains, namely Collinsella aerofaciens LFYP39, Collinsella intestinalis LFYP54, Clostridium bolteae LFYP116, and Clostridium hathewayi LFYP18, could produce 2-piperidone from 5-aminovaleric acid (5AVA). Additionally, we observed that 2-piperidone could be synthesized from proline through cross-feeding between Clostridium difficile LFYP43 and one of the four 2-piperidone producing strains, respectively. To identify the enzyme responsible for catalyzing the conversion of 5AVA to 2-piperidone, we utilized a gain-of-function library and identified avaC (5-aminovaleric acid cyclase) in C. intestinalis LFYP54. Moreover, homologous genes of avaC were validated in the other three bacterial strains. Notably, avaC were found to be widely distributed among environmental bacteria. Overall, our research delineated the gut bacterial strains and genes involved in 2-piperidone production, holding promise for enhancing the efficiency of industrial biosynthesis of this compound.
Tubulysin Production by the Dead Cells of Archangium gephyra KYC5002.
Seohui Park, Chaehyeon Park, Yujin Ka, Kyungyun Cho
J. Microbiol. 2024;62(6):463-471.   Published online June 13, 2024
DOI: https://doi.org/10.1007/s12275-024-00130-3
  • 7 View
  • 0 Download
AbstractAbstract
Archangium gephyra KYC5002 produces tubulysins during the death phase. In this study, we aimed to determine whether dead cells produce tubulysins. Cells were cultured for three days until the verge of the death phase, disrupted via ultrasonication, incubated for 2 h, and examined for tubulysin production. Non-disrupted cells produced 0.14 mg/L of tubulysin A and 0.11 mg/L of tubulysin B. Notably, tubulysin A production was increased by 4.4-fold to 0.62 mg/L and that of tubulysin B was increased by 6.7-fold to 0.74 mg/L in the disrupted cells. The same increase in tubulysin production was observed when the cells were killed by adding hydrogen peroxide. However, when the enzymes were inactivated via heat treatment of the cultures at 65 °C for 30 min, no significant increase in tubulysin production due to cell death was observed. Reverse transcription-quantitative polymerase chain reaction analysis of tubB mRNA revealed that the expression levels of tubulysin biosynthetic enzyme genes increased during the death phase compared to those during the vegetative growth phase. Our findings suggest that A. gephyra produces biosynthetic enzymes and subsequently uses them for tubulysin production in the cell death phase or during cell lysis by predators.
Licochalcone A Protects Vaginal Epithelial Cells Against Candida albicans Infection Via the TLR4/NF-κB Signaling Pathway.
Wei Li, Yujun Yin, Taoqiong Li, Yiqun Wang, Wenyin Shi
J. Microbiol. 2024;62(7):525-533.   Published online May 31, 2024
DOI: https://doi.org/10.1007/s12275-024-00134-z
  • 32 View
  • 0 Download
AbstractAbstract
Vulvovaginal candidiasis (VVC) is a prevalent condition affecting a significant portion of women worldwide. Licochalcone A (LA), a natural compound with diverse biological activities, holds promise as a protective agent against Candida albicans (C. albicans) infection. This study aims to investigate the potential of LA to safeguard vaginal epithelial cells (VECs) from C. albicans infection and elucidate the underlying molecular mechanisms. To simulate VVC in vitro, VK2-E6E7 cells were infected with C. albicans. Candida albicans biofilm formation, C. albicans adhesion to VK2-E6E7 cells, and C. albicans-induced cell damage and inflammatory responses were assessed by XTT reduction assay, fluorescence assay, LDH assay, and ELISA. CCK-8 assay was performed to evaluate the cytotoxic effects of LA on VK2-E6E7 cells. Western blotting assay was performed to detect protein expression. LA dose-dependently hindered C. albicans biofilm formation and adhesion to VK2-E6E7 cells. Furthermore, LA mitigated cell damage, inhibited the Bax/Bcl-2 ratio, and attenuated the secretion of pro-inflammatory cytokines in C. albicans-induced VK2-E6E7 cells. The investigation into LA's impact on the Toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB) pathway revealed that LA downregulated TLR4 expression and inhibited NF-κB activation in C. albicans-infected VK2-E6E7 cells. Furthermore, TLR4 overexpression partially abated LA-mediated protection, further highlighting the role of the TLR4/NF-κB pathway. LA holds the potential to safeguard VECs against C. albicans infection, potentially offering therapeutic avenues for VVC management.
Review
Reverse Zoonotic Transmission of SARS-CoV-2 and Monkeypox Virus: A Comprehensive Review.
Chiranjib Chakraborty, Manojit Bhattacharya, Md Aminul Islam, Hatem Zayed, Elijah Ige Ohimain, Sang-Soo Lee, Prosun Bhattacharya, Kuldeep Dhama
J. Microbiol. 2024;62(5):337-354.   Published online May 23, 2024
DOI: https://doi.org/10.1007/s12275-024-00138-9
  • 10 View
  • 0 Download
AbstractAbstract
Reverse zoonosis reveals the process of transmission of a pathogen through the human-animal interface and the spillback of the zoonotic pathogen. In this article, we methodically demonstrate various aspects of reverse zoonosis, with a comprehensive discussion of SARS-CoV-2 and MPXV reverse zoonosis. First, different components of reverse zoonosis, such as humans, different pathogens, and numerous animals (poultry, livestock, pets, wild animals, and zoo animals), have been demonstrated. Second, it explains the present status of reverse zoonosis with different pathogens during previous occurrences of various outbreaks, epidemics, and pandemics. Here, we present 25 examples from literature. Third, using several examples, we comprehensively illustrate the present status of the reverse zoonosis of SARS-CoV-2 and MPXV. Here, we have provided 17 examples of SARS-CoV-2 reverse zoonosis and two examples of MPXV reverse zoonosis. Fourth, we have described two significant aspects of reverse zoonosis: understanding the fundamental aspects of spillback and awareness. These two aspects are required to prevent reverse zoonosis from the current infection with two significant viruses. Finally, the One Health approach was discussed vividly, where we urge scientists from different areas to work collaboratively to solve the issue of reverse zoonosis.
Journal Articles
Genetically Engineered CLDN18.2 CAR-T Cells Expressing Synthetic PD1/CD28 Fusion Receptors Produced Using a Lentiviral Vector.
Heon Ju Lee, Seo Jin Hwang, Eun Hee Jeong, Mi Hee Chang
J. Microbiol. 2024;62(7):555-568.   Published online May 3, 2024
DOI: https://doi.org/10.1007/s12275-024-00133-0
  • 29 View
  • 0 Download
AbstractAbstract
This study aimed to develop synthetic Claudin18.2 (CLDN18.2) chimeric antigen receptor (CAR)-T (CAR-T) cells as a treatment for advanced gastric cancer using lentiviral vector genetic engineering technology that targets the CLDN18.2 antigen and simultaneously overcomes the immunosuppressive environment caused by programmed cell death protein 1 (PD-1). Synthetic CAR T cells are a promising approach in cancer immunotherapy but face many challenges in solid tumors. One of the major problems is immunosuppression caused by PD-1. CLDN18.2, a gastric-specific membrane protein, is considered a potential therapeutic target for gastric and other cancers. In our study, CLDN18.2 CAR was a second-generation CAR with inducible T-cell costimulatory (CD278), and CLDN18.2-PD1/CD28 CAR was a third-generation CAR, wherein the synthetic PD1/CD28 chimeric-switch receptor (CSR) was added to the second-generation CAR. In vitro, we detected the secretion levels of different cytokines and the killing ability of CAR-T cells. We found that the secretion of cytokines such as interferon-gamma (IFN-γ) and tumor necrosis factor-alpha (TNF-α) secreted by three types of CAR-T cells was increased, and the killing ability against CLDN18.2-positive GC cells was enhanced. In vivo, we established a xenograft GC model and observed the antitumor effects and off-target toxicity of CAR-T cells. These results support that synthetic anti-CLDN18.2 CAR-T cells have antitumor effect and anti-CLDN18.2-PD1/CD28 CAR could provide a promising design strategy to improve the efficacy of CAR-T cells in advanced gastric cancer.
Effects of Light and Dark Conditions on the Transcriptome of Aging Cultures of Candidatus Puniceispirillum marinum IMCC1322.
Ji Hyen Lee, Hyun-Myung Oh
J. Microbiol. 2024;62(4):297-314.   Published online April 25, 2024
DOI: https://doi.org/10.1007/s12275-024-00125-0
  • 8 View
  • 0 Download
AbstractAbstract
To elucidate the function of proteorhodopsin in Candidatus Puniceispirillum marinum strain IMCC1322, a cultivated representative of SAR116, we produced RNA-seq data under laboratory conditions. We examined the transcriptomes of six different cultures, including sets of expression changes under constant dark (DD), constant light (LL), and diel-cycled (LD; 14 h light: 10 h dark) conditions at the exponential and stationary/death phases. Prepared mRNA extracted from the six samples was analyzed on the Solexa Genome Analyzer with 36 cycles. Differentially expressed genes on the IMCC1322 genome were distinguished as four clusters by K-mean clustering and each CDS (n = 2546) was annotated based on the KEGG BRITE hierarchy. Cluster 0 (n = 1573) covered most constitutive genes including proteorhodopsin, retinoids, and glycolysis/TCA cycle. Cluster 1 genes (n = 754) were upregulated in stationary/death phase under constant dark conditions and included genes associated with bacterial defense, membrane transporters, nitrogen metabolism, and senescence signaling. Cluster 2 genes (n = 197) demonstrated upregulation in exponential phase cultures and included genes involved in genes for oxidative phosphorylation, translation factors, and transcription machinery. Cluster 3 (n = 22) contained light-stimulated upregulated genes expressed under stationary/phases. Stringent response genes belonged to cluster 2, but affected genes spanned various cellular processes such as amino acids, nucleotides, translation, transcription, glycolysis, fatty acids, and cell wall components. The coordinated expression of antagonistic stringent genes, including mazG, ppx/gppA, and spoT/relA may provide insight into the controlled cultural response observed between constant light and constant dark conditions in IMCC1322 cultures, regardless of cell numbers and biomass.
Syntaxin17 Restores Lysosomal Function and Inhibits Pyroptosis Caused by Acinetobacter baumannii.
Zhiyuan An, Wenyi Ding
J. Microbiol. 2024;62(4):315-325.   Published online March 7, 2024
DOI: https://doi.org/10.1007/s12275-024-00109-0
  • 8 View
  • 0 Download
AbstractAbstract
Acinetobacter baumannii (A. baumannii) causes autophagy flux disorder by degrading STX17, resulting in a serious inflammatory response. It remains unclear whether STX17 can alter the inflammatory response process by controlling autolysosome function. This study aimed to explore the role of STX17 in the regulation of pyroptosis induced by A. baumannii. Our findings indicate that overexpression of STX17 enhances autophagosome degradation, increases LAMP1 expression, reduces Cathepsin B release, and improves lysosomal function. Conversely, knockdown of STX17 suppresses autophagosome degradation, reduces LAMP1 expression, augments Cathepsin B release, and accelerates lysosomal dysfunction. In instances of A. baumannii infection, overexpression of STX17 was found to improve lysosomal function and reduce the expression of mature of GSDMD and IL-1β, along with the release of LDH, thus inhibiting pyroptosis caused by A. baumannii. Conversely, knockdown of STX17 led to increased lysosomal dysfunction and further enhanced the expression of mature of GSDMD and IL-1β, and increased the release of LDH, exacerbating pyroptosis induced by A. baumannii. These findings suggest that STX17 regulates pyroptosis induced by A. baumannii by modulating lysosomal function.
Saxibacter everestensis gen. nov., sp. nov., A Novel Member of the Family Brevibacteriaceae, Isolated from the North Slope of Mount Everest.
Mao Tian, Shiyu Wu, Wei Zhang, Gaosen Zhang, Xue Yu, Yujie Wu, Puchao Jia, Binglin Zhang, Tuo Chen, Guangxiu Liu
J. Microbiol. 2024;62(4):277-284.   Published online March 6, 2024
DOI: https://doi.org/10.1007/s12275-024-00108-1
  • 10 View
  • 0 Download
AbstractAbstract
We isolated and analyzed a novel, Gram-stain-positive, aerobic, rod-shaped, non-motile actinobacterium, designated as strain ZFBP1038(T), from rock sampled on the north slope of Mount Everest. The growth requirements of this strain were 10-37 °C, pH 4-10, and 0-6% (w/v) NaCl. The sole respiratory quinone was MK-9, and the major fatty acids were anteiso-C(15:0) and iso-C(17:0). Peptidoglycan containing meso-diaminopimelic acid, ribose, and glucose were the major cell wall sugars, while polar lipids included diphosphatidyl glycerol, phosphatidyl glycerol, an unidentified phospholipid, and an unidentified glycolipid. A phylogenetic analysis based on 16S rRNA gene sequences showed that strain ZFBP1038(T) has the highest similarity with Spelaeicoccus albus DSM 26341( T) (96.02%). ZFBP1038(T) formed a distinct monophyletic clade within the family Brevibacteriaceae and was distantly related to the genus Spelaeicoccus. The G + C content of strain ZFBP1038(T) was 63.65 mol% and the genome size was 4.05 Mb. Digital DNA-DNA hybridization, average nucleotide identity, and average amino acid identity values between the genomes of strain ZFBP1038(T) and representative reference strains were 19.3-25.2, 68.0-71.0, and 52.8-60.1%, respectively. Phylogenetic, phenotypic, and chemotaxonomic characteristics as well as comparative genome analyses suggested that strain ZFBP1038(T) represents a novel species of a new genus, for which the name Saxibacter gen. nov., sp. nov. was assigned with the type strain Saxibacter everestensis ZFBP1038(T) (= EE 014( T) = GDMCC 1.3024( T) = JCM 35335( T)).
Biosynthesis of Chryseno[2,1,c]oxepin‑12‑Carboxylic Acid from Glycyrrhizic Acid in Aspergillus terreus TMZ05‑2, and Analysis of Its Anti‑inflammatory Activity
Liangliang Chen , Lin Zhao , Ju Han , Ping Xiao , Mingzhe Zhao , Sen Zhang , Jinao Duan
J. Microbiol. 2024;62(2):113-124.   Published online February 27, 2024
DOI: https://doi.org/10.1007/s12275-024-00105-4
  • 5 View
  • 0 Download
AbstractAbstract
Glycyrrhizic acid, glycyrrhetinic acid, and their oxo, ester, lactone, and other derivatives, are known for their anti-inflammatory, anti-oxidant, and hypoglycemic pharmacological activities. In this study, chryseno[2,1-c]oxepin-12-carboxylic acid (MG) was first biosynthesized from glycyrrhizic acid through sequential hydrolysis, oxidation, and esterification using Aspergillus terreus TMZ05-2, providing a novel in vitro biosynthetic pathway for glycyrrhizic acid derivatives. Assessing the influence of fermentation conditions and variation of strains during culture under stress-induction strategies enhanced the final molar yield to 88.3% (5 g/L glycyrrhizic acid). CCK8 assays showed no cytotoxicity and good cell proliferation, and anti-inflammatory experiments demonstrated strong inhibition of NO release (36.3%, low-dose MG vs. model), transcriptional downregulation of classical effective cellular factors tumor necrosis factor-α (TNF-α; 72.2%, low-dose MG vs. model), interleukin-6 (IL-6; 58.3%, low-dose MG vs. model) and interleukin-1β (IL-1β; 76.4%, low-dose MG vs. model), and decreased abundance of P-IKK-α, P-IKB-α, and P-P65 proteins, thereby alleviating inflammatory responses through the NF-κB pathway in LPS-induced RAW264.7 cells. The findings provide a reference for the biosynthesis of lactone compounds from medicinal plants.
[Protocol] Use of Cas9 Targeting and Red Recombination for Designer Phage Engineering
Shin-Yae Choi , Danitza Xiomara Romero-Calle , Han-Gyu Cho , Hee-Won Bae , You-Hee Cho
J. Microbiol. 2024;62(1):1-10.   Published online February 1, 2024
DOI: https://doi.org/10.1007/s12275-024-00107-2
  • 14 View
  • 0 Download
AbstractAbstract
Bacteriophages (phages) are natural antibiotics and biological nanoparticles, whose application is significantly boosted by recent advances of synthetic biology tools. Designer phages are synthetic phages created by genome engineering in a way to increase the benefits or decrease the drawbacks of natural phages. Here we report the development of a straightforward genome engineering method to efficiently obtain engineered phages in a model bacterial pathogen, Pseudomonas aeruginosa. This was achieved by eliminating the wild type phages based on the Streptococcus pyogenes Cas9 (SpCas9) and facilitating the recombinant generation based on the Red recombination system of the coliphage λ (λRed). The producer (PD) cells of P. aeruginosa strain PAO1 was created by miniTn7-based chromosomal integration of the genes for SpCas9 and λRed under an inducible promoter. To validate the efficiency of the recombinant generation, we created the fluorescent phages from a temperate phage MP29. A plasmid bearing the single guide RNA (sgRNA) gene for selectively targeting the wild type gp35 gene and the editing template for tagging the Gp35 with superfolder green fluorescent protein (sfGFP) was introduced into the PD cells by electroporation. We found that the targeting efficiency was affected by the position and number of sgRNA. The fluorescent phage particles were efficiently recovered from the culture of the PD cells expressing dual sgRNA molecules. This protocol can be used to create designer phages in P. aeruginosa for both application and research purposes.
Transcriptomic Insights into Archaeal Nitrification in the Amundsen Sea Polynya, Antarctica
Joo-Han Gwak , Samuel Imisi Awala , So-Jeong Kim , Sang-Hoon Lee , Eun-Jin Yang , Jisoo Park , Jinyoung Jung , Sung-Keun Rhee
J. Microbiol. 2023;61(11):967-980.   Published online December 7, 2023
DOI: https://doi.org/10.1007/s12275-023-00090-0
  • 5 View
  • 0 Download
AbstractAbstract
Antarctic polynyas have the highest Southern Ocean summer primary productivity, and due to anthropogenic climate change, these areas have formed faster recently. Ammonia-oxidizing archaea (AOA) are among the most ubiquitous and abundant microorganisms in the ocean and play a primary role in the global nitrogen cycle. We utilized metagenomics and metatranscriptomics to gain insights into the physiology and metabolism of AOA in polar oceans, which are associated with ecosystem functioning. A polar-specific ecotype of AOA, from the “Candidatus Nitrosomarinus”-like group, was observed to be dominant in the Amundsen Sea Polynya (ASP), West Antarctica, during a succession of summer phytoplankton blooms. AOA had the highest transcriptional activity among prokaryotes during the bloom decline phase (DC). Metatranscriptomic analysis of key genes involved in ammonia oxidation, carbon fixation, transport, and cell division indicated that this polar AOA ecotype was actively involved in nitrification in the bloom DC in the ASP. This study revealed the physiological and metabolic traits of this key polar-type AOA in response to phytoplankton blooms in the ASP and provided insights into AOA functions in polar oceans.
The β‑Lactamase Activity at the Community Level Confers β‑Lactam Resistance to Bloom‑Forming Microcystis aeruginosa Ce
Yerim Park , Wonjae Kim , Minkyung Kim , Woojun Park
J. Microbiol. 2023;61(9):807-820.   Published online October 18, 2023
DOI: https://doi.org/10.1007/s12275-023-00082-0
  • 6 View
  • 0 Download
  • 5 Citations
AbstractAbstract
Many freshwater cyanobacteria, including Microcystis aeruginosa, lack several known antibiotic resistance genes; however, both axenic and xenic M. aeruginosa strains exhibited high antibiotic resistance against many antibiotics under our tested concentrations, including colistin, trimethoprim, and kanamycin. Interestingly, axenic PCC7806, although not the xenic NIBR18 and NIBR452 strains, displayed susceptibility to ampicillin and amoxicillin, indicating that the associated bacteria in the phycosphere could confer such antibiotic resistance to xenic strains. Fluorescence and scanning electron microscopic observations revealed their tight association, leading to possible community-level β-lactamase activity. Combinatory treatment of ampicillin with a β-lactamase inhibitor, sulbactam, abolished the ampicillin resistance in the xenic stains. The nitrocefin-based assay confirmed the presence of significant community-level β-lactamase activity. Our tested low ampicillin concentration and high β-lactamase activity could potentially balance the competitive advantage of these dominant species and provide opportunities for the less competitive species, thereby resulting in higher bacterial diversity under ampicillin treatment conditions. Non-PCR-based metagenome data from xenic NIBR18 cultures revealed the dominance of blaOXArelated antibiotic resistance genes followed by other class A β-lactamase genes (AST-1 and FAR-1). Alleviation of ampicillin toxicity could be observed only in axenic PCC7806, which had been cocultured with β-lactamase from other freshwater bacteria. Our study suggested M. aeruginosa develops resistance to old-class β-lactam antibiotics through altruism, where associated bacteria protect axenic M. aeruginosa cells.
Review
Microbial Interaction is Among the Key Factors for Isolation of Previous Uncultured Microbes
Chang Yan , Jeffrey S. Owen , Eun-Young Seo , Dawoon Jung , Shan He
J. Microbiol. 2023;61(7):655-662.   Published online August 17, 2023
DOI: https://doi.org/10.1007/s12275-023-00063-3
  • 3 View
  • 0 Download
  • 3 Citations
AbstractAbstract
Pure cultivation of microbes is still limited by the challenges of microbial uncultivability, with most microbial strains unable to be cultivated under standard laboratory conditions. The experience accumulated from advanced techniques such as in situ cultivation has identified that microbial interactions exist in natural habitats but are absent in laboratory cultures. These microbial interactions are likely one of the key factors in isolating previously uncultured microbes. The need for better knowledge of the mechanisms operating in microbial interactions has led to various experiments that have utilized microbial interactions in different approaches to microbial cultivation. These new attempts to understand microbial interactions not only present a new perspective on microbial uncultivability but also provide an opportunity to access uncultured phylogenetically novel microbes with their potential biotechnology applications. In this review, we focus on studies of the mechanisms of microbial interaction where the growth of other microbes is affected. Additionally, we review some successful applications of microbial interactions in cultivation methods, an approach that can play an important role in the bioprospecting of untapped microbial resources.
Journal Article
Comparison of Conjunctival Sac Microbiome between Low and High Myopic Eyes
Kang Xiao , Zhengyu Chen , Qin Long
J. Microbiol. 2023;61(5):571-578.   Published online April 21, 2023
DOI: https://doi.org/10.1007/s12275-023-00045-5
  • 4 View
  • 0 Download
  • 1 Citations
AbstractAbstract
Microbial communities played a vital role in maintaining homeostasis of ocular surface. However, no studies explored the myopia-associated conjunctiva microbiota changes until now. In this study, conjunctival sac swab specimens were collected from 12 eyes of low myopia (LM), and 14 eyes of high myopia (HM) patients. The V3–V4 region of the 16S rRNA gene was amplified and then sequenced. Statistical analysis was performed to investigate differences in the taxonomy and diversity between two groups. Compared to LM, higher Ocular Surface Disease Index (OSDI) scores were observed in HM group. The Shannon index of the HM was lower than that of the LM group (P = 0.017). Principle coordinate analysis and Partial Least Squares Discrimination Analysis showed distinct microbiome composition between two groups. At the phylum level, there were higher relative abundances of Proteobacteria (68.27% vs 38.51%) and lower abundances of Actinobacteria (3.71% vs 9.19%) in HM, compared to LM group (P = 0.031, 0.010, respectively). At the genus level, the abundances of Acinetobacter in HM (18.16%) were significantly higher than the LM (6.52%) group (P = 0.011). Actinobacteria levels were negatively correlated with the myopic spherical equivalent and OSDI scores. Moreover, positive correlations were found between Proteobacteria levels and OSDI scores, Acinetobacter levels were positively correlated with myopic spherical equivalent and OSDI scores. In conclusion, HM Patients have bacterial microbiota imbalance in the conjunctival sac, compared with LM patients. Proteobacteria, Actinobacteria, Acinetobacter may play roles in the HM associated ocular surface irritation.

Journal of Microbiology : Journal of Microbiology
TOP