Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
2 "16S rRNA gene sequencing"
Filter
Filter
Article category
Keywords
Publication year
Journal Articles
Diversity and Dynamics of Marine Arenicolous Fungi in Three Seasides of the Korean Peninsula
Jun Won Lee , Chang Wan Seo , Wonjun Lee , Ji Seon Kim , Ki Hyeong Park , Yoonhee Cho , Young Woon Lim
J. Microbiol. 2023;61(1):63-82.   Published online January 30, 2023
DOI: https://doi.org/10.1007/s12275-023-00011-1
  • 17 View
  • 0 Download
  • 3 Citations
AbstractAbstract
Various arenicolous fungal species have been detected from the beach sand in the coastal area. However, little has been revealed regarding their distribution and dynamics. To investigate the overall diversity of marine arenicolous fungi (MAFs) in Korea and whether the composition of MAFs is affected by ocean currents, we isolated and analyzed the fungal community from the western, southern, and eastern seasides of the Korean Peninsula. In total, 603 strains were isolated and identified as 259 species based on appropriate molecular markers for each genus (ITS, BenA, CaM, tef1, and act). The composition of MAFs showed differences among the seasides. Our results indicate that many MAFs inhabit the beach sand on the Korean Peninsula, and the composition of MAFs is also affected by ocean currents flowing along each coast.
Description of Microbacterium luteum sp. nov., Microbacterium cremeum sp. nov., and Microbacterium atlanticum sp. nov., three novel C50 carotenoid producing bacteria
Fuquan Xie , Siwen Niu , Xihuang Lin , Shengxiang Pei , Li Jiang , Yun Tian , Gaiyun Zhang
J. Microbiol. 2021;59(10):886-897.   Published online September 7, 2021
DOI: https://doi.org/10.1007/s12275-021-1186-5
  • 16 View
  • 0 Download
  • 14 Citations
AbstractAbstract
We have identified three Microbacterium strains, A18JL200T, NY27T, and WY121T, that produce C50 carotenoids. Taxonomy shows they represent three novel species. These strains shared < 98.5% 16S rRNA gene sequence identity with each other and were closely related to Microbacterium aquimaris JCM 15625T, Microbacterium yannicii JCM 18959T, Microbacterium ureisolvens CFH S00084T, and Microbacterium hibisci CCTCC AB 2016180T. Digital DNA-DNA hybridization (dDDH) values and average nucleotide identity (ANI) showed differences among the three strains and from their closest relatives, with values ranging from 20.4% to 34.6% and 75.5% to 87.6%, respectively. These values are below the threshold for species discrimination. Both morphology and physiology also differed from those of phylogenetically related Microbacterium species, supporting that they are indeed novel species. These strains produce C50 carotenoids (mainly decaprenoxanthin). Among the three novel species, A18JL200T had the highest total yield in carotenoids (6.1 mg/L or 1.2 mg/g dry cell weight). Unusual dual isoprenoid biosynthetic pathways (methylerythritol phosphate and mevalonate pathways) were annotated for strain A18JL200T. In summary, we found strains of the genus Microbacterium that are potential producers of C50 carotenoids, but their genome has to be investigated further.

Journal of Microbiology : Journal of Microbiology
TOP