Journal Article
- Characterization of Cultivated Fungi Isolated from Grape Marc Wastes Through the Use of Amplified rDNA Restriction Analysis and Sequencing
-
Spyridon Ntougias , Nektarios Kavroulakis , Kalliope K. Papadopoulou , Constantinos Ehaliotis , Georgios I. Zervakis
-
J. Microbiol. 2010;48(3):297-306. Published online June 23, 2010
-
DOI: https://doi.org/10.1007/s12275-010-9193-y
-
-
35
View
-
0
Download
-
8
Scopus
-
Abstract
-
Microbial assessment of grape marc wastes, the residual solid by-product of the wine-industry, was performed by identifying phylogenetically the fungal culturable diversity in order to evaluate environmental and disposal safety issues and to discuss ecological considerations of applications on agricultural land. Fungal spores in grape marc were estimated to 4.7×106 per g dry weight. Fifty six fungal isolates were classified into eight operational taxonomic units (OTUs) following amplified ribosomal DNA restriction analysis (ARDRA) and colony morphology. Based on 18S rRNA gene and 5.8S rRNA gene-ITS sequencing, the isolates representing OTUs #1, #2, #3, and #4, which comprised 44.6%, 26.8%, 12.5%, and 5.3%, respectively, of the number of the total isolates, were identified as Aspergillus fumigatus, Bionectria ochroleuca, Haematonectria haematococca, and Trichosporon mycotoxinivorans. The isolates of OTU#5 demonstrated high phylogenetic affinity with Penicillium spp., while members of OTUs #6 and #7 were closer linked with
Geotrichum candidum var. citri-aurantii and Mycocladus corymbifer, respectively (95.4 and 97.9% similarities in respect to their 5.8S rRNA gene-ITS sequences). The OTU#8 with a single isolate was related with Aspergillus strains. It appears that most of the fungal isolates are associated with the initial raw material. Despite the
fact that some of the species identified may potentially act as pathogens, measures such as the avoidance of maintaining large and unprocessed quantities of grape marc wastes in premises without adequate aeration, together with its suitable biological treatment (e.g., composting) prior to any agriculture-related application,
could eliminate any pertinent health risks.
Research Support, Non-U.S. Gov't
- Microeukaryotic Diversity in Marine Environments, an Analysis of Surface Layer Sediments from the East Sea
-
Soo-Je Park , Byoung-Joon Park , Vinh Hoa Pham , Dae-No Yoon , Si-Kwan Kim , Sung-Keun Rhee
-
J. Microbiol. 2008;46(3):244-249. Published online July 5, 2008
-
DOI: https://doi.org/10.1007/s12275-007-0237-x
-
-
41
View
-
0
Download
-
21
Scopus
-
Abstract
-
Molecular techniques, based on clone library of 18S rRNA gene, were employed to ascertain the diversity of microeukaryotic organisms in sediments from the East Sea. A total of 261 clones were recovered from surface sediments. Most of the clone sequences (90%) were affiliated with protists, dominated by Ciliates (18%) and Dinoflagellates (19%) of Alveolates, phototrophic Stramenopiles (11%), and Cercozoa (20%). Many of the clones were related to uncultivated eukaryotes clones retrieved from anoxic environments with several highly divergent 18S rRNA gene sequences. However, no clones were related to cultivated obligate anaerobic protists. Protistan communities between subsurface layers of 1 and 9 cm shared 23% of total phylotypes which comprised 64% of total clones retrieved. Analysis of diversity indices and rarefaction curve showed that the protistan community within the 1 cm layer exhibited higher diversity than the 9 cm layer. Our results imply that diverse protists remain to be uncovered within marine benthic environments.