Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
1 "ANGPTL4"
Filter
Filter
Article category
Keywords
Publication year
Journal Article
The type II histidine triad protein HtpsC facilitates invasion of epithelial cells by highly virulent Streptococcus suis serotype 2
Yunjun Lu , Shu Li , Xiaodong Shen , Yan Zhao , Dongming Zhou , Dan Hu , Xushen Cai , Lixia Lu , Xiaohui Xiong , Ming Li , Min Cao
J. Microbiol. 2021;59(10):949-957.   Published online September 7, 2021
DOI: https://doi.org/10.1007/s12275-021-1129-1
  • 51 View
  • 0 Download
  • 2 Web of Science
  • 2 Crossref
AbstractAbstract
Streptococcus suis serotype 2 (S. suis 2) is an important zoonotic pathogen that presents a significant threat both to pigs and to workers in the pork industry. The initial steps of S. suis 2 pathogenesis are unclear. In this study, we found that the type II histidine triad protein HtpsC from the highly virulent Chinese isolate 05ZYH33 is structurally similar to internalin A (InlA) from Listeria monocytogenes, which plays an important role in mediating listerial invasion of epithelial cells. To determine if HtpsC and InlA function similarly, an isogenic htpsC mutant (ΔhtpsC) was generated in S. suis by homologous recombination. The htpsC deletion strain exhibited a diminished ability to adhere to and invade epithelial cells from different sources. Double immunofluorescence microscopy also revealed reduced survival of the ΔhtpsC mutant after cocultivation with epithelium. Adhesion to epithelium and invasion by the wild type strain was inhibited by a monoclonal antibody against E-cadherin. In contrast, the htpsC-deficient mutant was unaffected by the same treatment, suggesting that E-cadherin is the host-cell receptor that interacts with HtpsC and facilitates bacterial internalization. Based on these results, we propose that HtpsC is involved in the process by which S. suis 2 penetrates host epithelial cells, and that this protein is an important virulence factor associated with cell adhesion and invasion.

Citations

Citations to this article as recorded by  
  • Genomic and phenotypic analysis of invasive Streptococcus suis isolated in Spain reveals genetic diversification and associated virulence traits
    Cristina Uruén, Ana Fernandez, José Luis Arnal, Mateo del Pozo, Maria Casas Amoribieta, Ignacio de Blas, Paula Jurado, Jorge Hugo Calvo, Marcelo Gottschalk, Luis Daniel González-Vázquez, Miguel Arenas, Clara M. Marín, Jesús Arenas
    Veterinary Research.2024;[Epub]     CrossRef
  • A rapid colloidal gold immunochromatographic assay based on polyclonal antibodies against HtpsC protein for the detection of Streptococcus suis
    Yawei Lu, Sibo Wang, Xushen Cai, Min Cao, Qingyu Lu, Dan Hu, Qiong Chen, Xiaohui Xiong
    Frontiers in Microbiology.2023;[Epub]     CrossRef

Journal of Microbiology : Journal of Microbiology
TOP