The wide use of malachite green (MG) as a dye has caused
substantial concern owing to its toxicity. Bacillus cereus can
against the toxic effect of MG and efficiently decolourise it.
However, detailed information regarding its underlying adaptation
and degradation mechanisms based on proteomic
data is scarce. In this study, the isobaric tags for relative and
absolute quantitation (iTRAQ)-facilitated quantitative method
was applied to analyse the molecular mechanisms by
which B. cereus degrades MG. Based on this analysis, 209
upregulated proteins and 198 downregulated proteins were
identified with a false discovery rate of 1% or less during MG
biodegradation. Gene ontology and KEGG analysis determined
that the differentially expressed proteins were enriched
in metabolic processes, catalytic activity, antioxidant activity,
and responses to stimuli. Furthermore, real-time qPCR was
utilised to further confirm the regulated proteins involved
in benzoate degradation. The proteins BCE_4076 (Acetyl-CoA
acetyltransferase), BCE_5143 (Acetyl-CoA acetyltransferase),
BCE_5144 (3-hydroxyacyl-CoA dehydrogenase), BCE_4651
(Enoyl-CoA hydratase), and BCE_5474 (3-hydroxyacyl-CoA
dehydrogenase) involved in the benzoate degradation pathway
may play an important role in the biodegradation of MG
by B. cereus. The results of this study not only provide a comprehensive
view of proteomic changes in B. cereus upon MG
loading but also shed light on the mechanism underlying
MG biodegradation by B. cereus.
Citations
Citations to this article as recorded by
Engineering globins for efficient biodegradation of malachite green: two case studies of myoglobin and neuroglobin Jiao Liu, Jia-Kun Xu, Hong Yuan, Xiao-Juan Wang, Shu-Qin Gao, Ge-Bo Wen, Xiang-Shi Tan, Ying-Wu Lin RSC Advances.2022; 12(29): 18654. CrossRef
Aspergillus fumigatus is a well-known opportunistic pathogen
that causes invasive aspergillosis (IA) infections with high
mortality in immunosuppressed individuals. Morphogenesis,
including hyphal growth, conidiation, and cell wall biosynthesis
is crucial in A. fumigatus pathogenesis. Based on a previous
random insertional mutagenesis library, we identified
the putative polysaccharide synthase gene Afcps1 and its paralog
Afcps2. Homologs of the cps gene are commonly found
in the genomes of most fungal and some bacterial pathogens.
Afcps1/cpsA is important in sporulation, cell wall composition,
and virulence. However, the precise regulation patterns
of cell wall integrity by Afcps1/cpsA and further effects on the
immune response are poorly understood. Specifically, our
in-depth study revealed that Afcps1 affects cell-wall stability,
showing an increased resistance of ΔAfcps1 to the chitinmicrofibril
destabilizing compound calcofluor white (CFW)
and susceptibility of ΔAfcps1 to the β-(1,3)-glucan synthase
inhibitor echinocandin caspofungin (CS). Additionally, deletion
of Afcps2 had a normal sporulation phenotype but
caused hypersensitivity to Na+ stress, CFW, and Congo red
(CR). Specifically, quantitative analysis of cell wall composition
using high-performance anion exchange chromatography-
pulsed amperometric detector (HPAEC-PAD) analysis
revealed that depletion of Afcps1 reduced cell wall glucan
and chitin contents, which was consistent with the downregulation
of expression of the corresponding biosynthesis
genes. Moreover, an elevated immune response stimulated
by conidia of the ΔAfcps1 mutant in marrow-derived macrophages
(BMMs) during phagocytosis was observed. Thus,
our study provided new insights into the function of polysaccharide
synthase Cps1, which is necessary for the maintenance
of cell wall stability and the adaptation of conidia to
the immune response of macrophages in A. fumigatus.
Citations
Citations to this article as recorded by
Study on the metabolic changes and regulatory mechanism of
Aspergillus flavus
conidia germination
Sifan Jia, Chong Li, Yu An, Desheng Qi, Erik F. Y. Hom Microbiology Spectrum.2024;[Epub] CrossRef
Chitin Biosynthesis in Aspergillus Species Veronica S. Brauer, André M. Pessoni, Mateus S. Freitas, Marinaldo P. Cavalcanti-Neto, Laure N. A. Ries, Fausto Almeida Journal of Fungi.2023; 9(1): 89. CrossRef
Evidencing New Roles for the Glycosyl-Transferase Cps1 in the Phytopathogenic Fungus Botrytis cinerea Matthieu Blandenet, Isabelle R. Gonçalves, Christine Rascle, Jean-William Dupuy, François-Xavier Gillet, Nathalie Poussereau, Mathias Choquer, Christophe Bruel Journal of Fungi.2022; 8(9): 899. CrossRef