Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
2 "Anaerotignum faecicola"
Filter
Filter
Article category
Keywords
Publication year
Journal Articles
Effects of the loss of mismatch repair genes on single-strand annealing between divergent sequences in Saccharomyces cerevisiae
Ye-Seul Lim , Ju-Hee Choi , Kyu-Jin Ahn , Min-Ku Kim , Sung-Ho Bae
J. Microbiol. 2021;59(4):401-409.   Published online March 29, 2021
DOI: https://doi.org/10.1007/s12275-021-1076-x
  • 15 View
  • 0 Download
AbstractAbstract
Eukaryotic genomes contain many duplicated genes closely located with each other, such as the hexose transporter (HXT) genes in Saccharomyces cerevisiae. They can potentially recombine via single-strand annealing (SSA) pathway. SSA between highly divergent sequences generates heteroduplex DNA intermediates with many mismatches, which can be corrected by mismatch repair (MMR), resulting in recombinant sequences with a single junction point. In this report, we demonstrate that SSA between HXT1 and HXT4 genes in MMR-deficient yeast cells produces recombinant genes with multiple-junctions resulting from alternating HXT1 and HXT4 tracts. The mutations in MMR genes had differential effects on SSA frequencies; msh6Δ mutation significantly stimulated SSA events, whereas msh2Δ and msh3Δ slightly suppressed it. We set up an assay that can identify a pair of recombinant genes derived from a single heteroduplex DNA. As a result, the recombinant genes with multiple-junctions were found to accompany genes with single-junctions. Based on the results presented here, a model was proposed to generate multiple-junctions in SSA pathway involving an alternative short-patch repair system.
Anaerotignum faecicola sp. nov., isolated from human faeces
Seung-Hyeon Choi , Ji-Sun Kim , Jam-Eon Park , Keun Chul Lee , Mi Kyung Eom , Byeong Seob Oh , Seung Yeob Yu , Se Won Kang , Kook-Il Han , Min Kuk Suh , Dong Ho Lee , Hyuk Yoon , Byung-Yong Kim , Je Hee Lee , Ju Huck Lee , Jung-Sook Lee , Seung-Hwan Park
J. Microbiol. 2019;57(12):1073-1078.   Published online November 4, 2019
DOI: https://doi.org/10.1007/s12275-019-9268-3
  • 42 View
  • 0 Download
  • 12 Citations
AbstractAbstract
A strictly anaerobic bacterium, designated as strain KGMB- 03357T, was isolated from the faeces of a healthy Korean selected by Bundang Seoul National University based on health status. Cells of strain KGMB03357T are Gram-stain-positive, non-motile, non-spore-forming, and observed as straight or curved rods. The isolate grew at 10–45°C (optimum temperature of 40°C) and a pH range of 5.1–10.5 (optimum pH of 6.8). Analysis of phylogenetic trees based on the 16S rRNA gene sequences revealed that strain KGMB03357T forms a lineage within the genus Anaerotignum, and is most closely related to Anaerotignum lactatifermentans G17T (= KCTC 15066T, 96.1%), Anaerotignum propionicum DSM 1682T (= KCTC 5582T, 94.9%), Anaerotignum neopropionicum DSM 03847T (= KCTC 15564T, 94.9%), and Anaerotignum aminivorans SH021T (= KCTC 15705T, 94.8%). The ANI values between strain KGMB 03357T and members of the genus Anaerotignum were 73.3–71.0%, which are below the ANI criterion for interspecies identity. The DNA G + C content based on the whole-genome sequence is 47.3 mol%. The major cellular fatty acids of strain KGMB03357T are C16:0, C18:0, C18:1 cis 9, and anteiso-C15:0. Strain KGMB03357T contains meso-diaminopimelic acid as the diagnostic amino acid in the cell wall peptidoglycan. Based on the phenotypic, phylogenetic, and genomic properties, strain KGMB 03357T represents a novel species of the genus Anaerotignum, for which the name Anaerotignum faecicola sp. nov. is proposed. The type strain is KGMB03357T (= KCTC 15736T = DSM 107953T).

Journal of Microbiology : Journal of Microbiology
TOP