Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
2 "Anti-prion system"
Filter
Filter
Article category
Keywords
Publication year
Reviews
Prions in Microbes: The Least in the Most
Moonil Son , Sia Han , Seyeon Lee
J. Microbiol. 2023;61(10):881-889.   Published online September 5, 2023
DOI: https://doi.org/10.1007/s12275-023-00070-4
  • 68 View
  • 0 Download
  • 1 Web of Science
  • 1 Crossref
AbstractAbstract
Prions are infectious proteins that mostly replicate in self-propagating amyloid conformations (filamentous protein polymers) and consist of structurally altered normal soluble proteins. Prions can arise spontaneously in the cell without any clear reason and are generally considered fatal disease-causing agents that are only present in mammals. However, after the seminal discovery of two prions, [PSI+] and [URE3], in the eukaryotic model microorganism Saccharomyces cerevisiae, at least ten more prions have been discovered, and their biological and pathological effects on the host, molecular structure, and the relationship between prions and cellular components have been studied. In a filamentous fungus model, Podospora anserina, a vegetative incomparability-related [Het-s] prion that directly triggers cell death during anastomosis (hyphal fusion) was discovered. These prions in eukaryotic microbes have extended our understanding to overcome most fatal human prion/amyloid diseases. A prokaryotic microorganism (Clostridium botulinum) was reported to have a prion analog. The transcriptional regulators of C. botulinum-Rho can be converted into the self-replicating prion form ([RHO-X-C+]), which may affect global transcription. Here, we outline the major issues with prions in microbes and the lessons learned from the relatively uncovered microbial prion world.

Citations

Citations to this article as recorded by  
  • A Story Between s and S: [Het-s] Prion of the Fungus Podospora anserina
    Moonil Son
    Mycobiology.2024; 52(2): 85.     CrossRef
The osmotic stress response operon betIBA is under the functional regulation of BetI and the quorum-sensing regulator AnoR in Acinetobacter nosocomialis
Bindu Subhadra , Surya Surendran , Bo Ra Lim , Jong Sung Yim , Dong Ho Kim , Kyungho Woo , Hwa-Jung Kim , Man Hwan Oh , Chul Hee Choi
J. Microbiol. 2020;58(6):519-529.   Published online May 27, 2020
DOI: https://doi.org/10.1007/s12275-020-0186-1
  • 51 View
  • 0 Download
  • 11 Web of Science
  • 9 Crossref
AbstractAbstract
Adaptation to changing environmental conditions is crucial for the survival of microorganisms. Bacteria have evolved various mechanisms to cope with osmotic stress. Here, we report the identification and functional characterization of the osmotic stress response operon, betIBA, in Acinetobacter nosocomialis. The betIBA operon encodes enzymes that are important for the conversion of choline to the osmoprotectant, glycine betaine. The betIBA operon is polycistronic and is under the regulation of the first gene, betI, of the same operon. A bioinformatics analysis revealed the presence of a BetI-binding motif upstream of the betIBA operon, and electrophoretic mobility shift assays confirmed the specific binding of BetI. An mRNA expression analysis revealed that expression of betI, betB, and betA genes is elevated in a betIeletion mutant compared with the wild type, confirming that the autorepressor BetI represses the betIBA operon in A. nosocomialis. We further found that the betIBA operon is under the transcriptional control of the quorum-sensing (QS) regulator, AnoR in, A. nosocomialis. A subsequent analysis of the impact of BetI on expression of the QS genes, anoR and anoI, demonstrated that BetI acts as a repressor of anoR and anoI. In addition, it was noticed that the osmotic stress response regulator, OmpR might play an important role in controlling the expression of betIBA operon in A. nosocomialis. Collectively, these data demonstrate that QS and osmotic stress-response systems are correlated in A. nosocomialis and that the expression of genes in both systems is finely tuned by various feedback loops depending on osmolarity conditions.

Citations

Citations to this article as recorded by  
  • Metabolome analysis revealed the critical role of betaine for arsenobetaine biosynthesis in the marine medaka (Oryzias melastigma)
    Qianyu Zhao, Qiao-Guo Tan, Wen-Xiong Wang, Peng Zhang, Zijun Ye, Liping Huang, Wei Zhang
    Environmental Pollution.2024; 359: 124612.     CrossRef
  • The atypical organization of the luxI/R family genes in AHL-driven quorum-sensing circuits
    Yuyuan Cai, Xuehong Zhang, Michael J. Federle
    Journal of Bacteriology.2024;[Epub]     CrossRef
  • The Transcriptomic Response of Cells of the Thermophilic Bacterium Geobacillus icigianus to Terahertz Irradiation
    Sergey Peltek, Svetlana Bannikova, Tamara M. Khlebodarova, Yulia Uvarova, Aleksey M. Mukhin, Gennady Vasiliev, Mikhail Scheglov, Aleksandra Shipova, Asya Vasilieva, Dmitry Oshchepkov, Alla Bryanskaya, Vasily Popik
    International Journal of Molecular Sciences.2024; 25(22): 12059.     CrossRef
  • Mycobacterium smegmatis MraZ Regulates Multiple Genes within and Outside of the dcw Operon during Hypoxia
    Ismail Mohamed Suleiman, Huang Yu, Junqi Xu, Junfeng Zhen, Hongxiang Xu, Abulimiti Abudukadier, Amina Rafique Hafiza, Jianping Xie
    ACS Infectious Diseases.2024; 10(12): 4301.     CrossRef
  • Online Omics Platform Expedites Industrial Application of Halomonas bluephagenesis TD1.0
    Helen Park, Matthew Faulkner, Helen S Toogood, Guo-Qiang Chen, Nigel Scrutton
    Bioinformatics and Biology Insights.2023;[Epub]     CrossRef
  • The Effect of Proline on the Freeze-Drying Survival Rate of Bifidobacterium longum CCFM 1029 and Its Inherent Mechanism
    Shumao Cui, Wenrui Zhou, Xin Tang, Qiuxiang Zhang, Bo Yang, Jianxin Zhao, Bingyong Mao, Hao Zhang
    International Journal of Molecular Sciences.2022; 23(21): 13500.     CrossRef
  • Regulator of RNase E activity modulates the pathogenicity of Salmonella Typhimurium
    Jaejin Lee, Eunkyoung Shin, Ji-Hyun Yeom, Jaeyoung Park, Sunwoo Kim, Minho Lee, Kangseok Lee
    Microbial Pathogenesis.2022; 165: 105460.     CrossRef
  • The Flagellar Transcriptional Regulator FtcR Controls Brucella melitensis 16M Biofilm Formation via a betI-Mediated Pathway in Response to Hyperosmotic Stress
    Jia Guo, Xingmei Deng, Yu Zhang, Shengnan Song, Tianyi Zhao, Dexin Zhu, Shuzhu Cao, Peter Ivanovic Baryshnikov, Gang Cao, Hugh T. Blair, Chuangfu Chen, Xinli Gu, Liangbo Liu, Hui Zhang
    International Journal of Molecular Sciences.2022; 23(17): 9905.     CrossRef
  • Stressed out: Bacterial response to high salinity using compatible solute biosynthesis and uptake systems, lessons from Vibrionaceae
    Gwendolyn J. Gregory, E. Fidelma Boyd
    Computational and Structural Biotechnology Journal.2021; 19: 1014.     CrossRef

Journal of Microbiology : Journal of Microbiology
TOP