Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
2 "Antifungal drug"
Filter
Filter
Article category
Keywords
Publication year
Authors
Journal Articles
Fleagrass (Adenosma buchneroides Bonati) Acts as a Fungicide Against Candida albicans by Damaging Its Cell Wall
Youwei Wu, Hongxia Zhang, Hongjie Chen, Zhizhi Du, Qin Li, Ruirui Wang
J. Microbiol. 2024;62(8):661-670.   Published online July 3, 2024
DOI: https://doi.org/10.1007/s12275-024-00146-9
  • 57 View
  • 0 Download
AbstractAbstract
Fleagrass, a herb known for its pleasant aroma, is widely used as a mosquito repellent, antibacterial agent, and for treating colds, reducing swelling, and alleviating pain. The antifungal effects of the essential oils of fleagrass and carvacrol against Candida albicans were investigated by evaluating the growth and the mycelial and biofilm development of C. albicans. Transmission electron microscopy was used to evaluate the integrity of the cell membrane and cell wall of C. albicans. Fleagrass exhibited high fungicidal activity against C. albicans at concentrations of 0.5% v/v (via the Ras1/cAMP/PKA pathway). Furthermore, transmission electron microscopy revealed damage to the cell wall and membrane after treatment with the essential oil, which was further confirmed by the increased levels of β-1,3-glucan and chitin in the cell wall. This study showed that fleagrass exerts good fungicidal and hyphal growth inhibition activity against C. albicans by disrupting its cell wall, and thus, fleagrass may be a potential antifungal drug.
Identification and Functional Analysis of Acyl‑Acyl Carrier Protein Δ9 Desaturase from Nannochloropsis oceanica
Ruigang Yang , Hui Wang , Lingyun Zhu , Lvyun Zhu , Tianzhong Liu , Dongyi Zhang
J. Microbiol. 2023;61(1):95-107.   Published online January 31, 2023
DOI: https://doi.org/10.1007/s12275-022-00001-9
  • 43 View
  • 0 Download
AbstractAbstract
The oleaginous marine microalga Nannochloropsis oceanica strain IMET1 has attracted increasing attention as a promising photosynthetic cell factory due to its unique excellent capacity to accumulate large amounts of triacylglycerols and eicosapentaenoic acid. To complete the genomic annotation for genes in the fatty acid biosynthesis pathway of N. oceanica, we conducted the present study to identify a novel candidate gene encoding the archetypical chloroplast stromal acyl-acyl carrier protein Δ9 desaturase. The full-length cDNA was generated using rapid-amplification of cDNA ends, and the structure of the coding region interrupted by four introns was determined. The RT-qPCR results demonstrated the upregulated transcriptional abundance of this gene under nitrogen starvation condition. Fluorescence localization studies using EGFP-fused protein revealed that the translated protein was localized in chloroplast stroma. The catalytic activity of the translated protein was characterized by inducible expression in Escherichia coli and a mutant yeast strain BY4389, indicating its potential desaturated capacity for palmitoyl-ACP (C16:0-ACP) and stearoyl-ACP (C18:0-ACP). Further functional complementation assay using BY4839 on plate demonstrated that the expressed enzyme restored the biosynthesis of oleic acid. These results support the desaturated activity of the expressed protein in chloroplast stroma to fulfill the biosynthesis and accumulation of monounsaturated fatty acids in N. oceanica strain IMET1.

Journal of Microbiology : Journal of Microbiology
TOP