Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
2 "Arachis hypogaea L."
Filter
Filter
Article category
Keywords
Publication year
Authors
Review
The Role of Extracellular Vesicles in Pandemic Viral Infections
Woosung Shim, Anjae Lee, Jung-Hyun Lee
J. Microbiol. 2024;62(6):419-427.   Published online June 25, 2024
DOI: https://doi.org/10.1007/s12275-024-00144-x
  • 88 View
  • 0 Download
  • 2 Web of Science
  • 1 Crossref
AbstractAbstract
Extracellular vesicles (EVs), of diverse origin and content, are membranous structures secreted by a broad range of cell types. Recent advances in molecular biology have highlighted the pivotal role of EVs in mediating intercellular communication, facilitated by their ability to transport a diverse range of biomolecules, including proteins, lipids, DNA, RNA and metabolites. A striking feature of EVs is their ability to exert dual effects during viral infections, involving both proviral and antiviral effects. This review explores the dual roles of EVs, particularly in the context of pandemic viruses such as HIV-1 and SARS-CoV-2. On the one hand, EVs can enhance viral replication and exacerbate pathogenesis by transferring viral components to susceptible cells. On the other hand, they have intrinsic antiviral properties, including activation of immune responses and direct inhibition of viral infection. By exploring these contrasting functions, our review emphasizes the complexity of EV-mediated interactions in viral pathogenesis and highlights their potential as targets for therapeutic intervention. The insights obtained from investigating EVs in the context of HIV-1 and SARS-CoV-2 provide a deeper understanding of viral mechanisms and pathologies, and offer a new perspective on managing and mitigating the impact of these global health challenges.

Citations

Citations to this article as recorded by  
  • Differential Impact of Spike Protein Mutations on SARS-CoV-2 Infectivity and Immune Evasion: Insights from Delta and Kappa Variants
    Tae-Hun Kim, Sojung Bae, Jinjong Myoung
    Journal of Microbiology and Biotechnology.2024; 34(12): 2506.     CrossRef
Journal Article
Transcript-specific selective translation by specialized ribosomes bearing genome-encoded heterogeneous rRNAs in V. vulnificus CMCP6
Younkyung Choi , Minju Joo , Wooseok Song , Minho Lee , Hana Hyeon , Hyun-Lee Kim , Ji-Hyun Yeom , Kangseok Lee , Eunkyoung Shin
J. Microbiol. 2022;60(12):1162-1167.   Published online November 24, 2022
DOI: https://doi.org/10.1007/s12275-022-2437-9
  • 59 View
  • 0 Download
  • 2 Web of Science
  • 2 Crossref
AbstractAbstract
Ribosomes composed of genome-encoded heterogeneous rRNAs are implicated in the rapid adaptation of bacterial cells to environmental changes. A previous study showed that ribosomes bearing the most heterogeneous rRNAs expressed from the rrnI operon (I-ribosomes) are implicated in the preferential translation of a subset of mRNAs, including hspA and tpiA, in Vibrio vulnificus CMCP6. In this study, we show that HspA nascent peptides were predominantly bound to I-ribosomes. Specifically, I-ribosomes were enriched more than two-fold in ribosomes that were pulled down by immunoprecipitation of HspA peptides compared with the proportion of I-ribosomes in crude ribosomes and ribosomes pulled down by immunoprecipitation of RNA polymerase subunit ß peptides in the wild-type (WT) and rrnI-completed strains. Other methods that utilized the incorporation of an affinity tag in 23S rRNA or chimeric rRNA tethering 16S and 23S rRNAs, which generated specialized functional ribosomes in Escherichia coli, did not result in functional I-ribosomes in V. vulnificus CMCP6. This study provides direct evidence of the preferential translation of hspA mRNA by I-ribosomes.

Citations

Citations to this article as recorded by  
  • Functional conservation of specialized ribosomes bearing genome-encoded variant rRNAs in Vibrio species
    Younkyung Choi, Eunkyoung Shin, Minho Lee, Ji-Hyun Yeom, Kangseok Lee, Bashir Sajo Mienda
    PLOS ONE.2023; 18(12): e0289072.     CrossRef
  • Relaxed Cleavage Specificity of Hyperactive Variants of Escherichia coli RNase E on RNA I
    Dayeong Bae, Hana Hyeon, Eunkyoung Shin, Ji-Hyun Yeom, Kangseok Lee
    Journal of Microbiology.2023; 61(2): 211.     CrossRef

Journal of Microbiology : Journal of Microbiology
TOP