Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
2 "Bacillus velezensis"
Filter
Filter
Article category
Keywords
Publication year
Journal Articles
Adaptation of Pseudomonas helmanticensis to fat hydrolysates and SDS: fatty acid response and aggregate formation
Ilya N. Zubkov , Anatoly P. Nepomnyshchiy , Vadim D. Kondratyev , Pavel N. Sorokoumov , Konstantin V. Sivak , Edward S. Ramsay , Sergey M. Shishlyannikov
J. Microbiol. 2021;59(12):1104-1111.   Published online October 26, 2021
DOI: https://doi.org/10.1007/s12275-021-1214-5
  • 17 View
  • 0 Download
  • 3 Citations
AbstractAbstract
An essential part of designing any biotechnological process is examination of the physiological state of producer cells in different phases of cultivation. The main marker of a bacterial cell’s state is its fatty acid (FA) profile, reflecting membrane lipid composition. Consideration of FA composition enables assessment of bacterial responses to cultivation conditions and helps biotechnologists understand the most significant factors impacting cellular metabolism. In this work, soil SDS-degrading Pseudomonas helmanticensis was studied at the fatty acid profile level, including analysis of rearrangement between planktonic and aggregated forms. The set of substrates included fat hydrolysates, SDS, and their mixtures with glucose. Such media are useful in bioplastic production since they can help incrementally lower overall costs. Conventional gas chromatography-mass spectrometry was used for FA analysis. Acridine orange-stained aggregates were observed by epifluorescence microscopy. The bacterium was shown to change fatty acid composition in the presence of hydrolyzed fats or SDS. These changes seem to be driven by the depletion of metabolizable substrates in the culture medium. Cell aggregation has also been found to be a defense strategy, particularly with anionic surfactant (SDS) exposure. It was shown that simple fluidity indices (such as saturated/ unsaturated FA ratios) do not always sufficiently characterize a cell's physiological state, and morphological examination is essential in cases where complex carbon sources are used.
Stenotrophomonas maltophilia outer membrane protein A induces epithelial cell apoptosis via mitochondrial pathways
Xin Wang , Yan Li , Xueping Tang , Xueyi Shang , Zunquan Zhao , Yongqiang Jiang , Yan Li
J. Microbiol. 2020;58(10):868-877.   Published online September 2, 2020
DOI: https://doi.org/10.1007/s12275-020-0235-9
  • 11 View
  • 0 Download
  • 5 Citations
AbstractAbstract
Stenotrophomonas maltophilia (S. maltophilia) is a common opportunistic pathogen in intensive care units and causes infections most often after surgeries in immune-compromised patients such as those undergoing chemotherapy. Outer membrane protein A (OmpA) is the most abundant of the outer membrane proteins in S. maltophilia. Previous studies on OmpA usually focus on its interaction with the host cells and its role in vaccine development. However, the impact of OmpA on the virulence of S. maltophilia to host cells and the effects on apoptosis remain unclear. In this study, we exposed purified recombinant S. maltophilia OmpA (rOmpA) to HEp-2 cells and investigated the effects of OmpA on epithelial cell apoptosis. Morphologic and flow cytometric analyses revealed that HEp-2 cells stimulated with rOmpA multiple apoptosis features, including nuclear roundness and pyknosis, chromatin aggregation, and phosphatidylserine eversion. We found that rOmpA regulated the protein levels of Bax and Bcl-xL in HEp-2 cells, leading to changes in mitochondria permeability and the release of cytochrome c and apoptosis-inducing factors into the cytoplasm. These subsequently activate the caspase-9/caspase-3 pathway that promote apoptosis. We also observed that rOmpA enhanced the generation of reactive oxygen species and increased intracellular Ca2+ levels in HEp-2 cells. Collectively, our data suggested that rOmpA induced epithelial cells apoptosis via mitochondrial pathways.

Journal of Microbiology : Journal of Microbiology
TOP