Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
18 "Bacteriophage"
Filter
Filter
Article category
Keywords
Publication year
Authors
Journal Articles
Characterization of Newly Isolated Bacteriophages Targeting Carbapenem-Resistant Klebsiella pneumoniae
Bokyung Kim, Shukho Kim, Yoon-Jung Choi, Minsang Shin, Jungmin Kim
J. Microbiol. 2024;62(12):1133-1153.   Published online December 10, 2024
DOI: https://doi.org/10.1007/s12275-024-00180-7
  • 19 View
  • 0 Download
AbstractAbstract
Klebsiella pneumoniae, a Gram-negative opportunistic pathogen, is increasingly resistant to carbapenems in clinical settings. This growing problem necessitates the development of alternative antibiotics, with phage therapy being one promising option. In this study, we investigated novel phages targeting carbapenem-resistant Klebsiella pneumoniae (CRKP) and evaluated their lytic capacity against clinical isolates of CRKP. First, 23 CRKP clinical isolates were characterized using Multi-Locus Sequence Typing (MLST), carbapenemase test, string test, and capsule typing. MLST classified the 23 K. pneumoniae isolates into 10 sequence types (STs), with the capsule types divided into nine known and one unknown type. From sewage samples collected from a tertiary hospital, 38 phages were isolated. Phenotypic and genotypic characterization of these phages was performed using Random Amplification of Polymorphic DNA-PCR (RAPD-PCR), transmission electron microscopy (TEM), and whole genome sequencing (WGS) analysis. Host spectrum analysis revealed that each phage selectively lysed strains sharing the same STs as their hosts, indicating ST-specific activity. These phages were subtyped based on their host spectrum and RAPD-PCR, identifying nine and five groups, respectively. Fourteen phages were selected for further analysis using TEM and WGS, revealing 13 Myoviruses and one Podovirus. Genomic analysis grouped the phages into three clusters: one closely related to Alcyoneusvirus, one to Autographiviridae, and others to Straboviridae. Our results showed that the host spectrum of K. pneumoniae-specific phages corresponds to the STs of the host strain. These 14 novel phages also hold promise as valuable resources for phage therapy against CRKP.
Enterococcus Phage vB_EfaS_HEf13 as an Anti-Biofilm Agent Against Enterococcus faecalis
Dongwook Lee, Jintaek Im, A Reum Kim, Woohyung Jun, Cheol-Heui Yun, Seung Hyun Han
J. Microbiol. 2024;62(8):683-693.   Published online June 27, 2024
DOI: https://doi.org/10.1007/s12275-024-00150-z
  • 36 View
  • 0 Download
  • 1 Scopus
AbstractAbstract
Enterococcus faecalis is a Gram-positive bacterium that is frequently found in the periapical lesion of patients with apical periodontitis. Its biofilm formation in root canal is closely related to the development of refractory apical periodontitis by providing increased resistance to endodontic treatments. Phage therapy has recently been considered as an efficient therapeutic strategy in controlling various periodontal pathogens. We previously demonstrated the bactericidal capacities of Enterococcus phage vB_EfaS_HEf13 (phage HEf13) against clinically-isolated E. faecalis strains. Here, we investigated whether phage HEf13 affects biofilm formation and pre-formed biofilm of clinically-isolated E. faecalis, and its combinatory effect with endodontic treatments, including chlorhexidine (CHX) and penicillin. The phage HEf13 inhibited biofilm formation and disrupted pre-formed biofilms of E. faecalis in a dose- and time-dependent manner. Interestingly, phage HEf13 destroyed E. faecalis biofilm exopolysaccharide (EPS), which is known to be a major component of bacterial biofilm. Furthermore, combined treatment of phage HEf13 with CHX or penicillin more potently inhibited biofilm formation and disrupted pre-formed biofilm than either treatment alone. Confocal laser scanning microscopic examination demonstrated that these additive effects of the combination treatments on disruption of pre-formed biofilm are mediated by relatively enhanced reduction in thickness distribution and biomass of biofilm. Collectively, our results suggest that the effect of phage HEf13 on E. faecalis biofilm is mediated by its EPS-degrading property, and its combination with endodontic treatments more potently suppresses E. faecalis biofilm, implying that phage HEf13 has potential to be used as a combination therapy against E. faecalis infections.
[Protocol] Use of Cas9 Targeting and Red Recombination for Designer Phage Engineering
Shin-Yae Choi , Danitza Xiomara Romero-Calle , Han-Gyu Cho , Hee-Won Bae , You-Hee Cho
J. Microbiol. 2024;62(1):1-10.   Published online February 1, 2024
DOI: https://doi.org/10.1007/s12275-024-00107-2
  • 52 View
  • 0 Download
  • 2 Crossref
AbstractAbstract
Bacteriophages (phages) are natural antibiotics and biological nanoparticles, whose application is significantly boosted by recent advances of synthetic biology tools. Designer phages are synthetic phages created by genome engineering in a way to increase the benefits or decrease the drawbacks of natural phages. Here we report the development of a straightforward genome engineering method to efficiently obtain engineered phages in a model bacterial pathogen, Pseudomonas aeruginosa. This was achieved by eliminating the wild type phages based on the Streptococcus pyogenes Cas9 (SpCas9) and facilitating the recombinant generation based on the Red recombination system of the coliphage λ (λRed). The producer (PD) cells of P. aeruginosa strain PAO1 was created by miniTn7-based chromosomal integration of the genes for SpCas9 and λRed under an inducible promoter. To validate the efficiency of the recombinant generation, we created the fluorescent phages from a temperate phage MP29. A plasmid bearing the single guide RNA (sgRNA) gene for selectively targeting the wild type gp35 gene and the editing template for tagging the Gp35 with superfolder green fluorescent protein (sfGFP) was introduced into the PD cells by electroporation. We found that the targeting efficiency was affected by the position and number of sgRNA. The fluorescent phage particles were efficiently recovered from the culture of the PD cells expressing dual sgRNA molecules. This protocol can be used to create designer phages in P. aeruginosa for both application and research purposes.

Citations

Citations to this article as recorded by  
  • Characteristics of bioaerosols under high-ozone periods, haze episodes, dust storms, and normal days in Xi’an, China
    Yiming Yang, Liu Yang, Xiaoyan Hu, Zhenxing Shen
    Particuology.2024; 90: 140.     CrossRef
  • Airborne desert dust and aeromicrobiology over the Turkish Mediterranean coastline
    Dale W. Griffin, Nilgün Kubilay, Mustafa Koçak, Mike A. Gray, Timothy C. Borden, Eugene A. Shinn
    Atmospheric Environment.2007; 41(19): 4050.     CrossRef
Molecular mechanism of Escherichia coli H10407 induced diarrhoea and its control through immunomodulatory action of bioactives from Simarouba amara (Aubl.)
Hegde Veena , Sandesh K. Gowda , Rajeshwara N. Achur , Nayaka Boramuthi Thippeswamy
J. Microbiol. 2021;59(4):435-447.   Published online February 25, 2021
DOI: https://doi.org/10.1007/s12275-021-0423-2
  • 26 View
  • 0 Download
  • 4 Web of Science
  • 2 Crossref
AbstractAbstract
Enterotoxigenic Escherichia coli (ETEC) infection is a major cause of death in children under the age of five in developing countries. ETEC (O78:H11:CFA/I:LT+:ST+) mechanism has been studied in detail with either heat labile (LT) or heat stable (ST) toxins using in vitro and in vivo models. However, there is no adequate information on ETEC pathogenesis producing both the toxins (LT, ST) in BALB/c mice model. In this study, female mice have been employed to understand ETEC H10407 infection induced changes in physiology, biochemical and immunological patterns up to seven days post-infection and the antidiarrhoeal effect of Simarouba amara (Aubl.) bark aqueous extract (SAAE) has also been looked into. The results indicate that BALB/c is sensitive to ETEC infection resulting in altered jejunum and ileum histomorphology. Withal, ETEC influenced cAMP, PGE2, and NO production resulting in fluid accumulation with varied Na+, K+, Cl-, and Ca2+ levels. Meanwhile, ETEC subverted expression of IL-1β, intestine alkaline phosphatase (IAP), and myeloperoxidase (MPO) in jejunum and ileum. Our data also indicate the severity of pathogenesis reduction which might be due to attainment of equilibrium after reaching optimum rate of infection. Nevertheless, degree of pathogenesis was highly significant (p < 0.01) in all the studied parameters. Besides that, SAAE was successful in reducing the infectious diarrhoea by inhibiting ETEC H10407 in intestine (jejunum and ileum), and shedding in feces. SAAE decreased cAMP, PGE2, and fluid accumulation effectively and boosted the functional activity of immune system in jejunum and ileum IAP, MPO, IL-1β, and nitric oxide.

Citations

Citations to this article as recorded by  
  • Relaxed Cleavage Specificity of Hyperactive Variants of Escherichia coli RNase E on RNA I
    Dayeong Bae, Hana Hyeon, Eunkyoung Shin, Ji-Hyun Yeom, Kangseok Lee
    Journal of Microbiology.2023; 61(2): 211.     CrossRef
  • A systematic antidiarrhoeal evaluation of a vegetable root Begonia roxburghii and its marker flavonoids against nonpathogenic and pathogenic diarrhoea
    Rupali S. Prasad, Nikhil Y. Yenorkar, Suhas R. Dhaswadikar, Saurabh K. Sinha, Nitish Rai, Pravesh Sharma, Onkar Kulkarni, Neeraj Kumar, Mahaveer Dhobi, Damiki Laloo, Shailendra S. Gurav, Prakash R. Itankar, Satyendra K. Prasad
    Food Bioscience.2023; 53: 102672.     CrossRef
Review
Dissection of plant microbiota and plant-microbiome interactions
Kihyuck Choi , Raees Khan , Seon-Woo Lee
J. Microbiol. 2021;59(3):281-291.   Published online February 23, 2021
DOI: https://doi.org/10.1007/s12275-021-0619-5
  • 21 View
  • 0 Download
  • 38 Web of Science
  • 39 Crossref
AbstractAbstract
Plants rooted in soil have intimate associations with a diverse array of soil microorganisms. While the microbial diversity of soil is enormous, the predominant bacterial phyla associated with plants include Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria, and Verrucomicrobia. Plants supply nutrient niches for microbes, and microbes support plant functions such as plant growth, development, and stress tolerance. The interdependent interaction between the host plant and its microbes sculpts the plant microbiota. Plant and microbiome interactions are a good model system for understanding the traits in eukaryotic organisms from a holobiont perspective. The holobiont concept of plants, as a consequence of co-evolution of plant host and microbiota, treats plants as a discrete ecological unit assembled with their microbiota. Dissection of plant-microbiome interactions is highly complicated; however, some reductionist approaches are useful, such as the synthetic community method in a gnotobiotic system. Deciphering the interactions between plant and microbiome by this reductionist approach could lead to better elucidation of the functions of microbiota in plants. In addition, analysis of microbial communities’ interactions would further enhance our understanding of coordinated plant microbiota functions. Ultimately, better understanding of plantmicrobiome interactions could be translated to improvements in plant productivity.

Citations

Citations to this article as recorded by  
  • The combined effects of tetracycline and glyphosate on growth and rhizosphere bacteria community in hulless barley over the whole growth period
    Wenxiu Xue, Shuhao Zhang, Fazila Younas, Ruwen Ma, Xingxu Yu, Jie Li, Xiaocui Wu, Wenhan Liu, Huitian Duan, Kang Wang, Xiaowei Cui, Xiufeng Cao, Zhaojie Cui
    Journal of Hazardous Materials.2025; 484: 136706.     CrossRef
  • Modeling Growth Kinetics of Escherichia coli and Background Microflora in Hydroponically Grown Lettuce
    Xiaoyan You, Dongqun Yang, Yang Qu, Mingming Guo, Yangping Zhang, Xiaoyan Zhao, Yujuan Suo
    Foods.2024; 13(9): 1359.     CrossRef
  • Influence and Role of Fungi, Bacteria, and Mixed Microbial Populations on Phosphorus Acquisition in Plants
    Yu Luo, Lige Ma, Qirui Feng, Huan Luo, Chen Chen, Shuqi Wang, Yue Yuan, Can Liu, Xulv Cao, Nannan Li
    Agriculture.2024; 14(3): 358.     CrossRef
  • Endophytic Pseudomonas fluorescens promotes changes in the phenotype and secondary metabolite profile of Houttuynia cordata Thunb.
    Kaifeng Wang, Zhannan Yang, Shiqiong Luo, Wenxuan Quan
    Scientific Reports.2024;[Epub]     CrossRef
  • Rhizosphere Microorganisms in Subsurface Flow Garden Constructed Wetland and their Influence on Nitrogen Removal Efficiency
    Baishi Wang, Liping Wu, Ruoqiao Wang, Jiangbo Huo, Zhou Yi, Zexin Wang, Hongzhou Zhang
    Water, Air, & Soil Pollution.2024;[Epub]     CrossRef
  • Developing stable, simplified, functional consortia from Brachypodium rhizosphere for microbial application in sustainable agriculture
    Mingfei Chen, Shwetha M. Acharya, Mon Oo Yee, Kristine Grace M. Cabugao, Romy Chakraborty
    Frontiers in Microbiology.2024;[Epub]     CrossRef
  • Using biochar for environmental recovery and boosting the yield of valuable non-food crops: The case of hemp in a soil contaminated by potentially toxic elements (PTEs)
    Matteo Garau, Mauro Lo Cascio, Sotirios Vasileiadis, Tom Sizmur, Maria Nieddu, Maria Vittoria Pinna, Costantino Sirca, Donatella Spano, Pier Paolo Roggero, Giovanni Garau, Paola Castaldi
    Heliyon.2024; 10(6): e28050.     CrossRef
  • Plant-Microbe Interactions: PGPM as Microbial Inoculants/Biofertilizers for Sustaining Crop Productivity and Soil Fertility
    Bibek Laishram, Okram Ricky Devi, Rinjumoni Dutta, T. Senthilkumar, Girish Goyal, Dinesh Kumar Paliwal, Narinder Panotra, Akhtar Rasool
    Current Research in Microbial Sciences.2024; : 100333.     CrossRef
  • Differences in autotoxic substances and microbial community in the root space of Panax notoginseng coinducing the occurrence of root rot
    Jinmiao Chen, Zhidan Liu, Yuyan Liu, Xiuling Ji, Xiaoran Li, Yunlin Wei, Futing Zi, Yong Tan, Arpita Bose
    Applied and Environmental Microbiology.2024;[Epub]     CrossRef
  • Root-associated microbial diversity and metabolomics in maize resistance to stalk rot
    Liming Wang, Jiao Jia, Qianfu Su, Hongzhe Cao, Shiqi Jia, Helong Si, Zhiyan Cao, Shujie Ma, Jihong Xing, Kang Zhang, Jingao Dong
    Frontiers in Microbiology.2024;[Epub]     CrossRef
  • Interplant communication increases aphid resistance and alters rhizospheric microbes in neighboring plants of aphid‐infested cucumbers
    Xingchen Liu, Changxia Du, Yinqing Tan, Cong Yue, Huaifu Fan
    Pest Management Science.2024; 80(10): 5005.     CrossRef
  • Phage-Dependent Alteration of Rhizosphere Microbiota in Tomato Plants
    Seung Yeup Lee, Roniya Thapa Magar, Kihyuck Choi, Hyo Jeong Kim, Insoo Park, Seon-Woo Lee
    Phytobiomes Journal.2024; 8(2): 223.     CrossRef
  • MAPK Cascades in Plant Microbiota Structure and Functioning
    Thijs Van Gerrewey, Hoo Sun Chung
    Journal of Microbiology.2024; 62(3): 231.     CrossRef
  • The structure and diversity of bacteria and fungi in the roots and rhizosphere soil of three different species of Geodorum
    Jianxiu Liu, Danjuan Zeng, Yang Huang, Lisha Zhong, Jialin Liao, Yuxing Shi, Haidu Jiang, Yajin Luo, Yu Liang, Shengfeng Chai
    BMC Genomics.2024;[Epub]     CrossRef
  • Irradiance level and elevation shape the soil microbiome communities of Coffea arabica L.
    Inocência da Piedade E. Tapaça, Chinedu C. Obieze, Gilberto V. de Melo Pereira, David Fangueiro, João Coutinho, Irene Fraga, Fábio L. Partelli, José C. Ramalho, Isabel Marques, Ana I. Ribeiro-Barros
    Environmental Microbiome.2024;[Epub]     CrossRef
  • Deciphering Molecular Mechanisms and Diversity of Plant Holobiont Bacteria: Microhabitats, Community Ecology, and Nutrient Acquisition
    Tomasz Grzyb, Justyna Szulc
    International Journal of Molecular Sciences.2024; 25(24): 13601.     CrossRef
  • Correlation of microbiomes in “plant-insect-soil” ecosystem
    Guomeng Li, Peng Liu, Jihan Zhao, Liangyinan Su, Mengyu Zhao, Zhengjie Jiang, Yang Zhao, Xiping Yang
    Frontiers in Microbiology.2023;[Epub]     CrossRef
  • Distinctive Structure and Assembly of Phyllosphere Microbial Communities between Wild and Cultivated Rice
    Yue Yin, Yi-Fei Wang, Hui-Ling Cui, Rui Zhou, Lv Li, Gui-Lan Duan, Yong-Guan Zhu, Kristen M. DeAngelis
    Microbiology Spectrum.2023;[Epub]     CrossRef
  • Ecological Processes of Bacterial and Fungal Communities Associated with Typha orientalis Roots in Wetlands Were Distinct during Plant Development
    Lixiao Wang, Jinxian Liu, Meiting Zhang, Tiehang Wu, Baofeng Chai, Alison Sinclair
    Microbiology Spectrum.2023;[Epub]     CrossRef
  • Existence of antibiotic pollutant in agricultural soil: Exploring the correlation between microbiome and pea yield
    Wangjing Zhai, Wenqi Jiang, Qiqi Guo, Zhixuan Wang, Donghui Liu, Zhiqiang Zhou, Peng Wang
    Science of The Total Environment.2023; 871: 162152.     CrossRef
  • Structural characteristics and diversity of the rhizosphere bacterial communities of wild Fritillaria przewalskii Maxim. in the northeastern Tibetan Plateau
    Zhijia Cui, Ran Li, Fan Li, Ling Jin, Haixu Wu, Chunya Cheng, Yi Ma, Zhenheng Wang, Yuanyuan Wang
    Frontiers in Microbiology.2023;[Epub]     CrossRef
  • Integrated metagenomics and metabolomics analysis reveals changes in the microbiome and metabolites in the rhizosphere soil of Fritillaria unibracteata
    Chengcheng Liu, Jingsheng Yu, Jizhe Ying, Kai Zhang, Zhigang Hu, Zhixiang Liu, Shilin Chen
    Frontiers in Plant Science.2023;[Epub]     CrossRef
  • Transfer of antibiotic resistance genes from soil to wheat: Role of host bacteria, impact on seed-derived bacteria, and affecting factors
    Yanping Shen, Yibo Liu, Yutong Du, Xu Wang, Jiunian Guan, Xiaohui Jia, Fukai Xu, Ziwei Song, Hongjie Gao, Baiyu Zhang, Ping Guo
    Science of The Total Environment.2023; 905: 167279.     CrossRef
  • Effects of different fertilization conditions and different geographical locations on the diversity and composition of the rhizosphere microbiota of Qingke (Hordeum vulgare L.) plants in different growth stages
    Lei Wang, Handong Wang, Meijin Liu, Jinqing Xu, Haiyan Bian, Tongrui Chen, En You, Chao Deng, Youhai Wei, Tianyu Yang, Yuhu Shen
    Frontiers in Microbiology.2023;[Epub]     CrossRef
  • Editorial: Women in plant pathogen interactions: 2022
    Špela Baebler, Anna Coll, Giulia Malacarne
    Frontiers in Plant Science.2023;[Epub]     CrossRef
  • The Co-Association of Enterobacteriaceae and Pseudomonas with Specific Resistant Cucumber against Fusarium Wilt Disease
    Yu-Lu Zhang, Xiao-Jing Guo, Xin Huang, Rong-Jun Guo, Xiao-Hong Lu, Shi-Dong Li, Hao Zhang
    Biology.2023; 12(2): 143.     CrossRef
  • Niche-dependent microbial assembly in salt-tolerant tall fescue and its contribution to plant biomass
    Tianqi Zhu, Liang Zhang, Zizheng Yan, Bowen Liu, Youyue Li, Xiangkai You, Mo-Xian Chen, Tie-Yuan Liu, Yuefei Xu, Jianhua Zhang
    Industrial Crops and Products.2023; 206: 117736.     CrossRef
  • Effects of time-space conversion on microflora structure, secondary metabolites composition and antioxidant capacity of Codonopsis pilosula root
    Lili Fan, Jiangqin Wang, Feifan Leng, Shaowei Li, Xiang Ma, Xiaoli Wang, Yonggang Wang
    Plant Physiology and Biochemistry.2023; 198: 107659.     CrossRef
  • The Root Microbiome: Techniques for Exploration and Agricultural Applications
    Ashling Cannon
    BioTechniques.2023; 75(1): 1.     CrossRef
  • Multi-omics approaches for deciphering the microbial modulation of plants' genetic potentials: What's known and what's next?
    Febri Doni, Mia Miranti, Muhamad Shakirin Mispan, Zulqarnain Mohamed, Norman Uphoff
    Rhizosphere.2022; 24: 100613.     CrossRef
  • Effects of Combined Abiotic Stresses Related to Climate Change on Root Growth in Crops
    Maria Sánchez-Bermúdez, Juan C. del Pozo, Mónica Pernas
    Frontiers in Plant Science.2022;[Epub]     CrossRef
  • Multi-genome metabolic modeling predicts functional inter-dependencies in the Arabidopsis root microbiome
    Victor Mataigne, Nathan Vannier, Philippe Vandenkoornhuyse, Stéphane Hacquard
    Microbiome.2022;[Epub]     CrossRef
  • Can moderate heavy metal soil contaminations due to cement production influence the surrounding soil bacterial communities?
    Thiago Augusto da Costa Silva, Marcos de Paula, Washington Santos Silva, Gustavo Augusto Lacorte
    Ecotoxicology.2022; 31(1): 134.     CrossRef
  • Mechanisms of plant cell wall surveillance in response to pathogens, cell wall-derived ligands and the effect of expansins to infection resistance or susceptibility
    Delia A. Narváez-Barragán, Omar E. Tovar-Herrera, Arturo Guevara-García, Mario Serrano, Claudia Martinez-Anaya
    Frontiers in Plant Science.2022;[Epub]     CrossRef
  • Fecal Microbiota Transplants for Inflammatory Bowel Disease Treatment: Synthetic- and Engineered Communities-Based Microbiota Transplants Are the Future
    Raees Khan, Nazish Roy, Hussain Ali, Muhammad Naeem, Eiji Sakai
    Gastroenterology Research and Practice.2022; 2022: 1.     CrossRef
  • The root microbiome: Community assembly and its contributions to plant fitness
    Bo Bai, Weidong Liu, Xingyu Qiu, Jie Zhang, Jingying Zhang, Yang Bai
    Journal of Integrative Plant Biology.2022; 64(2): 230.     CrossRef
  • The Role of Synthetic Microbial Communities (SynCom) in Sustainable Agriculture
    Ambihai Shayanthan, Patricia Ann C. Ordoñez, Ivan John Oresnik
    Frontiers in Agronomy.2022;[Epub]     CrossRef
  • Microbiome engineering and plant biostimulants for sustainable crop improvement and mitigation of biotic and abiotic stresses
    Su-Ee Lau, Wee Fei Aaron Teo, Ee Yang Teoh, Boon Chin Tan
    Discover Food.2022;[Epub]     CrossRef
  • Omics-based microbiome analysis in microbial ecology: from sequences to information
    Jang-Cheon Cho
    Journal of Microbiology.2021; 59(3): 229.     CrossRef
Journal Articles
Leucobacter coleopterorum sp. nov., Leucobacter insecticola sp. nov., and Leucobacter viscericola sp. nov., isolated from the intestine of the diving beetles, Cybister brevis and Cybister lewisianus, and emended description of the genus Leucobacter
Dong-Wook Hyun , Hojun Sung , Pil Soo Kim , Ji-Hyun Yun , Jin-Woo Bae
J. Microbiol. 2021;59(4):360-368.   Published online January 26, 2021
DOI: https://doi.org/10.1007/s12275-021-0472-6
  • 21 View
  • 0 Download
  • 8 Web of Science
  • 9 Crossref
AbstractAbstract
Three novel bacterial strains, HDW9AT, HDW9BT, and HDW9CT, isolated from the intestine of the diving beetles Cybister lewisianus and Cybister brevis, were characterized as three novel species using a polyphasic approach. The isolates were Gram-staining-positive, strictly aerobic, non-motile, and rod-shaped. They grew optimally at 30°C (pH 7) in the presence of 0.5% (wt/vol) NaCl. Phylogenetic analysis based on the 16S rRNA gene sequences revealed that they belong to the genus Leucobacter and are closely related to L. denitrificans M1T8B10T (98.4–98.7% sequence similarity). Average nucleotide identity (ANI) values among the isolates were 76.4–84.1%. ANI values for the isolates and the closest taxonomic species, L. denitrificans KACC 14055T, were 72.3–73.1%. The isolates showed ANI values of < 76.5% with all analyzable Leucobacter strains in the EzBioCloud database. The genomic DNA G + C content of the isolates was 60.3–62.5%. The polar lipid components were phosphatidylglycerol, diphosphatidylglycerol, and other unidentified glycolipids, phospholipids, and lipids. The major cellular fatty acids were anteiso- C15:0, iso-C16:0, and anteiso-C17:0. MK-10 was the major respiratory quinone, and MK-7 and MK-11 were the minor respiratory quinones. The whole-cell sugar components of the isolates were ribose, glucose, galactose, and mannose. The isolates harbored L-2,4-diaminobutyric acid, L-serine, L-lysine, L-aspartic acid, glycine, and D-glutamic acid within the cell wall peptidoglycan. Based on phylogenetic, phenotypic, chemotaxonomic, and genotypic analyses, strains HDW9AT, HDW9BT, and HDW9CT represent three novel species within the genus Leucobacter. We propose the name Leucobacter coleopterorum sp. nov. for strain HDW9AT (= KACC 21331T = KCTC 49317T = JCM 33667T), the name Leucobacter insecticola sp. nov. for strain HDW9BT (= KACC 21332T = KCTC 49318T = JCM 33668T), and the name Leucobacter viscericola sp. nov. for strain HDW9CT (= KACC 21333T = KCTC 49319T = JCM 33669T).

Citations

Citations to this article as recorded by  
  • Biogenic Silver Nanoparticles Produced by Soil Rare Actinomycetes and Their Significant Effect on Aspergillus-derived mycotoxins
    Mohamed N. Abd El-Ghany, Salwa A. Hamdi, Shereen M. Korany, Reham M. Elbaz, Ahmed N. Emam, Mohamed G. Farahat
    Microorganisms.2023; 11(4): 1006.     CrossRef
  • Leucobacter tenebrionis sp. nov., isolated from the gut of Tenebrio molitor
    Yu Ying, Bo Yuan, Tingting Liu, Xiaoshuan Bai, Haifeng Zhao
    International Journal of Systematic and Evolutionary Microbiology .2023;[Epub]     CrossRef
  • Leucobacter allii sp. nov. and Leucobacter rhizosphaerae sp. nov., isolated from rhizospheres of onion and garlic, respectively
    Seunghwan Kim, Tomomi Asano, Hanako Naito, Moriyuki Hamada, Hang-Yeon Weon, Soon-Wo Kwon, Jun Heo
    International Journal of Systematic and Evolutionary Microbiology .2023;[Epub]     CrossRef
  • Leucobacter chinensis sp. nov., with plant growth-promoting potential isolated from field soil after seven-years continuous maize cropping
    Jie Zhu, Juan Che, Xin Jiang, Mingchao Ma, Dawei Guan, Li Li, Fengming Cao, Baisuo Zhao, Yaowei Kang, Ji Zhao, Delong Kong, Yiqing Zhou, Zhiyong Ruan, Jun Li
    International Journal of Systematic and Evolutionary Microbiology .2022;[Epub]     CrossRef
  • Changes of gut microbiota in colorectal cancer patients with Pentatrichomonas hominis infection
    Hongbo Zhang, Yanhui Yu, Jianhua Li, Pengtao Gong, Xiaocen Wang, Xin Li, Yidan Cheng, Xiuyan Yu, Nan Zhang, Xichen Zhang
    Frontiers in Cellular and Infection Microbiology.2022;[Epub]     CrossRef
  • Lysobacter ciconiae sp. nov., and Lysobacter avium sp. nov., isolated from the faeces of an Oriental stork
    So-Yeon Lee, Pil Soo Kim, Hojun Sung, Dong-Wook Hyun, Jin-Woo Bae
    Journal of Microbiology.2022; 60(5): 469.     CrossRef
  • Valid publication of new names and new combinations effectively published outside the IJSEM. Validation List no. 203
    Aharon Oren, George M. Garrity
    International Journal of Systematic and Evolutionary Microbiology .2022;[Epub]     CrossRef
  • Leucobacter soli sp. nov., from soil amended with humic acid
    Peter Kämpfer, John A. McInroy, Dominique Clermont, Meina Neumann-Schaal, Alexis Criscuolo, Hans-Jürgen Busse, Stefanie P. Glaeser
    International Journal of Systematic and Evolutionary Microbiology .2021;[Epub]     CrossRef
  • Fate of Functional Bacterial and Eukaryotic Community Regulated by Earthworms during Vermicomposting of Dewatered Sludge, Studies Based on the 16S rDNA and 18S rDNA Sequencing of Active Cells
    Jun Yang, Kui Huang, Lansheng Peng, Jianhui Li, Aozhan Liu
    International Journal of Environmental Research and Public Health.2021; 18(18): 9713.     CrossRef
Characterization of a Salmonella Enteritidis bacteriophage showing broad lytic activity against Gram-negative enteric bacteria
Shukho Kim , Sung-Hun Kim , Marzia Rahman , Jungmin Kim
J. Microbiol. 2018;56(12):917-925.   Published online October 25, 2018
DOI: https://doi.org/10.1007/s12275-018-8310-1
  • 20 View
  • 0 Download
  • 24 Crossref
AbstractAbstract
In this study, we sought to isolate Salmonella Enteritidis-specific lytic bacteriophages (phages), and we found a lytic phage that could lyse not only S. Enteritidis but also other Gramnegative foodborne pathogens. This lytic phage, SS3e, could lyse almost all tested Salmonella enterica serovars as well as other enteric pathogenic bacteria including Escherichia coli, Shigella sonnei, Enterobacter cloacae, and Serratia marcescens. This SS3e phage has an icosahedral head and a long tail, indicating belong to the Siphoviridae. The genome was 40,793 base pairs, containing 58 theoretically determined open reading frames (ORFs). Among the 58 ORFs, ORF49, and ORF25 showed high sequence similarity with tail spike protein and lysozyme-like protein of Salmonella phage SE2, respectively, which are critical proteins recognizing and lysing host bacteria. Unlike SE2 phage whose host restricted to Salmonella enterica serovars Enteritidis and Gallinarum, SS3e showed broader host specificity against Gram-negative enteric bacteria; thus, it could be a promising candidate for the phage utilization against various Gram-negative bacterial infection including foodborne pathogens.

Citations

Citations to this article as recorded by  
  • Isolation and characterization of Salmonella enteritidis bacteriophage Salmp-p7 isolated from slaughterhouse effluent and its application in food
    Mengge Chen, Tong Yu, Xiangyu Cao, Jiaqi Pu, Deshu Wang, Hongkuan Deng
    Archives of Microbiology.2025;[Epub]     CrossRef
  • Can natural preservatives serve as a new line of protective technology against bacterial pathogens in meat and meat products?
    Changyong Cheng, Lingli Jiang, Xiaoliang Li, Houhui Song, Weihuan Fang
    Food Quality and Safety.2024;[Epub]     CrossRef
  • Bacteriophage as a novel therapeutic approach for killing multidrug-resistant Escherichia coli ST131 clone
    Md Shamsuzzaman, Shukho Kim, Jungmin Kim
    Frontiers in Microbiology.2024;[Epub]     CrossRef
  • Characterization of two virulent Salmonella phages and transient application in egg, meat and lettuce safety
    XiaoWen Sun, Fan Xue, Cong Cong, Bilal Murtaza, LiLi Wang, XiaoYu Li, ShuYing Li, YongPing Xu
    Food Research International.2024; 190: 114607.     CrossRef
  • Advanced strategies to overcome the challenges of bacteriophage-based antimicrobial treatments in food and agricultural systems
    Shanshan Liu, Siew-Young Quek, Kang Huang
    Critical Reviews in Food Science and Nutrition.2024; 64(33): 12574.     CrossRef
  • Review of phage display: A jack-of-all-trades and master of most biomolecule display
    Brenda Pei Chui Song, Angela Chiew Wen Ch'ng, Theam Soon Lim
    International Journal of Biological Macromolecules.2024; 256: 128455.     CrossRef
  • Application of the lytic bacteriophage Rostam to control Salmonella enteritidis in eggs
    Rahim Azari, Mohammad Hashem Yousefi, Zohreh Taghipour, Jeroen Wagemans, Rob Lavigne, Saeid Hosseinzadeh, Seyed Mohammad Mazloomi, Marta Vallino, Sepideh Khalatbari-Limaki, Enayat Berizi
    International Journal of Food Microbiology.2023; 389: 110097.     CrossRef
  • Isolation and genomic characterization of Vmp-1 using Vibrio mimicus as the host: A novel virulent bacteriophage capable of cross-species lysis against three Vibrio spp.
    Bin Yang, Yang Wang, Lu Gao, Sheng-qi Rao, Wen-yuan Zhou, Zhen-quan Yang, Xin-an Jiao, Benjamin Kumah Mintah, Mokhtar Dabbour
    Microbial Pathogenesis.2023; 174: 105948.     CrossRef
  • A Review on the Antimicrobial Effect of Honey on Salmonella and Listeria monocytogenes: Recent Studies
    Fatih Ramazan İSTANBULLUGİL, Nuri TAŞ, Ulaş ACARÖZ, Damla ARSLAN-ACAROZ, Ömer ÇAKMAK, Sezen EVRENKAYA, Zeki GÜRLER
    Manas Journal of Agriculture Veterinary and Life Sciences.2023; 13(2): 210.     CrossRef
  • Characterization of a Diverse Collection of Salmonella Phages Isolated from Tennessee Wastewater
    Daniel W. Bryan, Lauren K. Hudson, Jia Wang, Thomas G. Denes
    PHAGE.2023; 4(2): 90.     CrossRef
  • Newly Isolated Virulent Salmophages for Biocontrol of Multidrug-Resistant Salmonella in Ready-to-Eat Plant-Based Food
    Michał Wójcicki, Olga Świder, Paulina Średnicka, Dziyana Shymialevich, Tomasz Ilczuk, Łukasz Koperski, Hanna Cieślak, Barbara Sokołowska, Edyta Juszczuk-Kubiak
    International Journal of Molecular Sciences.2023; 24(12): 10134.     CrossRef
  • Prevalence of Indigenous Antibiotic-Resistant Salmonella Isolates and Their Application to Explore a Lytic Phage vB_SalS_KFSSM with an Intra-Broad Specificity
    Jaein Choe, Su-Hyeon Kim, Ji Min Han, Jong-Hoon Kim, Mi-Sun Kwak, Do-Won Jeong, Mi-Kyung Park
    Journal of Microbiology.2023; 61(12): 1063.     CrossRef
  • Statistical optimization of a podoviral anti-MRSA phage CCASU-L10 generated from an under sampled repository: Chicken rinse
    Israa M. Abd-Allah, Ghadir S. El-Housseiny, Mohamed H. Al-Agamy, Hesham H. Radwan, Khaled M. Aboshanab, Nadia A. Hassouna
    Frontiers in Cellular and Infection Microbiology.2023;[Epub]     CrossRef
  • Characterization and Genome Study of a Newly Isolated Temperate Phage Belonging to a New Genus Targeting Alicyclobacillus acidoterrestris
    Dziyana Shymialevich, Michał Wójcicki, Olga Świder, Paulina Średnicka, Barbara Sokołowska
    Genes.2023; 14(6): 1303.     CrossRef
  • An Anti-MRSA Phage From Raw Fish Rinse: Stability Evaluation and Production Optimization
    Israa M. Abd-Allah, Ghadir S. El-Housseiny, Mohammad Y. Alshahrani, Samar S. El-Masry, Khaled M. Aboshanab, Nadia A. Hassouna
    Frontiers in Cellular and Infection Microbiology.2022;[Epub]     CrossRef
  • Anti-Salmonella polyvinyl alcohol coating containing a virulent phage PBSE191 and its application on chicken eggshell
    Sangbin Kim, Yoonjee Chang
    Food Research International.2022; 162: 111971.     CrossRef
  • Applications of bacteriophages against intracellular bacteria
    Paulina Śliwka, Marta Ochocka, Aneta Skaradzińska
    Critical Reviews in Microbiology.2022; 48(2): 222.     CrossRef
  • In Vitro and In Vivo Gastrointestinal Survival of Non-Encapsulated and Microencapsulated Salmonella Bacteriophages: Implications for Bacteriophage Therapy in Poultry
    Laura Lorenzo-Rebenaque, Danish J. Malik, Pablo Catalá-Gregori, Clara Marin, Sandra Sevilla-Navarro
    Pharmaceuticals.2021; 14(5): 434.     CrossRef
  • How Broad Is Enough: The Host Range of Bacteriophages and Its Impact on the Agri-Food Sector
    Karen Fong, Catherine W.Y. Wong, Siyun Wang, Pascal Delaquis
    PHAGE.2021; 2(2): 83.     CrossRef
  • Characterization and Application of a Lytic Phage D10 against Multidrug-Resistant Salmonella
    Zhiwei Li, Wanning Li, Wenjuan Ma, Yifeng Ding, Yu Zhang, Qile Yang, Jia Wang, Xiaohong Wang
    Viruses.2021; 13(8): 1626.     CrossRef
  • Antimicrobial activity of LysSS, a novel phage endolysin, against Acinetobacter baumannii and Pseudomonas aeruginosa
    Shukho Kim, Da-Won Lee, Jong-Sook Jin, Jungmin Kim
    Journal of Global Antimicrobial Resistance.2020; 22: 32.     CrossRef
  • Characterization of the narrow-spectrum bacteriophage LSE7621 towards Salmonella Enteritidis and its biocontrol potential on lettuce and tofu
    Aiping Liu, Yilin Liu, Lin Peng, Xingzhe Cai, Li Shen, Maoping Duan, Yu Ning, Shuliang Liu, Chunyan Li, Yuntao Liu, Hong Chen, Wenjuan Wu, Xiaohong Wang, Bin Hu, Cheng Li
    LWT.2020; 118: 108791.     CrossRef
  • State of the Art in the Culture of the Human Microbiota: New Interests and Strategies
    Maryam Tidjani Alou, Sabrina Naud, Saber Khelaifia, Marion Bonnet, Jean-Christophe Lagier, Didier Raoult
    Clinical Microbiology Reviews.2020;[Epub]     CrossRef
  • Lytic KFS-SE2 phage as a novel bio-receptor for Salmonella Enteritidis detection
    In Young Choi, Cheonghoon Lee, Won Keun Song, Sung Jae Jang, Mi-Kyung Park
    Journal of Microbiology.2019; 57(2): 170.     CrossRef
Research Support, Non-U.S. Gov'ts
Comparative Genomic Analysis of Bacteriophage EP23 Infecting Shigella sonnei and Escherichia coli
Ho-Won Chang , Kyoung-Ho Kim
J. Microbiol. 2011;49(6):927-934.   Published online December 28, 2011
DOI: https://doi.org/10.1007/s12275-011-1577-0
  • 18 View
  • 0 Download
  • 19 Scopus
AbstractAbstract
Bacteriophage EP23 that infects Escherichia coli and Shigella sonnei was isolated and characterized. The bacteriophage morphology was similar to members of the family Siphoviridae. The 44,077 bp genome was fully sequenced using 454 pyrosequencing. Comparative genomic and phylogenetic analyses showed that EP23 was most closely related to phage SO-1, which infects Sodalis glossinidius and phage SSL-2009a, which infects engineered E. coli. Genomic comparison indicated that EP23 and SO-1 were very similar with each other in terms of gene order and amino acid similarity, even though their hosts were separated in the level of genus. EP23 and SSL-2009a displayed high amino acid similarity between their genes, but there was evidence of several recombination events in SSL-2009a. The results of the comparative genomic analyses further the understanding of the evolution and relationship between EP23 and its bacteriophage relatives.
Antibacterial Efficacy of Lytic Pseudomonas Bacteriophage in Normal and Neutropenic Mice Models
Birendra R. Tiwari , Shukho Kim , Marzia Rahman , Jungmin Kim
J. Microbiol. 2011;49(6):994-999.   Published online December 28, 2011
DOI: https://doi.org/10.1007/s12275-011-1512-4
  • 14 View
  • 0 Download
  • 61 Scopus
AbstractAbstract
Recently, lytic bacteriophages (phages) have been focused on treating bacterial infectious diseases. We investigated the protective efficacy of a novel Pseudomonas aeruginosa phage, PA1Ø, in normal and neutropenic mice. A lethal dose of P. aeruginosa PAO1 was administered via the intraperitoneal route and a single dose of PA1Ø with different multiplicities of infection (MOI) was treated into infected mice. Immunocompetent mice infected with P. aeruginosa PAO1 were successfully protected by PA1Ø of 1 MOI, 10 MOI or 100 MOI with 80% to 100% survival rate. No viable bacteria were found in organ samples after 48 h of the phage treatment. Phage clearing patterns were different in the presence or absence of host bacteria but PA1Ø disappeared from all organs after 72 h except spleen in the presence of host bacteria. On the contrary, PA1Ø treatment could not protect neutropenic mice infected with P. aeruginosa PAO1 even though could extend their lives for a short time. In in vitro phage-neutrophil bactericidal test, a stronger bactericidal effect was observed in phage-neutrophil co-treatment than in phage single treatment without neutrophils, suggesting phage-neutrophil co-work is essential for the efficient killing of bacteria in the mouse model. In conclusion, PA1Ø can be possibly utilized in future phage therapy endeavors since it exhibited strong protective effects against virulent P. aeruginosa infection.
Phenotypic Characterization and Genomic Analysis of the Shigella sonnei Bacteriophage SP18
Kyoung-Ho Kim , Ho-Won Chang , Young-Do Nam , Seong Woon Roh , Jin-Woo Bae
J. Microbiol. 2010;48(2):213-222.   Published online May 1, 2010
DOI: https://doi.org/10.1007/s12275-010-0055-4
  • 19 View
  • 0 Download
  • 12 Scopus
AbstractAbstract
A novel bacteriophage that infects Shigella sonnei was isolated from the Gap River in Korea, and its phenotypic and genomic characteristics were investigated. The virus, called SP18, showed morphology characteristic of the family Myoviridae, and phylogenetic analysis of major capsid gene (gp23) sequences classified it as a T4-like phage. Based on host spectrum analysis, it is lytic to S. sonnei, but not to Shigella flexneri, Shigella boydii or members of the genera Escherichia and Salmonella. Pyrosequencing of the SP18 bacteriophage genome revealed a 170-kb length sequence. In total, 286 ORFs and 3 tRNA genes were identified, and 259 ORFs showed similarity (BLASTP e-value<0.001) to genes of other bacteriophages. The results from comparative genomic analysis indicated that the enterophage JS98, isolated from human stool, is the closest relative of SP18. Based on phylogenetic analysis of gp23 protein-coding sequences, dot plot comparison and BLASTP analysis of genomes, SP18 and JS98 appear to be closely related to T4-even phages. However, several insertions, deletions, and duplications indicate differences between SP18 and JS98. Comparison of duplicated gp24 genes and the soc gene showed that duplication events are responsible for the differentiation and evolution of T4-like bacteriophages.
An Examination of the Bacteriophages and Bacteria of the Namib Desert
Eric Prestel , Sylvie Salamitou , Michael S. DuBow
J. Microbiol. 2008;46(4):364-372.   Published online August 31, 2008
DOI: https://doi.org/10.1007/s12275-008-0007-4
  • 27 View
  • 0 Download
  • 63 Scopus
AbstractAbstract
Bacteria and their viruses (called bacteriophages, or phages), have been found in virtually every ecological niche on Earth. Arid regions, including their most extreme form called deserts, represent the single largest ecosystem type on the Earth''s terrestrial surface. The Namib desert is believed to be the oldest (80 million years) desert. We report here an initial analysis of bacteriophages isolated from the Namib desert using a combination of electron microscopy and genomic approaches. The virus-like particles observed by electron microscopy revealed 20 seemingly different phage-like morphologies and sizes belonging to the Myoviridae and Siphoviridae families of tailed phages. Pulsed-field gel electrophoresis revealed a majority of phage genomes of 55~65 kb in length, with genomes of approximately 200, 300, and 350 kb also observable. Sample sequencing of cloned phage DNA fragments revealed that approximately 50% appeared to be of bacterial origin. Of the remaining DNA sequences, approximately 50% displayed no significant match to any sequence in the databases. The majority of the 16S rDNA sequences amplified from DNA extracted from the sand displayed considerable (94~98%) homology to members of the Firmicutes, and in particular to members of the genus Bacillus, though members of the Bacteroidetes, Planctomycetes, Chloroflexi, and delta-Proteobacteria groups were also observed.
Development of a Simple Cell Lysis Method for Recombinant DNA Using Bacteriophage Lambda Lysis Genes
Boyun Jang , Yuna Jung , Dongbin Lim
J. Microbiol. 2007;45(6):593-596.
DOI: https://doi.org/2602 [pii]
  • 10 View
  • 0 Download
AbstractAbstract
In this study, we describe the development of a simple and efficient method for cell lysis via the insertion of a bacteriophage lambda lysis gene cluster into the pET22b expression vector in the following order; the T7 promoter, a gene for a target protein intended for production, Sam7 and R. This insertion of R and Sam7 into pET22b exerted no detrimental effects on cellular growth or the production of a target protein. The induction of the T7 promoter did not in itself result in the autolysis of cells in culture but the harvested cells were readily broken by freezing and thawing. We compared the efficiency of the cell lysis technique by freezing and thawing to that observed with sonication, and determined that both methods completely disintegrated the cells and released proteins into the solution. With our modification of pET22b, the lysis of cells became quite simple, efficient, and reliable. This strategy may prove useful for a broad variety of applications, particularly in experiments requiring extensive cell breakage, including library screening and culture condition exploration, in addition to protein purification.
Isolation and Characterization of the Smallest Bacteriophage P4 Derivatives Packaged into P4-Size Head in Bacteriophage P2-P4 System
Kyoung-Jin Kim , Jaeho Song
J. Microbiol. 2006;44(5):530-536.
DOI: https://doi.org/2444 [pii]
  • 20 View
  • 0 Download
AbstractAbstract
Bacteriophage P4, a satellite phage of coliphage P2, is a very useful experimental tool for the study of viral capsid assembly and cos-cleavage. For an in vitro cos-cleavage reaction study of the P2-P4 system, new shortened and selectable markers containing P4 derivative plasmids were designed as a substrate molecules. They were constructed by swapping the non-essential segment of P4 DNA for either the kanamycin resistance (kmr) gene or the ampicillin resistance (apr) gene. The size of the genomes of the resulting markers were 82% (P4 ash8 delRI:: kmr) and 79% (P4 ash8 delRI:: apr) of the wild type P4 genome. To determine the lower limit of genome size that could be packaged into the small P4-size head, these shortened P4 plasmids were converted to phage particles with infection of the helper phage P2. The conversion of plasmid P4 derivatives to bacteriophage particles was verified by the heat stability test and the burst size determination experiment. CsCl buoyant equilibrium density gradient experiments confirmed not only the genome size of the viable phage form of shortened P4 derivatives, but also their packaging into the small P4-size head. P4 ash8 delRI:: apr turned out to be the smallest P4 genome that can be packaged into P4-sized head.
Purification of Filamentous Bacteriophage M13 by Expanded Bed Anion Exchange Chromatography
Tau Chuan Ling , Chee Kin Loong , Wen Siang Tan , Beng Ti Tey , Wan Mohammad Wan Abdullah , Arbakariya Ariff
J. Microbiol. 2004;42(3):228-232.
DOI: https://doi.org/2084 [pii]
  • 23 View
  • 0 Download
AbstractAbstract
In this paper, we investigated the development of a simplified and rapid primary capture step for the recovery of M13 bacteriophage from particulate-containing feedstock. M13 bacteriophage, carrying an insert, was propagated and subsequently purified by the application of both conventional multiple steps and expanded bed anion exchange chromatography. In the conventional method, precipitation was conducted with PEG/NaCl, and centrifugation was also performed. In the single step expanded bed anion exchange adsorption, UpFront FastLine^TM 20 (20 mm i.d.) from UpFront Chromatography was used as the contactor, while 54 ml (H_o=15cm) of STREAMLINE DEAE (r=1.2 g/cm^3) from Amersham Pharmacia Biotechnology was used as the anion exchanger. The performance of the two methods were evaluated, analysed, and compared. It was demonstrated that the purification of the M13 bacteriophage, using expanded bed anion exchange adsorption, yielded the higher recovery percentage, at 82.86%. The conventional multiple step method yielded the lower recovery percentage, 36.07%. The generic application of this integrated technique has also been assessed.
An Analysis of the Arm-type Site Binding Domain of Bacteriophage γ Integrase
Cho , Eun Hee
J. Microbiol. 1995;33(2):165-170.
  • 23 View
  • 0 Download
AbstractAbstract
The 356 amino acid long lambda integrase protein of bacteriophage λ constains two autonomous DNA binding domains with distinct sequence specificities. The amino terminal domain of integrase is implicated to bind to the arm-type sequences and the carboxyl domain interacts with the coretype sequencess. As a first step to understand the molecular mechanism of the integrase-DNA interaction at the arm-type site, the int(am)94 gene carrying an amber mutation at the 94th codon of the int was cloned under the control of the P_tac promoter and the lacI^q gene. The Int(am)94 mutant protein of amino terminal 93 amino acid residues can be produced at high level from a suppressor free strain harboring the plasmid pInt(am)94. The arm-type binding activity of Int(am)94 were measured in vivo and in vitro. A comparison of the arm-type binding properties of the wild-type integrase and the truncated Int(am)94 mutant indicated that the truncated fragment containing 93 amino acid residues carry all the determinants for DNA binding at the arm-type sites.

Journal of Microbiology : Journal of Microbiology
TOP