Carbon monoxide dehydrogenase (CO-DH) in Mycobacterium
sp. strain JC1 is a key enzyme for the carboxydotrophic
growth, when carbon monoxide (CO) is supplied as a
sole source of carbon and energy. This enzyme is also known
to act as nitric oxide dehydrogenase (NO-DH) for the detoxification
of NO. Several accessory genes such as cutD,
cutE, cutF, cutG, cutH, and cutI, are clustered together with
two copies of the CO-DH structural genes (cutB1C1A1 and
cutB2C2A2) in Mycobacterium sp. strain JC1 and are well
conserved in carboxydotrophic mycobacteria. Transcription
of the CO-DH structural and accessory genes was demonstrated
to be increased significantly by acidified sodium nitrate
as a source of NO. A cutI deletion (ΔcutI) mutant of
Mycobacterium sp. strain JC1 was generated to identity the
function of CutI. Lithoautotrophic growth of the ΔcutI mutant
was severely affected in mineral medium supplemented
with CO, while the mutant grew normally with glucose. Western
blotting, CO-DH activity staining, and CO-DH-specific
enzyme assay revealed a significant decrease in the cellular
level of CO-DH in the ΔcutI mutant. Northern blot analysis
and promoter assay showed that expression of the cutB1
and cutB2 genes was significantly reduced at the transcriptional
level in the ΔcutI mutant, compared to that of the wildtype
strain. The ΔcutI mutant was much more susceptible
to NO than was the wild type.
Citations
Citations to this article as recorded by
Characterization of a MHYT domain-coupled transcriptional regulator that responds to carbon monoxide Gonzalo Durante-Rodríguez, Sofía de Francisco-Polanco, José Luis García, Eduardo Díaz Nucleic Acids Research.2024; 52(15): 8849. CrossRef
Molybdenum Enzymes and How They Support Virulence in Pathogenic Bacteria Qifeng Zhong, Bostjan Kobe, Ulrike Kappler Frontiers in Microbiology.2020;[Epub] CrossRef