Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
13 "COVID-19"
Filter
Filter
Article category
Keywords
Publication year
Authors
Meta-Analysis
Exploring COVID-19 Pandemic Disparities with Transcriptomic Meta-analysis from the Perspective of Personalized Medicine
Medi Kori, Ceyda Kasavi, Kazim Yalcin Arga
J. Microbiol. 2024;62(9):785-798.   Published online July 9, 2024
DOI: https://doi.org/10.1007/s12275-024-00154-9
  • 63 View
  • 0 Download
  • 1 Web of Science
AbstractAbstract
Infection with SARS-CoV2, which is responsible for COVID-19, can lead to differences in disease development, severity and mortality rates depending on gender, age or the presence of certain diseases. Considering that existing studies ignore these differences, this study aims to uncover potential differences attributable to gender, age and source of sampling as well as viral load using bioinformatics and multi-omics approaches. Differential gene expression analyses were used to analyse the phenotypic differences between SARS-CoV-2 patients and controls at the mRNA level. Pathway enrichment analyses were performed at the gene set level to identify the activated pathways corresponding to the differences in the samples. Drug repurposing analysis was performed at the protein level, focusing on host-mediated drug candidates to uncover potential therapeutic differences. Significant differences (i.e. the number of differentially expressed genes and their characteristics) were observed for COVID-19 at the mRNA level depending on the sample source, gender and age of the samples. The results of the pathway enrichment show that SARS-CoV-2 can be combated more effectively in the respiratory tract than in the blood samples. Taking into account the different sample sources and their characteristics, different drug candidates were identified. Evaluating disease prediction, prevention and/or treatment strategies from a personalised perspective is crucial. In this study, we not only evaluated the differences in COVID-19 from a personalised perspective, but also provided valuable data for further experimental and clinical efforts. Our findings could shed light on potential pandemics.
Journal Articles
Licochalcone A Protects Vaginal Epithelial Cells Against Candida albicans Infection Via the TLR4/NF-κB Signaling Pathway
Wei Li, Yujun Yin, Taoqiong Li, Yiqun Wang, Wenyin Shi
J. Microbiol. 2024;62(7):525-533.   Published online May 31, 2024
DOI: https://doi.org/10.1007/s12275-024-00134-z
  • 111 View
  • 0 Download
  • 1 Web of Science
AbstractAbstract
Vulvovaginal candidiasis (VVC) is a prevalent condition affecting a significant portion of women worldwide. Licochalcone A (LA), a natural compound with diverse biological activities, holds promise as a protective agent against Candida albicans (C. albicans) infection. This study aims to investigate the potential of LA to safeguard vaginal epithelial cells (VECs) from C. albicans infection and elucidate the underlying molecular mechanisms. To simulate VVC in vitro, VK2-E6E7 cells were infected with C. albicans. Candida albicans biofilm formation, C. albicans adhesion to VK2-E6E7 cells, and C. albicans-induced cell damage and inflammatory responses were assessed by XTT reduction assay, fluorescence assay, LDH assay, and ELISA. CCK-8 assay was performed to evaluate the cytotoxic effects of LA on VK2-E6E7 cells. Western blotting assay was performed to detect protein expression. LA dose-dependently hindered C. albicans biofilm formation and adhesion to VK2-E6E7 cells. Furthermore, LA mitigated cell damage, inhibited the Bax/Bcl-2 ratio, and attenuated the secretion of pro-inflammatory cytokines in C. albicans-induced VK2-E6E7 cells. The investigation into LA's impact on the Toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB) pathway revealed that LA downregulated TLR4 expression and inhibited NF-κB activation in C. albicans-infected VK2-E6E7 cells. Furthermore, TLR4 overexpression partially abated LA-mediated protection, further highlighting the role of the TLR4/NF-κB pathway. LA holds the potential to safeguard VECs against C. albicans infection, potentially offering therapeutic avenues for VVC management.
Dynamic colonization of gut microbiota and its influencing factors among the breast-feeding infants during the first two years of life
Ping Li , Xuelian Chang , Xiaoyu Chen , Tiantian Tang , Yajing Liu , Yu Shang , Kemin Qi
J. Microbiol. 2022;60(8):780-794.   Published online May 27, 2022
DOI: https://doi.org/10.1007/s12275-022-1641-y
  • 43 View
  • 0 Download
  • 3 Web of Science
  • 3 Crossref
AbstractAbstract
The maturation of infant gut microbiota has lifelong implications on health, which has been proposed as the major events during the first year of life. However, little is known about their dynamic colonization and influencing elements among the first two-year infancy as well as into the adulthood. So based on the 16S rRNA sequencing data among 30 healthy breast-feeding mother-infant pairs with normal ranges of growth and development indicators from birth to two years old, the dynamic colonization of gut microbiota and its influencing factors were discussed using this birth cohort. Among these, we identified that the diversity of gut microbiota was significantly increased from six-month to two-year subgroups. The significantly dynamic trends of gut microbiota at the phylum (genus) level were that the percents of Firmicutes (Faecalibacterium, Blautia, Enterococcus, Subdoligranulum, Agathobacter, unidentified_Erysipelotrichaceae, Staphylococcus, unidentified_Ruminococcaceae, and Fusicatenibacter), Bacteroidetes and Verrucomicrobia were increased, while Actinobacteria (Bifidobacterium) and Proteobacteria (unidentified- Enterobacteriaceae and Klebsiella) were decreased with the increased ages from six months to two years old, which might simultaneously modulate the host pathways, such as the higher percents of chemoheterotrophy and fermentation, and lower percentages of nitrate_reduction, aerobic_chemoheterotrophy and so on. Furthermore, there were significant associations between maternal (milk microbiota, pre-pregnancy BMI, BMI increment during the pregnancy)/infant characteristics (BMI at birth and BMI gain), and the compositions of gut microbiota. However, no differences of gut microbiota were shown between the different sex and productive mode subgroups. Overall, the colonization of gut microbiota is significantly matured into the adulthood with the increased ages to two-years old and regulated by the above maternal/infant characteristics, which will provide a new direction for the host-gut microbiota interplay during the first two years of life.

Citations

Citations to this article as recorded by  
  • Maternal separation during lactation affects recognition memory, emotional behaviors, hippocampus and gut microbiota composition in C57BL6J adolescent female mice
    Zuotian Wu, Lin Zhou, Huikang Fu, Yumeng Xie, Limin Sun, Yixin Li, Ling Xiao, Lei Zhang, Ying Su, Gaohua Wang
    Behavioural Brain Research.2025; 476: 115249.     CrossRef
  • Ecological and dynamic analysis of gut microbiota in the early stage of azomethane-dextran sodium sulfate model in mice
    Ruizheng Sun, Hao Chen, Siqi Yao, Zheng Yu, Chen Lai, Jing Huang
    Frontiers in Cellular and Infection Microbiology.2023;[Epub]     CrossRef
  • Impact of the gut-lung axis on tuberculosis susceptibility and progression
    Aditya Enjeti, Harindra Darshana Sathkumara, Andreas Kupz
    Frontiers in Microbiology.2023;[Epub]     CrossRef
Promoter exchange of the cryptic nonribosomal peptide synthetase gene for oligopeptide production in Aspergillus oryzae
Chanikul Chutrakul , Sarocha Panchanawaporn , Sukanya Jeennor , Jutamas Anantayanon , Kobkul Laoteng
J. Microbiol. 2022;60(1):47-56.   Published online November 9, 2021
DOI: https://doi.org/10.1007/s12275-022-1442-3
  • 46 View
  • 0 Download
  • 6 Web of Science
  • 6 Crossref
AbstractAbstract
Oligopeptides with functional activities are of current interest in the nutraceutical and medical sectors. The development of the biosynthetic process of oligopeptides through a nonribosomal peptide synthetase (NRPS) system has become more challenging. To develop a production platform for nonribosomal peptides (NRPs), reprogramming of transcriptional regulation of the acv gene encoded ACV synthetase (ACVS) was implemented in Aspergillus oryzae using the CRISPRCas9 system. Awakening silent acv expression was successfully achieved by promoter substitution. Among the three exchanged promoters, AoPgpdA, AoPtef1, and PtPtoxA, the replacement of the native promoter with AoPgpdA led to the highest ACV production in A. oryzae. However, the ACV production of the AoPGpdA strain was also dependent on the medium composition, in which urea was the best nitrogen source, and a C:N ratio of 20:1 was optimal for tripeptide production. In addition to cell growth, magnesium ions are an essential element for ACV production and might participate in ACVS activity. It was also found that ACV was the growthassociated product of the engineered strain that might be a
result
of constitutive transcriptional control by the AoPgpdA promoter. This study offers a potential strategy for nonribosomal ACV production using the fungal system, which is applicable for redesigning bioactive oligopeptides with industrial relevance.

Citations

Citations to this article as recorded by  
  • Strategies for the Enhancement of Secondary Metabolite Production via Biosynthesis Gene Cluster Regulation in Aspergillus oryzae
    Xiao Jia, Jiayi Song, Yijian Wu, Sai Feng, Zeao Sun, Yan Hu, Mengxue Yu, Rui Han, Bin Zeng
    Journal of Fungi.2024; 10(5): 312.     CrossRef
  • Transcriptome-based Mining of the Constitutive Promoters for Tuning Gene Expression in Aspergillus oryzae
    Kobkul Laoteng, Jutamas Anantayanon, Chanikul Chutrakul, Sarocha Panchanawaporn, Sukanya Jeennor
    Journal of Microbiology.2023; 61(2): 199.     CrossRef
  • Efficient de novo production of bioactive cordycepin by Aspergillus oryzae using a food-grade expression platform
    Sukanya Jeennor, Jutamas Anantayanon, Sarocha Panchanawaporn, Chanikul Chutrakul, Wanwipa Vongsangnak, Kobkul Laoteng
    Microbial Cell Factories.2023;[Epub]     CrossRef
  • Synthetic microbes and biocatalyst designs in Thailand
    Duangthip Trisrivirat, Ruchanok Tinikul, Pimchai Chaiyen
    Biotechnology Notes.2023; 4: 28.     CrossRef
  • Potential of Aspergillus oryzae as a biosynthetic platform for indigoidine, a non-ribosomal peptide pigment with antioxidant activity
    Sarocha Panchanawaporn, Chanikul Chutrakul, Sukanya Jeennor, Jutamas Anantayanon, Nakul Rattanaphan, Kobkul Laoteng, Daniel Cullen
    PLOS ONE.2022; 17(6): e0270359.     CrossRef
  • CRISPR/Cas9-Based Genome Editing and Its Application in Aspergillus Species
    Feng-Jie Jin, Bao-Teng Wang, Zhen-Dong Wang, Long Jin, Pei Han
    Journal of Fungi.2022; 8(5): 467.     CrossRef
Review
Microbial source tracking using metagenomics and other new technologies
Shahbaz Raza , Jungman Kim , Michael J. Sadowsky , Tatsuya Unno
J. Microbiol. 2021;59(3):259-269.   Published online February 10, 2021
DOI: https://doi.org/10.1007/s12275-021-0668-9
  • 44 View
  • 0 Download
  • 9 Web of Science
  • 14 Crossref
AbstractAbstract
The environment is under siege from a variety of pollution sources. Fecal pollution is especially harmful as it disperses pathogenic bacteria into waterways. Unraveling origins of mixed sources of fecal bacteria is difficult and microbial source tracking (MST) in complex environments is still a daunting task. Despite the challenges, the need for answers far outweighs the difficulties experienced. Advancements in qPCR and next generation sequencing (NGS) technologies have shifted the traditional culture-based MST approaches towards culture independent technologies, where communitybased MST is becoming a method of choice. Metagenomic tools may be useful to overcome some of the limitations of community-based MST methods as they can give deep insight into identifying host specific fecal markers and their association with different environments. Adoption of machine learning (ML) algorithms, along with the metagenomic based MST approaches, will also provide a statistically robust and automated platform. To compliment that, ML-based approaches provide accurate optimization of resources. With the successful application of ML based models in disease prediction, outbreak investigation and medicine prescription, it would be possible that these methods would serve as a better surrogate of traditional MST approaches in future.

Citations

Citations to this article as recorded by  
  • Universal microbial indicators provide surveillance of sewage contamination in harbours worldwide
    Sandra L. McLellan, Anthony Chariton, Annachiara Codello, Jill S. McClary-Gutierrez, Melissa K. Schussman, Ezequiel M. Marzinelli, Judith M. O’Neil, Eric J. Schott, Jennifer L. Bowen, Joe H. Vineis, Lois Maignien, Clarisse Lemonnier, Morgan Perennou, Kare
    Nature Water.2024; 2(11): 1061.     CrossRef
  • Integrating molecular microbial methods to improve faecal pollution management in rivers with designated bathing waters
    Esther Karunakaran, Rick Battarbee, Simon Tait, Bruno Melo Brentan, Cathal Berney, James Grinham, Maria Angeles Herrero, Ronex Omolo, Isabel Douterelo
    Science of The Total Environment.2024; 912: 168565.     CrossRef
  • Application of Pan-Omics Technologies in Research on Important Economic Traits for Ruminants
    Zhendong Gao, Ying Lu, Mengfei Li, Yuqing Chong, Jieyun Hong, Jiao Wu, Dongwang Wu, Dongmei Xi, Weidong Deng
    International Journal of Molecular Sciences.2024; 25(17): 9271.     CrossRef
  • decOM: similarity-based microbial source tracking of ancient oral samples using k-mer-based methods
    Camila Duitama González, Riccardo Vicedomini, Téo Lemane, Nicolas Rascovan, Hugues Richard, Rayan Chikhi
    Microbiome.2023;[Epub]     CrossRef
  • Unraveling the influence of human fecal pollution on antibiotic resistance gene levels in different receiving water bodies using crAssphage indicator gene
    Zeyou Chen, Yujing Duan, Lichun Yin, Ying Chen, Yingang Xue, Xiaolong Wang, Daqing Mao, Yi Luo
    Journal of Hazardous Materials.2023; 442: 130005.     CrossRef
  • Have genetic targets for faecal pollution diagnostics and source tracking revolutionized water quality analysis yet?
    Katalin Demeter, Rita Linke, Elisenda Ballesté, Georg Reischer, René E Mayer, Julia Vierheilig, Claudia Kolm, Margaret E Stevenson, Julia Derx, Alexander K T Kirschner, Regina Sommer, Orin C Shanks, Anicet R Blanch, Joan B Rose, Warish Ahmed, Andreas H Fa
    FEMS Microbiology Reviews.2023;[Epub]     CrossRef
  • Comparative Microbial Community Analysis of Fur Seals and Aquaculture Salmon Gut Microbiomes in Tasmania
    Erin D’Agnese, Ryan J. McLaughlin, Mary-Anne Lea, Esteban Soto, Woutrina A. Smith, John P. Bowman
    Oceans.2023; 4(2): 200.     CrossRef
  • Strategies for Monitoring Microbial Life in Beach Sand for Protection of Public Health
    João Brandão, Elisabete Valério, Chelsea Weiskerger, Cristina Veríssimo, Konstantina Sarioglou, Monika Novak Babič, Helena M. Solo-Gabriele, Raquel Sabino, Maria Teresa Rebelo
    International Journal of Environmental Research and Public Health.2023; 20(9): 5710.     CrossRef
  • Microbial Source Tracking: An Emerging Technology for Microbial Water Quality Assessment: A Review
    Job, O.S., Bala, J.D., Abdulraham, A.A., Friday, N.N., Ibekie, S.A., Tsebam, C.J, Abudullahi, D.
    UMYU Journal of Microbiology Research (UJMR).2023; 8(1): 109.     CrossRef
  • Local and Environmental Reservoirs ofSalmonella entericaAfter Hurricane Florence Flooding
    Yuqing Mao, Mohamed Zeineldin, Moiz Usmani, Antarpreet Jutla, Joanna L. Shisler, Rachel J. Whitaker, Thanh H. Nguyen
    GeoHealth.2023;[Epub]     CrossRef
  • Humans and Hoofed Livestock Are the Main Sources of Fecal Contamination of Rivers Used for Crop Irrigation: A Microbial Source Tracking Approach
    Constanza Díaz-Gavidia, Carla Barría, Daniel L. Weller, Marilia Salgado-Caxito, Erika M. Estrada, Aníbal Araya, Leonardo Vera, Woutrina Smith, Minji Kim, Andrea I. Moreno-Switt, Jorge Olivares-Pacheco, Aiko D. Adell
    Frontiers in Microbiology.2022;[Epub]     CrossRef
  • Interfacing Machine Learning and Microbial Omics: A Promising Means to Address Environmental Challenges
    James M. W. R. McElhinney, Mary Krystelle Catacutan, Aurelie Mawart, Ayesha Hasan, Jorge Dias
    Frontiers in Microbiology.2022;[Epub]     CrossRef
  • Role of gene sequencing for the diagnosis, tracking and prevention of bacterial infections
    Renu Kumari, Benu Dhawan
    Journal of The Academy of Clinical Microbiologists.2022; 24(S1): 8.     CrossRef
  • Omics-based microbiome analysis in microbial ecology: from sequences to information
    Jang-Cheon Cho
    Journal of Microbiology.2021; 59(3): 229.     CrossRef
Journal Articles
Vagococcus zengguangii sp. nov., isolated from yak faeces
Yajun Ge , Dong Jin , Xin-He Lai , Jing Yang , Shan Lu , Ying Huang , Han Zheng , Xiaoyan Zhang , Jianguo Xu
J. Microbiol. 2021;59(1):1-9.   Published online December 23, 2020
DOI: https://doi.org/10.1007/s12275-021-0406-3
  • 40 View
  • 0 Download
  • 2 Web of Science
  • 2 Crossref
AbstractAbstract
Two unknown Gram-stain-positive, catalase- and oxidasenegative, non-motile, and coccus-shaped bacteria, designated MN-17T and MN-09, were isolated from yaks faeces (Bos grunniens) in the Qinghai-Tibet Plateau of China. 16S rRNA gene sequence-based comparative analyses revealed that the two strains were grouped within the genus Vagococcus, displaying the highest similarity with Vagococcus xieshaowenii CGMCC 1.16436T (98.6%) and Vagococcus elongatus CCUG 51432T (96.4%). Both strains grew optimally at 37°C and pH 7.0 in the presence of 0.5% (w/v) NaCl. The complete genome of MN-17T comprises 2,085 putative genes with a total of 2,190,262 bp and an average G + C content of 36.7 mol%. The major fatty acids were C16:0 (31.2%), C14:0 (28.5%), and C18:1ω9c (13.0%); the predominant respiratory quinone was MK-7 (68.8%); the peptidoglycan type was A4α(L-Lys-DAsp); and the major polar lipid was diphosphatidylglycerol. Together, these supported the affiliation of strain MN-17T to the genus Vagococcus. In silico DNA-DNA hybridization and the average nucleotide identity values between MN-17T and all recognized species in the genus were 21.6–26.1% and 70.7–83.0%, respectively. MN-17T produced acid from D-cellobiose, D-fructose, glycerol, D-glucose, N-acetyl-glucosamine, gentiobiose, D-mannose, D-maltose, D-ribose, Dsaccharose, salicin, D-trehalose, and D-xylose. These results distinguished MN-17T and MN-09 from closely related species in Vagococcus. Thus, we propose that strains MN-17T and MN-09 represent a novel species in the genus Vagococcus, with the name Vagococcus zengguangii sp. The type strain is MN-17T (= CGMCC 1.16726T = GDMCC 1.1589T = JCM 33478T).

Citations

Citations to this article as recorded by  
  • Vagococcus proximus sp. nov. and Vagococcus intermedius sp. nov., originating from modified atmosphere packaged broiler meat
    Per Johansson, Elina Jääskeläinen, Elina Säde, Johanna Björkroth
    International Journal of Systematic and Evolutionary Microbiology .2023;[Epub]     CrossRef
  • Phenotypic and genomic characteristics of Brevibacterium zhoupengii sp. nov., a novel halotolerant actinomycete isolated from bat feces
    Yuyuan Huang, Lingzhi Dong, Jian Gong, Jing Yang, Shan Lu, Xin-He Lai, Dong Jin, Qianni Huang, Ji Pu, Liyun Liu, Jianguo Xu
    Journal of Microbiology.2022; 60(10): 977.     CrossRef
Caspase-3 inhibitor inhibits enterovirus D68 production
Wenbo Huo , Jinghua Yu , Chunyu Liu , Ting Wu , Yue Wang , Xiangling Meng , Fengmei Song , Shuxia Zhang , Ying Su , Yumeng Liu , Jinming Liu , Xiaoyan Yu , Shucheng Hua
J. Microbiol. 2020;58(9):812-820.   Published online September 1, 2020
DOI: https://doi.org/10.1007/s12275-020-0241-y
  • 51 View
  • 0 Download
  • 7 Web of Science
  • 8 Crossref
AbstractAbstract
Enterovirus D68 (EVD68) is an emerging pathogen that recently caused a large worldwide outbreak of severe respiratory disease in children. However, the relationship between EVD68 and host cells remains unclear. Caspases are involved in cell death, immune response, and even viral production. We found that caspase-3 was activated during EVD68 replication to induce apoptosis. Caspase-3 inhibitor (Z-DEVDFMK) inhibited viral production, protected host cells from the cytopathic effects of EVD68 infection, and prevented EVD68 from regulating the host cell cycle at G0/G1. Meanwhile, caspase-3 activator (PAC-1) increased EVD68 production. EVD68 infection therefore activates caspase-3 for virus production. This knowledge provides a potential direction for the prevention and treatment of disease related to EVD68.

Citations

Citations to this article as recorded by  
  • Non-Polio Enterovirus Inhibitors: Scaffolds, Targets, and Potency─What’s New?
    Hugo Fernando Georges Roux, Franck Touret, Pascal Rathelot, Pietro Sciò, Antonio Coluccia, Patrice Vanelle, Manon Roche
    ACS Infectious Diseases.2024;[Epub]     CrossRef
  • Mode of cell death in the penile cavernous tissue of type 1 diabetes mellitus rats
    Jing Li, Qilan Jiang, Jun Jiang, Rui Jiang
    The Journal of Sexual Medicine.2024; 21(8): 652.     CrossRef
  • MDA5 Enhances Invasive Candida albicans Infection by Regulating Macrophage Apoptosis and Phagocytosis/Killing Functions
    Yayun Chen, Qian Jiang, Furong Qing, Junxia Xue, Qiuxiang Xiao, Wenji He, Lina Sui, Zhiping Liu
    Inflammation.2024; 47(1): 191.     CrossRef
  • Caspase-8 activation regulates enterovirus D68 infection-induced inflammatory response and cell death
    Yuanyuan Zhou, Chongtao Zhang, Yuhan Zhang, Fei Li, Jun Shen
    Biosafety and Health.2024; 6(3): 171.     CrossRef
  • Enterovirus D68 Infection Induces TDP-43 Cleavage, Aggregation, and Neurotoxicity
    Lili Zhang, Jiaxin Yang, Huili Li, Zhe Zhang, Zhilin Ji, Lirong Zhao, Wei Wei, Rebecca Ellis Dutch
    Journal of Virology.2023;[Epub]     CrossRef
  • Inhibitory effect of tanshinone IIA, resveratrol and silibinin on enterovirus 68 production through inhibiting ATM and DNA-PK pathway
    Ying Su, Ting Wu, Xiao-Yan Yu, Wen-Bo Huo, Shao-Hua Wang, Chen Huan, Yu-Meng Liu, Jin-Ming Liu, Min-Na Cui, Xin-Hua Li, Jing-Hua Yu
    Phytomedicine.2022; 99: 153977.     CrossRef
  • Urolithin A inhibits enterovirus 71 replication and promotes autophagy and apoptosis of infected cells in vitro
    Shengyu Wang, Junhua Qiao, Yaping Chen, Langfei Tian, Xin Sun
    Archives of Virology.2022; 167(10): 1989.     CrossRef
  • Mst1/2-ALK promotes NLRP3 inflammasome activation and cell apoptosis during Listeria monocytogenes infection
    Aijiao Gao, Huixin Tang, Qian Zhang, Ruiqing Liu, Lin Wang, Yashan Liu, Zhi Qi, Yanna Shen
    Journal of Microbiology.2021; 59(7): 681.     CrossRef
Review
Regulation of the AcrAB efflux system by the quorum-sensing regulator AnoR in Acinetobacter nosocomialis
Bindu Subhadra , Surya Surendran , Bo Ra Lim , Jong Sung Yim , Dong Ho Kim , Kyungho Woo , Hwa-Jung Kim , Man Hwan Oh , Chul Hee Choi
J. Microbiol. 2020;58(6):507-518.   Published online May 27, 2020
DOI: https://doi.org/10.1007/s12275-020-0185-2
  • 49 View
  • 0 Download
  • 12 Web of Science
  • 11 Crossref
AbstractAbstract
Multidrug efflux pumps play an important role in antimicrobial resistance and pathogenicity in bacteria. Here, we report the functional characterization of the RND (resistance-nodulation- division) efflux pump, AcrAB, in Acinetobacter nosocomialis. An in silico analysis revealed that homologues of the AcrAB efflux pump, comprising AcrA and AcrB, are widely distributed among different bacterial species. Deletion of acrA and/or acrB genes led to decreased biofilm/pellicle formation and reduced antimicrobial resistance in A. nosocomialis. RNA sequencing and mRNA expression analyses showed that expression of acrA/B was downregulated in a quorum sensing (QS) regulator (anoR)-deletion mutant, indicating transcriptional activation of the acrAB operon by AnoR in A. nosocomialis. Bioassays showed that secretion of N-acyl homoserine lactones (AHLs) was unaffected in acrA and acrB deletion mutants; however, AHL secretion was limited in a deletion mutant of acrR, encoding the acrAB regulator, AcrR. An in silico analysis indicated the presence of AcrR-binding motifs in promoter regions of anoI (encoding AHL synthase) and anoR. Specific binding of AcrR was confirmed by electrophoretic mobility shift assays, which revealed that AcrR binds to positions -214 and -217 bp upstream of the translational start sites of anoI and anoR, respectively, demonstrating transcriptional regulation of these QS genes by AcrR. The current study further addresses the possibility that AcrAB is controlled by the osmotic stress regulator, OmpR, in A. nosocomialis. Our data demonstrate that the AcrAB efflux pump plays a crucial role in biofilm/pellicle formation and antimicrobial resistance in A. nosocomialis, and is under the transcriptional control of a number of regulators. In addition, the study emphasizes the interrelationship of QS and AcrAB efflux systems in A. nosocomialis.

Citations

Citations to this article as recorded by  
  • Types and Mechanisms of Efflux Pump Systems and the Potential of Efflux Pump Inhibitors in the Restoration of Antimicrobial Susceptibility, with a Special Reference to Acinetobacter baumannii
    Kira M. Zack, Trent Sorenson, Suresh G. Joshi
    Pathogens.2024; 13(3): 197.     CrossRef
  • Lysine Trimethylation in Planktonic and Pellicle Modes of Growth in Acinetobacter baumannii
    Nicolas Nalpas, Takfarinas Kentache, Emmanuelle Dé, Julie Hardouin
    Journal of Proteome Research.2023; 22(7): 2339.     CrossRef
  • The Mechanism of Tigecycline Resistance in Acinetobacter baumannii Revealed by Proteomic and Genomic Analysis
    Cunwei Liu, Lei Wang, Ping Wang, Di Xiao, Qinghua Zou
    International Journal of Molecular Sciences.2023; 24(10): 8652.     CrossRef
  • Antimicrobial photodynamic therapy against oral biofilm: influencing factors, mechanisms, and combined actions with other strategies
    Yijun Li, Guanwen Sun, Jingchan Xie, Suli Xiao, Chen Lin
    Frontiers in Microbiology.2023;[Epub]     CrossRef
  • The multifaceted genusAcinetobacter: from infection to bioremediation
    Ujwal Dahal, Karan Paul, Shelly Gupta
    Journal of Applied Microbiology.2023;[Epub]     CrossRef
  • Efflux pumps and microbial biofilm formation
    Mahdyeh Neghabi Hajiagha, Hossein Samadi Kafil
    Infection, Genetics and Evolution.2023; 112: 105459.     CrossRef
  • Targeting the Holy Triangle of Quorum Sensing, Biofilm Formation, and Antibiotic Resistance in Pathogenic Bacteria
    Ronit Vogt Sionov, Doron Steinberg
    Microorganisms.2022; 10(6): 1239.     CrossRef
  • Evidence for Complex Interplay between Quorum Sensing and Antibiotic Resistance in Pseudomonas aeruginosa
    Rakesh Sikdar, Mikael H. Elias, Giordano Rampioni
    Microbiology Spectrum.2022;[Epub]     CrossRef
  • Update on Multidrug Resistance Efflux Pumps in Acinetobacter spp.
    Vanessa Kornelsen, Ayush Kumar
    Antimicrobial Agents and Chemotherapy.2021;[Epub]     CrossRef
  • Orthopedic Implant-Related Biofilm Pathophysiology: A Review of the Literature
    Meletis Rozis, Dimitrios S Evangelopoulos, Spyros G Pneumaticos
    Cureus.2021;[Epub]     CrossRef
  • The impact of cell structure, metabolism and group behavior for the survival of bacteria under stress conditions
    Xinyi Zhang, Zhendong Li, Shengmei Pang, Boyu Jiang, Yang Yang, Qiangde Duan, Guoqiang Zhu
    Archives of Microbiology.2021; 203(2): 431.     CrossRef
Journal Articles
Endophytic bacterial and fungal microbiota in different cultivars of cassava (Manihot esculenta Crantz)
Hong Li , Chengliang Yan , Yanqiong Tang , Xiang Ma , Yinhua Chen , Songbi Chen , Min Lin , Zhu Liu
J. Microbiol. 2020;58(7):614-623.   Published online May 18, 2020
DOI: https://doi.org/10.1007/s12275-020-9565-x
  • 56 View
  • 0 Download
  • 13 Web of Science
  • 12 Crossref
AbstractAbstract
Endophytes colonize tissues of healthy host plants and play a crucial role in plant growth and development. However, little attention has been paid to the endophytes of tuber crops such as cassava, which is used as a staple food by approximately 800 million people worldwide. This study aimed to elucidate the diversity and composition of endophytic bacterial and fungal communities in different cassava cultivars using high-throughput sequencing. Although no significant differences in richness or diversity were observed among the different cassava cultivars, the community compositions were diverse. Two cultivars (SC124 and SC205) tolerant to root rot exhibited similar community compositions, while two other cultivars (SC10 and SC5), which are moderately and highly susceptible to root rot, respectively, harboured similar community compositions. Proteobacteria, Firmicutes, and Ascomycota dominated the endophyte assemblages, with Weissella, Serratia, Lasiodiplodia, Fusarium, and Diaporthe being the predominant genera. The differentially abundant taxonomic clades between the tolerant and susceptible cultivars were mainly rare taxa, such as Lachnoclostridium_5, Rhizobium, Lampropedia, and Stenotrophomonas. These seemed to be key genera that affected the susceptibility of cassava to root rot. Moreover, the comparison of KEGG functional profiles revealed that ‘Environmental adaptation’ category was significantly enriched in the tolerant cultivars, while ‘Infectious diseases: Parasitic’ category was significantly enriched in the susceptible cultivars. The present findings open opportunities for further studies on the roles of endophytes in the susceptibility of plants to diseases.

Citations

Citations to this article as recorded by  
  • Are rot-causing Botryosphaeriaceae species surviving in healthy Manihot esculenta propagative material in Brazil?
    Amanda Cupertino de Queiroz Brito, Juliana Ferreira de Mello, José Vitorino da Silva Neto, Daniele Magna Azevedo de Assis, Ana Elisa de Almeida Souza, Antonio Félix da Costa, Ueder Pedro Lopes, Cristina Maria de Souza-Motta, Alexandre Reis Machado
    Tropical Plant Pathology.2025;[Epub]     CrossRef
  • Nutrient Management Under Good Agricultural Practices for Sustainable Cassava Production in Northeastern Thailand
    Derrick Keith Thompson, Ornprapa Thepsilvisut, Phanawan Imorachorn, Saowakol Boonkaen, Preuk Chutimanukul, Suthasinee Somyong, Wuttichai Mhuantong, Hiroshi Ehara
    Resources.2025; 14(3): 39.     CrossRef
  • Impact of Vanadium–Titanium–Magnetite Mining Activities on Endophytic Bacterial Communities and Functions in the Root Systems of Local Plants
    Zhuang Xiong, Yunfeng Zhang, Xiaodie Chen, Ajia Sha, Wenqi Xiao, Yingyong Luo, Lianxin Peng, Liang Zou, Qiang Li
    Genes.2024; 15(5): 526.     CrossRef
  • Colorimetric LAMP Assay for Detection of Xanthomonas phaseoli pv. manihotis in Cassava Through Genomics: A New Approach to an Old Problem
    Ian C. Bispo Carvalho, Alice Maria Silva Carvalho, Adriane Wendland, Maurício Rossato
    Plant Disease.2024; 108(10): 2993.     CrossRef
  • Genetic diversity, plant growth promotion potential, and antimicrobial activity of culturable endophytic actinobacteria isolated from Aconitum carmichaelii Debeaux
    Lan Zou, Yaopeng Zhang, Qian Wang, Siyu Wang, Muyi Li, Jing Huang
    Journal of Applied Microbiology.2023;[Epub]     CrossRef
  • High-throughput sequencing-based analysis of the composition and diversity of endophytic bacteria community in tubers of Gastrodia elata f.glauca
    Heng Zheng, Peng Zhang, Jing Qin, Jiani Guo, Jun Deng
    Frontiers in Microbiology.2023;[Epub]     CrossRef
  • Richness of Nigrospora spp. (Apiosporaceae) in Manihot esculenta in Brazil and the description of three new species
    Amanda Cupertino de Queiroz Brito, Juliana Ferreira de Mello, Ana Elisa de Almeida Souza, Sandy dos Santos Nascimento, Cristina Maria de Souza-Motta, Alexandre Reis Machado
    Mycological Progress.2023;[Epub]     CrossRef
  • Biocontrol de Fusarium spp. en el cultivo de vainilla: Un nuevo modelo de estudio
    Laura Steffania Franco-Galindo , Ana Teresa Mosquera-Espinosa
    Temas Agrarios.2023; 28(1): 95.     CrossRef
  • Endophytic bacterial community structure and diversity of the medicinal plant Mirabilis himalaica from different locations
    Erhao Zhang, Yazhou Lu, Rundong Zhao, Xiu Yin, Jie Zhang, Benxia Yu, Min Yao, Zhihua Liao, Xiaozhong Lan
    Brazilian Journal of Microbiology.2023; 54(4): 2991.     CrossRef
  • Diversity of the Bacterial Microbiome Associated With the Endosphere and Rhizosphere of Different Cassava (Manihot esculenta Crantz) Genotypes
    Jingwen Ha, Yu Gao, Rui Zhang, Ke Li, Yijie Zhang, Xiaolei Niu, Xin Chen, Kai Luo, Yinhua Chen
    Frontiers in Microbiology.2021;[Epub]     CrossRef
  • The Diversity of Culture-Dependent Gram-Negative Rhizobacteria Associated with Manihot esculenta Crantz Plants Subjected to Water-Deficit Stress
    Tatiana Zapata, Diana Marcela Galindo, Alba Rocío Corrales-Ducuara, Iván Darío Ocampo-Ibáñez
    Diversity.2021; 13(8): 366.     CrossRef
  • Isolation and characterization of cassava root endophytic bacteria with the ability to promote plant growth and control the in vitro and in vivo growth of Phytopythium sp.
    Solange da Cunha Ferreira, Alessandra Keiko Nakasone, Silvia Mara Coelho do Nascimento, Danyllo Amaral de Oliveira, Andrei Santos Siqueira, Elisa Ferreira Moura Cunha, Gledson Luiz Salgado de Castro, Cláudia Regina Batista de Souza
    Physiological and Molecular Plant Pathology.2021; 116: 101709.     CrossRef
Development of a real-time loop-mediated isothermal amplification method for the detection of severe fever with thrombocytopenia syndrome virus
Jae Woong Lee , Yu-Jung Won , Lae Hyung Kang , Sung-Geun Lee , Seung-Won Park , Soon-Young Paik
J. Microbiol. 2020;58(8):711-715.   Published online May 18, 2020
DOI: https://doi.org/10.1007/s12275-020-0109-1
  • 47 View
  • 0 Download
  • 9 Web of Science
  • 9 Crossref
AbstractAbstract
Severe fever with thrombocytopenia syndrome (SFTS) is being reported annually in South Korea since its first detection there in 2010. The causal agent is a negative-strand RNA virus 80–100 nm in diameter. It causes fever, thrombocytopenia, leukocytopenia, gastrointestinal symptoms, and neural symptoms. The mortality rate of SFTS was 32.6% among 172
case
s reported from 2012 to 2015 in South Korea. Thus, is necessary to develop an effective diagnostic method that selectively identifies the isolates circulating in South Korea. The real-time reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay is a simple, rapid, and sensitive approach for molecular diagnosis. Here, we designed novel primers for this assay and found that the technique had very high specificity, sensitivity, and efficiency. This real-time RTLAMP approach using the novel primers developed herein can be applied for early diagnosis of SFTSV strains in South Korea to reduce the mortality rate of SFTS.

Citations

Citations to this article as recorded by  
  • Long-Term Detection and Isolation of Severe Fever with Thrombocytopenia Syndrome (SFTS) Virus in Dog Urine
    Yumiko Saga, Toshikazu Yoshida, Rieko Yoshida, Shunsuke Yazawa, Takahisa Shimada, Noriko Inasaki, Masae Itamochi, Emiko Yamazaki, Kazunori Oishi, Hideki Tani
    Viruses.2023; 15(11): 2228.     CrossRef
  • Advancements in the Worldwide Detection of Severe Fever with Thrombocytopenia Syndrome Virus Infection from 2009 to 2023
    Lin Ai, Wei Wang, Zheng Teng
    China CDC Weekly.2023; 5(31): 687.     CrossRef
  • Molecular detection of “Candidatus Rickettsia tarasevichiae” by Loop-mediated Isothermal Amplification (LAMP) of the ompA gene
    Jing Xue, Qing Ren, Rui Jian, Guang-Cheng Xie, Yongliang Chen, Jiangli Wang, Luanying Du, Wen-Ping Guo
    Journal of Microbiological Methods.2022; 202: 106601.     CrossRef
  • Dual-gene detection in a single-tube system based on CRISPR-Cas12a/Cas13a for severe fever thrombocytopenia syndrome virus
    Yating Zhu, Chen Xing, Li Yang, Qian Li, Xiaofeng Wang, Jing Zhou, Cong Zhang, Cuiping Ren, Fahu Liu, Jun He, Bing Shen, Yinan Du, Yan Liu
    Frontiers in Microbiology.2022;[Epub]     CrossRef
  • CRISPR/Cas12a Technology Combined With RPA for Rapid and Portable SFTSV Detection
    Mengqian Huang, Sihua Liu, Yanan Xu, Aqian Li, Wei Wu, Mifang Liang, Guoyu Niu, Zhiyun Wang, Tao Wang
    Frontiers in Microbiology.2022;[Epub]     CrossRef
  • Development of monoclonal antibody based IgG and IgM ELISA for diagnosis of severe fever with thrombocytopenia syndrome virus infection
    Mei Zhang, Yanhua Du, Li Yang, Lin Zhan, Bin Yang, Xueyong Huang, Bianli Xu, Koichi Morita, Fuxun Yu
    The Brazilian Journal of Infectious Diseases.2022; 26(4): 102386.     CrossRef
  • Development of an RT-LAMP Assay for the Rapid Detection of SFTS Virus
    Shiori Sano, Shuetsu Fukushi, Souichi Yamada, Shizuko Harada, Hitomi Kinoshita, Satoko Sugimoto, Tomoki Yoshikawa, Takeshi Kurosu, Yuki Takamatsu, Masayuki Shimojima, Shoichi Toda, Yuka Hamada, Naoki Fujisawa, Takayuki Sugimoto, Masayuki Saijo
    Viruses.2021; 13(4): 693.     CrossRef
  • A Real-Time Loop-Mediated Isothermal Amplification for Detection of the Wheat Dwarf Virus in Wheat and the Insect VectorPsammotettix alienus
    Xingan Hao, Licheng Wang, Xudong Zhang, Qinrong Zhong, Jamal-U-Ddin Hajano, Liangsheng Xu, Yunfeng Wu
    Plant Disease.2021; 105(12): 4113.     CrossRef
  • Baseline mapping of severe fever with thrombocytopenia syndrome virology, epidemiology and vaccine research and development
    Nathen E. Bopp, Jaclyn A. Kaiser, Ashley E. Strother, Alan D. T. Barrett, David W. C. Beasley, Virginia Benassi, Gregg N. Milligan, Marie-Pierre Preziosi, Lisa M. Reece
    npj Vaccines.2020;[Epub]     CrossRef
Long-term continuously monocropped peanut significantly disturbed the balance of soil fungal communities
Mingna Chen , Jiancheng Zhang , Hu Liu , Mian Wang , LiJuan Pan , Na Chen , Tong Wang , Yu Jing , Xiaoyuan Chi , Binghai Du
J. Microbiol. 2020;58(7):563-573.   Published online April 22, 2020
DOI: https://doi.org/10.1007/s12275-020-9573-x
  • 47 View
  • 0 Download
  • 14 Web of Science
  • 15 Crossref
AbstractAbstract
Balancing soil microbial diversity and abundance is critical to sustaining soil health, and understanding the dynamics of soil microbes in a monocropping system can help determine how continuous monocropping practices induce soil sickness mediated by microorganisms. This study used previously constructed gradient continuous monocropping plots and four varieties with different monocropping responses were investigated. The feedback responses of their soil fungal communities to short-term and long-term continuous monocropping were tracked using high-throughput sequencing techniques. The analyses indicated that soil samples from 1 and 2 year monocropped plots were grouped into one class, and samples from the 11 and 12 year plots were grouped into another, regardless of variety. At the species level, the F. solani, Fusarium oxysporum, Neocosmospora striata, Acrophialophora levis, Aspergillus niger, Aspergillus corrugatus, Thielavia hyrcaniae, Emericellopsis minima, and Scedosporium aurantiacum taxa showed significantly increased abundances in the long-term monocropping libraries compared to the short-term cropping libraries. In contrast, Talaromyces flavus, Talaromyces purpureogenus, Mortierella alpina, Paranamyces uniporus, and Volutella citrinella decreased in the long-term monocropping libraries compared to the shortterm libraries. This study, combined with our previous study, showed that fungal community structure was significantly affected by the length of the monocropping period, but peanut variety and growth stages were less important. The increase in pathogen abundances and the decrease in beneficial fungi abundances seem to be the main cause for the yield decline and poor growth of long-term monocultured peanut. Simplification of fungal community diversity could also contribute to peanut soil sickness under long-term monocropping. Additionally, the different responses of peanut varieties to monocropping may be related to variations in their microbial community structure.

Citations

Citations to this article as recorded by  
  • Endophytic fungi promote peanut fitness by re-establishing rhizosphere nematode communities under continuous monocropping conditions
    Xiang-Yu Zhang, Hao-Ran Li, Hui-Jun Jiang, Xiao-Han Wu, Chen-Yu Ma, De-Lin Luo, Wei Zhang, Chuan-Chao Dai
    Plant and Soil.2024;[Epub]     CrossRef
  • Analyses of Rhizosphere Soil Physicochemical Properties and Microbial Community Structure in Cerasus humilis Orchards with Different Planting Years
    Xiaopeng Mu, Jing Wang, Hao Qin, Jingqian Ding, Xiaoyan Mou, Shan Liu, Li Wang, Shuai Zhang, Jiancheng Zhang, Pengfei Wang
    Horticulturae.2024; 10(10): 1102.     CrossRef
  • Short-term continuous monocropping reduces peanut yield mainly via altering soil enzyme activity and fungal community
    Taobing Yu, Xiqing Hou, Xiangyang Fang, Bahar Razavi, Huadong Zang, Zhaohai Zeng, Yadong Yang
    Environmental Research.2024; 245: 117977.     CrossRef
  • Mechanisms and Mitigation Strategies for the Occurrence of Continuous Cropping Obstacles of Legumes in China
    Lei Ma, Shaoying Ma, Guiping Chen, Xu Lu, Qiang Chai, Sheng Li
    Agronomy.2023; 14(1): 104.     CrossRef
  • Region and Crop Type Influenced Fungal Diversity and Community Structure in Agricultural Areas in Qinghai Province
    Lianyu Zhou, Xuelan Ma, Longrui Wang, Wenjuan Sun, Yu Liu, Yun Ma, Huichun Xie, Feng Qiao
    Agriculture.2023; 14(1): 6.     CrossRef
  • Effects of Combined Application of Biological Agent and Fertilizer on Fungal Community Structure in Rhizosphere Soil of Panax notoginseng
    Yanwei Liu, Yingjie Zhou, Xiaofan Zhang, Ni Cao, Bin Li, Jiaping Liang, Qiliang Yang
    Agronomy.2023; 13(8): 2093.     CrossRef
  • Evaluation of efficacy and mechanism of Bacillus velezensis CB13 for controlling peanut stem rot caused by Sclerotium rolfsii
    Shu Jia, Ce Song, Hai Dong, Xujie Yang, Xinghai Li, Mingshan Ji, Jin Chu
    Frontiers in Microbiology.2023;[Epub]     CrossRef
  • Reduced pollen activity in peanut (Arachis hypogaea L.) by long-term monocropping is linked to flower water deficit
    Xue Luo, Ya-Nan Bai, Kai Sun, Wei Zhang, Chuan-Chao Dai
    Plant and Soil.2023; 482(1-2): 427.     CrossRef
  • Effects of Winter Oilseed Rape Planting on Soil Nutrient and Eco-Economic Benefit of Cotton Field
    兆东 刘
    Hans Journal of Agricultural Sciences.2023; 13(09): 808.     CrossRef
  • Soil and Phytomicrobiome for Plant Disease Suppression and Management under Climate Change: A Review
    Wen Chen, Dixi Modi, Adeline Picot
    Plants.2023; 12(14): 2736.     CrossRef
  • Effect of long-term sugar beet cultivation on rhizosphere bacterial diversity, community structure and sugar yield of sugar beet
    Jiyu Du, Baiquan Song, Qiue Jia, Shangxuan Liu, Xingfan Li, Huajun Liu, Wengong Huang
    Rhizosphere.2022; 22: 100507.     CrossRef
  • Long-Term Cultivation of Sugar Beet: Effect on Rhizosphere Micro-flora, Soil Fertility and Beet Productivity
    Jiyu Du, Baiquan Song, Xingfan Li, Wengong Huang
    Sugar Tech.2022; 24(6): 1821.     CrossRef
  • Autotoxin affects the rhizosphere microbial community structure by influencing the secretory characteristics of grapevine roots
    Qianwen Liu, Liheng Zhang, Lu Wang, Qingchun Wu, Kun Li, Xiuwu Guo
    Frontiers in Microbiology.2022;[Epub]     CrossRef
  • Endophytic Fungus Alleviates Soil Sickness in Peanut Crops by Improving the Carbon Metabolism and Rhizosphere Bacterial Diversity
    Xing-Guang Xie, Yuan-Yuan Zhao, Yang Yang, Fan Lu, Chuan-Chao Dai
    Microbial Ecology.2021; 82(1): 49.     CrossRef
  • Continuous monocropping highly affect the composition and diversity of microbial communities in peanut (Arachis hypogaea L.)
    Ali I. MALLANO, Xianli ZHAO, Yanling SUN, Guangpin JIANG, Huang CHAO
    Notulae Botanicae Horti Agrobotanici Cluj-Napoca.2021; 49(4): 12532.     CrossRef
Pukyongia salina gen. nov., sp. nov., a novel genus in the family Flavobacteriaceae
Young-Sam Kim , Seong-Jin Kim , Yeon Hee Jang , Kyoung-Ho Kim
J. Microbiol. 2020;58(6):456-462.   Published online April 22, 2020
DOI: https://doi.org/10.1007/s12275-020-9310-5
  • 43 View
  • 0 Download
  • 5 Web of Science
  • 5 Crossref
AbstractAbstract
A Gram-negative aerobic bacterium, designated RR4-38T, was isolated from a biofilter in a seawater recirculating aquaculture system (RAS) in Busan, South Korea. The bacteria were irregular, short, rod-shaped, non-motile, oxidase-positive, and catalase-negative. Growth of the strain RR4-38T was observed at 15–35°C (optimum, 25–30°C), pH 5.5–9.5 (optimum, pH 8.0), and in the presence of 0–5% (w/v) NaCl (optimum, 3%). Phylogenetic analysis based on the 16S rRNA gene sequences showed that the strain RR4-38T formed a distinct lineage with close genera Ulvibacter (≤ 95.01% 16S rRNA gene sequence similarity), Aureitalea (94.74%), Aureisphaera (≤ 93.27%), and Jejudonia (93.07%) that all belong to the family Flavobacteriaceae. Whole-genome sequence comparison revealed that the ANI (average nucleotide identity) and digital DDH (DNA-DNA hybridization) values between strain RR4-38T and the two closest strains, Ulvibacter antarcticus DSM 23424T and Aureitalea marina S1-66T, were 68.96– 69.88% and 17.4–19%, respectively. The genome analysis revealed that the strain might be involved in biodegradation of organic debris produced by farmed fish in aquaculture systems. The predominant respiratory quinone was menaquinone MK-6 and the major cellular fatty acids were iso- C15:0 (26.5%), iso-C17:0 3-OH (16.4%), iso-C15:1 G (15%), and iso-C16:0 3-OH (9.6%). The major cellular polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, unidentified aminolipids, and glycolipids. Based on phenotypic, chemotaxonomic, and phylogenetic features, strain RR4-38T represents a novel genus and species in the family Flavobacteriaceae, for which the name Pukyongia salina gen. nov., sp. nov. is proposed. The type strain is RR4-38T (= KCTC 52651T = DSM 108068T).

Citations

Citations to this article as recorded by  
  • Assessing the impacts of fine sediment removal on endogenous pollution release and microbial community structure in the shallow lakes
    Ying Yu, Zengliang Yu, Jingang Jiang, Lifang Wu, Huiyun Feng
    Science of The Total Environment.2023; 897: 165410.     CrossRef
  • Valid publication of new names and new combinations effectively published outside the IJSEM
    Aharon Oren, George Garrity
    International Journal of Systematic and Evolutionary Microbiology .2022;[Epub]     CrossRef
  • Constantimarinum furrinae gen. nov., sp. nov., a marine bacterium isolated from saline volcanic rock aquifer (lava seawater) at Jeju Island, Republic of Korea
    Sung-Hyun Yang, Hyun-Myung Oh, Mi-Jeong Park, Dongil Jang, Kae Kyoung Kwon
    Journal of Microbiology.2022; 60(1): 11.     CrossRef
  • Gordonia jinghuaiqii sp. nov. and Gordonia zhaorongruii sp. nov., isolated from Tibetan Plateau wildlife
    Gui Zhang, Yuyuan Huang, Jing Yang, Xin-He Lai, Dong Jin, Shan Lu, Yanpeng Cheng, Caixin Yang, Ji Pu, Junrong Liang, Ying Huang, Jianguo Xu
    International Journal of Systematic and Evolutionary Microbiology .2021;[Epub]     CrossRef
  • Pikeienuella piscinae gen. nov., sp. nov., a novel genus in the family Rhodobacteraceae
    Jeeeun Park, Young-Sam Kim, Seong-Jin Kim, Sang-Eon Kim, Hyun-Kyoung Jung, Min-Ju Yu, Young Jae Jeon, Kyoung-Ho Kim
    Journal of Microbiology.2021; 59(6): 546.     CrossRef
Potency of Phlebia species of white rot fungi for the aerobic degradation, transformation and mineralization of lindane
Pengfei Xiao , Ryuichiro Kondo
J. Microbiol. 2020;58(5):395-404.   Published online March 28, 2020
DOI: https://doi.org/10.1007/s12275-020-9492-x
  • 50 View
  • 0 Download
  • 12 Web of Science
  • 11 Crossref
AbstractAbstract
The widespread use of the organochlorine insecticide lindane in the world has caused serious environmental problems. The main purpose of this paper is to investigate the potency of several Phlebia species of white rot fungi to degrade, transform and mineralize lindane, and to provide the feasibility of using white rot fungi for bioremediation at contaminated sites. Based on tolerance experiment results, Phlebia brevispora and Phlebia lindtneri had the highest tolerance to lindane and were screened by degradation tests. After 25 days of incubation, P. brevispora and P. lindtneri degraded 87.2 and 73.3% of lindane in low nitrogen medium and 75.8 and 64.9% of lindane in high nitrogen medium, respectively. Several unreported hydroxylation metabolites, including monohydroxylated, dehydroxylated, and trihydroxylated products, were detected and identified by GC/MS as metabolites of lindane. More than 10% of [14C] lindane was mineralized to 14CO2 by two fungi after 60 days of incubation, and the mineralization was slightly promoted by the addition of glucose. Additionally, the degradation of lindane and the formation of metabolites were efficiently inhibited by piperonyl butoxide, demonstrating that cytochrome P450 enzymes are involved in the fungal transformation of lindane. The present study showed that P. brevispora and P. lindtneri were efficient degraders of lindane; hence, they can be applied in the bioremediation process of lindane-contaminated sites.

Citations

Citations to this article as recorded by  
  • The role and mechanisms of microbes in dichlorodiphenyltrichloroethane (DDT) and its residues bioremediation
    Girma Ebsa, Birhanu Gizaw, Mesele Admassie, Tizazu Degu, Tesfaye Alemu
    Biotechnology Reports.2024; 42: e00835.     CrossRef
  • New frontiers of soil fungal microbiome and its application for biotechnology in agriculture
    Maicon S. N. dos Santos, Lissara P. Ody, Bruno D. Kerber, Beatriz A. Araujo, Carolina E. D. Oro, João H. C. Wancura, Marcio A. Mazutti, Giovani L. Zabot, Marcus V. Tres
    World Journal of Microbiology and Biotechnology.2023;[Epub]     CrossRef
  • Fungal Biotransformation of Hazardous Organic Compounds in Wood Waste
    Magdalena Komorowicz, Dominika Janiszewska-Latterini, Anna Przybylska-Balcerek, Kinga Stuper-Szablewska
    Molecules.2023; 28(12): 4823.     CrossRef
  • Degradation effectiveness of hexachlorohexane (ϒ-HCH) by bacterial isolate Bacillus cereus SJPS-2, its gene annotation for bioremediation and comparison with Pseudomonas putida KT2440
    Shweta Jaiswal, Dileep Kumar Singh, Pratyoosh Shukla
    Environmental Pollution.2023; 318: 120867.     CrossRef
  • Biodegradation of Benzo[a]pyrene by a White-Rot Fungus Phlebia acerina: Surfactant-Enhanced Degradation and Possible Genes Involved
    Wenquan Zhang, Qiaoyu Li, Jianqiao Wang, Ziyu Wang, Hongjie Zhan, Xiaolong Yu, Yan Zheng, Tangfu Xiao, Li-Wei Zhou
    Journal of Fungi.2023; 9(10): 978.     CrossRef
  • Current status of pesticide effects on environment, human health and it’s eco-friendly management as bioremediation: A comprehensive review
    Vinay Mohan Pathak, Vijay K. Verma, Balwant Singh Rawat, Baljinder Kaur, Neelesh Babu, Akansha Sharma, Seeta Dewali, Monika Yadav, Reshma Kumari, Sevaram Singh, Asutosh Mohapatra, Varsha Pandey, Nitika Rana, Jose Maria Cunill
    Frontiers in Microbiology.2022;[Epub]     CrossRef
  • Bibliometric analysis of global research on white rot fungi biotechnology for environmental application
    Pengfei Xiao, Dedong Wu, Jianqiao Wang
    Environmental Science and Pollution Research.2022; 29(1): 1491.     CrossRef
  • Microbial Degradation of Aldrin and Dieldrin: Mechanisms and Biochemical Pathways
    Shimei Pang, Ziqiu Lin, Jiayi Li, Yuming Zhang, Sandhya Mishra, Pankaj Bhatt, Shaohua Chen
    Frontiers in Microbiology.2022;[Epub]     CrossRef
  • Myco-remediation of Chlorinated Pesticides: Insights Into Fungal Metabolic System
    Priyanka Bokade, Hemant J. Purohit, Abhay Bajaj
    Indian Journal of Microbiology.2021; 61(3): 237.     CrossRef
  • Microbial degradation of recalcitrant pesticides: a review
    Sanchali Bose, P. Senthil Kumar, Dai-Viet N. Vo, N. Rajamohan, R. Saravanan
    Environmental Chemistry Letters.2021; 19(4): 3209.     CrossRef
  • Biodegradation of atrazine and ligninolytic enzyme production by basidiomycete strains
    Caroline Henn, Diego Alves Monteiro, Mauricio Boscolo, Roberto da Silva, Eleni Gomes
    BMC Microbiology.2020;[Epub]     CrossRef

Journal of Microbiology : Journal of Microbiology
TOP