Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
23 "CaM"
Filter
Filter
Article category
Keywords
Publication year
Authors
Journal Article
Unexpected Requirement of Small Amino Acids at Position 183 for DNA Binding in the Escherichia coli cAMP Receptor Protein
Marcus Carranza, Amanda Rea, Daisy Pacheco, Christian Montiel, Jin Park, Hwan Youn
J. Microbiol. 2024;62(10):871-882.   Published online September 6, 2024
DOI: https://doi.org/10.1007/s12275-024-00169-2
  • 53 View
  • 0 Download
  • 2 Web of Science
  • 1 Crossref
AbstractAbstract
The Escherichia coli cAMP receptor protein (CRP) relies on the F-helix, the recognition helix of the helix-turn-helix motif, for DNA binding. The importance of the CRP F-helix in DNA binding is well-established, yet there is little information on the roles of its non-base-contacting residues. Here, we show that a CRP F-helix position occupied by a non-base-contacting residue Val183 bears an unexpected importance in DNA binding. Codon randomization and successive in vivo screening selected six amino acids (alanine, cysteine, glycine, serine, threonine, and valine) at CRP position 183 to be compatible with DNA binding. These amino acids are quite different in their amino acid properties (polar, non-polar, hydrophobicity), but one commonality is that they are all relatively small. Larger amino acid substitutions such as histidine, methionine, and tyrosine were made site-directedly and showed to have no detectable DNA binding, further supporting the requirement of small amino acids at CRP position 183. Bioinformatics analysis revealed that small amino acids (92.15% valine and 7.75% alanine) exclusively occupy the position analogous to CRP Val183 in 1,007 core CRP homologs, consistent with our mutant data. However, in extended CRP homologs comprising 3700 proteins, larger amino acids could also occupy the position analogous to CRP Val183 albeit with low occurrence. Another bioinformatics analysis suggested that large amino acids could be tolerated by compensatory small-sized amino acids at their neighboring positions. A full understanding of the unexpected requirement of small amino acids at CRP position 183 for DNA binding entails the verification of the hypothesized compensatory change(s) in CRP.

Citations

Citations to this article as recorded by  
  • SPD_0410 negatively regulates capsule polysaccharide synthesis and virulence in Streptococcus pneumoniae D39
    Ye Tao, Li Lei, Shuhui Wang, Xuemei Zhang, Yibing Yin, Yuqiang Zheng
    Frontiers in Microbiology.2025;[Epub]     CrossRef
Review
cAMP Activation of the cAMP Receptor Protein, a Model Bacterial Transcription Factor
Hwan Youn , Marcus Carranza
J. Microbiol. 2023;61(3):277-287.   Published online March 9, 2023
DOI: https://doi.org/10.1007/s12275-023-00028-6
  • 73 View
  • 0 Download
  • 5 Web of Science
  • 5 Crossref
AbstractAbstract
The active and inactive structures of the Escherichia coli cAMP receptor protein (CRP), a model bacterial transcr!ption factor, are compared to generate a paradigm in the cAMP-induced activation of CRP. The resulting paradigm is shown to be consistent with numerous biochemical studies of CRP and CRP*, a group of CRP mutants displaying cAMP-free activity. The cAMP affinity of CRP is dictated by two factors: (i) the effectiveness of the cAMP pocket and (ii) the protein equilibrium of apo-CRP. How these two factors interplay in determining the cAMP affinity and cAMP specificity of CRP and CRP* mutants are discussed. Both the current understanding and knowledge gaps of CRP-DNA interactions are also described. This review ends with a list of several important CRP issues that need to be addressed in the future.

Citations

Citations to this article as recorded by  
  • Identification of a cellular role of hemolysin co-regulatory protein (Hcp) in Vibrio alginolyticus modulating substrate metabolism and biofilm formation by cAMP-CRP
    Shuilong Wu, Yu Huang, Minhui Wu, Huapu Chen, Bei Wang, Kwaku Amoah, Jia Cai, Jichang Jian
    International Journal of Biological Macromolecules.2024; 282: 136656.     CrossRef
  • cAMP-independent DNA binding of the CRP family protein DdrI from Deinococcus radiodurans
    Yudong Wang, Jing Hu, Xufan Gao, Yuchen Cao, Shumai Ye, Cheng Chen, Liangyan Wang, Hong Xu, Miao Guo, Dong Zhang, Ruhong Zhou, Yuejin Hua, Ye Zhao, Paul Babitzke
    mBio.2024;[Epub]     CrossRef
  • Unexpected Requirement of Small Amino Acids at Position 183 for DNA Binding in the Escherichia coli cAMP Receptor Protein
    Marcus Carranza, Amanda Rea, Daisy Pacheco, Christian Montiel, Jin Park, Hwan Youn
    Journal of Microbiology.2024; 62(10): 871.     CrossRef
  • Bacterial Regulatory Mechanisms for the Control of Cellular Processes: Simple Organisms’ Complex Regulation
    Jin-Won Lee
    Journal of Microbiology.2023; 61(3): 273.     CrossRef
  • Mechanisms and biotechnological applications of transcription factors
    Hehe He, Mingfei Yang, Siyu Li, Gaoyang Zhang, Zhongyang Ding, Liang Zhang, Guiyang Shi, Youran Li
    Synthetic and Systems Biotechnology.2023; 8(4): 565.     CrossRef
Journal Article
Enhancement of the solubility of recombinant proteins by fusion with a short-disordered peptide
Jun Ren , Suhee Hwang , Junhao Shen , Hyeongwoo Kim , Hyunjoo Kim , Jieun Kim , Soyoung Ahn , Min-gyun Kim , Seung Ho Lee , Dokyun Na
J. Microbiol. 2022;60(9):960-967.   Published online July 14, 2022
DOI: https://doi.org/10.1007/s12275-022-2122-z
  • 57 View
  • 0 Download
  • 6 Web of Science
  • 6 Crossref
AbstractAbstract
In protein biotechnology, large soluble fusion partners are widely utilized for increased yield and solubility of recombinant proteins. However, the production of additional large fusion partners poses an additional burden to the host, leading to a decreased protein yield. In this study, we identified two highly disordered short peptides that were able to increase the solubility of an artificially engineered aggregationprone protein, GFP-GFIL4, from 0.6% to 61% (D3-DP00592) and 46% (D4-DP01038) selected from DisProt database. For further confirmation, the peptides were applied to two insoluble E. coli proteins (YagA and YdiU). The peptides also enhanced solubility from 52% to 90% (YagA) and from 27% to 93% (YdiU). Their ability to solubilize recombinant proteins was comparable with strong solubilizing tags, maltosebinding protein (40 kDa) and TrxA (12 kDa), but much smaller (< 7 kDa) in size. For practical application, the two peptides were fused with a restriction enzyme, I-SceI, and they increased I-SceI solubility from 24% up to 75%. The highly disordered peptides did not affect the activity of I-SceI while I-SceI fused with MBP or TrxA displayed no restriction activity. Despite the small size, the highly disordered peptides were able to solubilize recombinant proteins as efficiently as conventional fusion tags and did not interfere with the function of recombinant proteins. Consequently, the identified two highly disordered peptides would have practical utility in protein biotechnology and industry.

Citations

Citations to this article as recorded by  
  • A review on computational models for predicting protein solubility
    Teerapat Pimtawong, Jun Ren, Jingyu Lee, Hyang-Mi Lee, Dokyun Na
    Journal of Microbiology.2025; 63(1): e:2408001.     CrossRef
  • Synthetic intrinsically disordered protein fusion tags that enhance protein solubility
    Nicholas C. Tang, Jonathan C. Su, Yulia Shmidov, Garrett Kelly, Sonal Deshpande, Parul Sirohi, Nikhil Peterson, Ashutosh Chilkoti
    Nature Communications.2024;[Epub]     CrossRef
  • Biosynthesis of Indigo Dyes and Their Application in Green Chemical and Visual Biosensing for Heavy Metals
    Yan Guo, Shun-Yu Hu, Can Wu, Chao-Xian Gao, Chang-Ye Hui
    ACS Omega.2024; 9(31): 33868.     CrossRef
  • Functional small peptides for enhanced protein delivery, solubility, and secretion in microbial biotechnology
    Hyang-Mi Lee, Thi Duc Thai, Wonseop Lim, Jun Ren, Dokyun Na
    Journal of Biotechnology.2023; 375: 40.     CrossRef
  • Directed Evolution of Soluble α-1,2-Fucosyltransferase Using Kanamycin Resistance Protein as a Phenotypic Reporter for Efficient Production of 2'-Fucosyllactose
    Jonghyeok Shin, Seungjoo Kim, Wonbeom Park, Kyoung Chan Jin, Sun-Ki Kim, Dae-Hyuk Kweon
    Journal of Microbiology and Biotechnology.2022; 32(11): 1471.     CrossRef
  • Effects of spray drying, freeze drying, and vacuum drying on physicochemical and nutritional properties of protein peptide powder from salted duck egg white
    Tianyin Du, Jicheng Xu, Shengnan Zhu, Xinjun Yao, Jun Guo, Weiqiao Lv
    Frontiers in Nutrition.2022;[Epub]     CrossRef
Review
[Minireview]The rationale and potential for using Lactobacillus in the management of periodontitis
Jiaqi Wang , Yingman Liu , Weiru Wang , Jiaojiao Ma , Manman Zhang , Xiaoying Lu , Jie Liu , Yurong Kou
J. Microbiol. 2022;60(4):355-363.   Published online March 28, 2022
DOI: https://doi.org/10.1007/s12275-022-1514-4
  • 66 View
  • 0 Download
  • 18 Web of Science
  • 12 Crossref
AbstractAbstract
Periodontitis refers to a wide range of the inflammatory conditions of supporting dental structures. For some patients with periodontitis, antibacterial agents are needed as an adjuvant to mechanical debridement treatments and oral hygiene maintenance. However, the widespread use of broad-spectrum antibiotics for the prophylaxis and treatment of periodontal infections
results
in the emergence of resistant pathogens. Therefore, probiotics have become markedly interesting to researchers as a potentially safe alternative to periodontal treatment and maintenance. Probiotics have been used in medicine for decades and extensively applied to the treatment of inflammatory diseases through the modulation of microbial synergy and other mechanisms. A growing amount of evidence has shown that using Lactobacillus strains for oral cavity maintenance could improve periodontal health. In this study, we reviewed studies showing proof of the inhibitory effects of Lactobacillus species on periodontal inflammation. We also explored the rationale and potential for using Lactobacillus species in the management of periodontitis.

Citations

Citations to this article as recorded by  
  • The Effectiveness of Probiotics on Oral Health During Adult Orthodontic Treatment With Fixed Appliances: A Two-Arm Parallel-Group Randomized Controlled Clinical Trial
    Lana Hasan Albardawel, Kinda Sultan, Mohammad Y. Hajeer, Mohammad Maarouf
    Cureus.2024;[Epub]     CrossRef
  • New insights into nanotherapeutics for periodontitis: a triple concerto of antimicrobial activity, immunomodulation and periodontium regeneration
    Jiaxin Li, Yuxiao Wang, Maomao Tang, Chengdong Zhang, Yachen Fei, Meng Li, Mengjie Li, Shuangying Gui, Jian Guo
    Journal of Nanobiotechnology.2024;[Epub]     CrossRef
  • HAMLET, a human milk protein-lipid complex, modulates amoxicillin induced changes in an ex vivo biofilm model of the oral microbiome
    Navdeep Kaur Brar, Achal Dhariwal, Sudhanshu Shekhar, Roger Junges, Anders P. Hakansson, Fernanda Cristina Petersen
    Frontiers in Microbiology.2024;[Epub]     CrossRef
  • Limosilactobacillus reuteri supernatant attenuates inflammatory responses of human gingival fibroblasts to LPS but not to elevated glucose levels
    T. M. Janson, L. L. Ramenzoni, C. R. Hatz, U. Schlagenhauf, T. Attin, P. R. Schmidlin
    Journal of Periodontal Research.2024; 59(5): 974.     CrossRef
  • Microbiological and clinical effects of probiotic-related Zeger therapy on gingival health: a randomized controlled clinical trial
    Xin Chen, Yi Zhao, Kun Xue, Mengyao Leng, Wei Yin
    BMC Oral Health.2024;[Epub]     CrossRef
  • Mediterranean diet: a potential player in the link between oral microbiome and oral diseases
    Giuseppina Augimeri, Giovanna Caparello, Ippolito Caputo, Rodolfo Reda, Luca Testarelli, Daniela Bonofiglio
    Journal of Oral Microbiology.2024;[Epub]     CrossRef
  • Effect of Dietary Composite Probiotic Supplementation on the Microbiota of Different Oral Sites in Cats
    Mingrui Zhang, Yingyue Cui, Xiaoying Mei, Longxian Li, Haotian Wang, Yingying Li, Yi Wu
    Veterinary Sciences.2024; 11(8): 351.     CrossRef
  • Efficacy of the Probiotic L. brevis in Counteracting the Demineralizing Process of the Tooth Enamel Surface: Results from an In Vitro Study
    Serena Altamura, Francesca Rosaria Augello, Eleonora Ortu, Davide Pietropaoli, Benedetta Cinque, Mario Giannoni, Francesca Lombardi
    Biomolecules.2024; 14(5): 605.     CrossRef
  • Effects of systemic Bifidobacterium longum and Lactobacillus rhamnosus probiotics on the ligature-induced periodontitis in rat
    Ying-Wu Chen, Ming-Lun Lee, Cheng-Yang Chiang, Earl Fu
    Journal of Dental Sciences.2023; 18(4): 1477.     CrossRef
  • Evaluation of Antioxidant and Antibacterial Effects of Lyophilized Cell-Free Probiotic Supernatants of Three Lactobacillus spp. and Their Cytocompatibility Against Periodontal Ligament Stem Cells
    Maryam Torshabi, Mohammad Mahdi Bardouni, Atieh Hashemi
    Iranian Journal of Pharmaceutical Research.2023;[Epub]     CrossRef
  • Managing Oral Health in the Context of Antimicrobial Resistance
    Lucinda J. Bessa, João Botelho, Vanessa Machado, Ricardo Alves, José João Mendes
    International Journal of Environmental Research and Public Health.2022; 19(24): 16448.     CrossRef
  • Use of the Probiotic Bifidobacterium animalis subsp. lactis HN019 in Oral Diseases
    Lisa Danielly Curcino Araujo, Flávia Aparecida Chaves Furlaneto, Léa Assed Bezerra da Silva, Yvonne L. Kapila
    International Journal of Molecular Sciences.2022; 23(16): 9334.     CrossRef
Journal Articles
[PROTOCOL] High-throughput cultivation based on dilution-to-extinction with catalase supplementation and a case study of cultivating acI bacteria from Lake Soyang
Suhyun Kim , Miri S. Park , Jaeho Song , Ilnam Kang , Jang-Cheon Cho
J. Microbiol. 2020;58(11):893-905.   Published online October 30, 2020
DOI: https://doi.org/10.1007/s12275-020-0452-2
  • 52 View
  • 0 Download
  • 11 Web of Science
  • 12 Crossref
AbstractAbstract
Multi-omics approaches, including metagenomics and single- cell amplified genomics, have revolutionized our understanding of the hidden diversity and function of microbes in nature. Even in the omics age, cultivation is an essential discipline in microbial ecology since microbial cultures are necessary to assess the validity of an in silico prediction about the microbial metabolism and to isolate viruses infecting bacteria and archaea. However, the ecophysiological characteristics of predominant freshwater bacterial lineages remain largely unknown due to the scarcity of cultured representatives. In an ongoing effort to cultivate the uncultured majority of freshwater bacteria, the most abundant freshwater Actinobacteria acI clade has recently been cultivated from Lake Soyang through catalase-supplemented high-throughput cultivation based on dilution-to-extinction. This method involves physical isolation of target microbes from mixed populations, culture media simulating natural habitats, and removal of toxic compounds. In this protocol, we describe detailed procedures for isolating freshwater oligotrophic microbes, as well as the essence of the dilution-to-extinction culturing. As a case study employing the catalase-supplemented dilution-to-extinction protocol, we also report a cultivation trial using a water sample collected from Lake Soyang. Of the 480 cultivation wells inoculated with a single lake-water sample, 75 new acI strains belonging to 8 acI tribes (acI-A1, A2, A4, A5, A6, A7, B1, B4, C1, and C2) were cultivated, and each representative strain per subclade could be revived from glycerol stocks. These cultivation results demonstrate that the protocol described in this study is efficient in isolating freshwater bacterioplankton harboring streamlined genomes.

Citations

Citations to this article as recorded by  
  • Frontiers of lake microbial ecology opened up by new technologies.
    Yusuke OKAZAKI
    Japanese Journal of Limnology (Rikusuigaku Zasshi).2024; 85(1): 1.     CrossRef
  • Sequencing-guided re-estimation and promotion of cultivability for environmental bacteria
    Minjia Zheng, Linran Wen, Cailing He, Xinlan Chen, Laiting Si, Hao Li, Yiting Liang, Wei Zheng, Feng Guo
    Nature Communications.2024;[Epub]     CrossRef
  • Adaptive genetic traits in pelagic freshwater microbes
    Maria‐Cecilia Chiriac, Markus Haber, Michaela M. Salcher
    Environmental Microbiology.2023; 25(3): 606.     CrossRef
  • Expanding success in the isolation of abundant marine bacteria after reduction in grazing and viral pressure and increase in nutrient availability
    Xavier Rey-Velasco, Ona Deulofeu-Capo, Isabel Sanz-Sáez, Clara Cardelús, Isabel Ferrera, Josep M. Gasol, Olga Sánchez, Vincent J. Denef
    Microbiology Spectrum.2023;[Epub]     CrossRef
  • Two-Dimensional Cell Separation: a High-Throughput Approach to Enhance the Culturability of Bacterial Cells from Environmental Samples
    Krishna K. Yadav, Yogesh Nimonkar, Bhagyashri J. Poddar, Lochana Kovale, Isita Sagar, Yogesh Shouche, Hemant J. Purohit, Anshuman A. Khardenavis, Stefan J. Green, Om Prakash, Kristen M. DeAngelis
    Microbiology Spectrum.2022;[Epub]     CrossRef
  • Marine microbial bioprospecting: Exploitation of marine biodiversity towards biotechnological applications—a review
    Hoda Hosseini, Hareb M. Al‐Jabri, Navid R. Moheimani, Simil A. Siddiqui, Imen Saadaoui
    Journal of Basic Microbiology.2022; 62(9): 1030.     CrossRef
  • Prokaryotes of renowned Karlovy Vary (Carlsbad) thermal springs: phylogenetic and cultivation analysis
    Tereza Smrhova, Kunal Jani, Petr Pajer, Gabriela Kapinusova, Tomas Vylita, Jachym Suman, Michal Strejcek, Ondrej Uhlik
    Environmental Microbiome.2022;[Epub]     CrossRef
  • Description of Vagococcus coleopterorum sp. nov., isolated from the intestine of the diving beetle, Cybister lewisianus, and Vagococcus hydrophili sp. nov., isolated from the intestine of the dark diving beetle, Hydrophilus acuminatus, and emended descrip
    Dong-Wook Hyun, Euon Jung Tak, Pil Soo Kim, Jin-Woo Bae
    Journal of Microbiology.2021; 59(2): 132.     CrossRef
  • Metaviromics coupled with phage-host identification to open the viral ‘black box’
    Kira Moon, Jang-Cheon Cho
    Journal of Microbiology.2021; 59(3): 311.     CrossRef
  • Heme auxotrophy in abundant aquatic microbial lineages
    Suhyun Kim, Ilnam Kang, Jin-Won Lee, Che Ok Jeon, Stephen J. Giovannoni, Jang-Cheon Cho
    Proceedings of the National Academy of Sciences.2021;[Epub]     CrossRef
  • Recent trend, biases and limitations of cultivation-based diversity studies of microbes
    Om Prakash, Mrinalini Parmar, Manali Vaijanapurkar, Vinay Rale, Yogesh S Shouche
    FEMS Microbiology Letters.2021;[Epub]     CrossRef
  • Cultivation of Dominant Freshwater Bacterioplankton Lineages Using a High-Throughput Dilution-to-Extinction Culturing Approach Over a 1-Year Period
    Suhyun Kim, Md. Rashedul Islam, Ilnam Kang, Jang-Cheon Cho
    Frontiers in Microbiology.2021;[Epub]     CrossRef
Development of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) thermal inactivation method with preservation of diagnostic sensitivity
Young-Il Kim , Mark Anthony B. Casel , Se-Mi Kim , Seong-Gyu Kim , Su-Jin Park , Eun-Ha Kim , Hye Won Jeong , Haryoung Poo , Young Ki Choi
J. Microbiol. 2020;58(10):886-891.   Published online September 29, 2020
DOI: https://doi.org/10.1007/s12275-020-0335-6
  • 50 View
  • 0 Download
  • 21 Web of Science
  • 23 Crossref
AbstractAbstract
Various treatments and agents had been reported to inactivate RNA viruses. Of these, thermal inactivation is generally considered an effective and cheap method of sample preparation for downstream assays. The purpose of this study is to establish a safe inactivation method for SARS-CoV-2 without compromising the amount of amplifiable viral genome necessary for clinical diagnoses. In this study, we demonstrate the infectivity and genomic stability of SARSCoV- 2 by thermal inactivation at both 56°C and 65°C. The
results
substantiate that viable SARS-CoV-2 is readily inactivated when incubated at 56°C for 30 min or at 65°C for 10 min. qRT-PCR of specimens heat-inactivated at 56°C for 30 min or 65°C for 15 min revealed similar genomic RNA stability compared with non-heat inactivated specimens. Further, we demonstrate that 30 min of thermal inactivation at 56°C could inactivate viable viruses from clinical COVID-19 specimens without attenuating the qRT-PCR diagnostic sensitivity. Heat treatment of clinical specimens from COVID-19 patients at 56°C for 30 min or 65°C for 15 min could be a useful
method
for the inactivation of a highly contagious agent, SARS-CoV-2. Use of this method would reduce the potential for secondary infections in BSL2 conditions during diagnostic procedures. Importantly, infectious virus can be inactivated in clinical specimens without compromising the sensitivity of the diagnostic RT-PCR assay.

Citations

Citations to this article as recorded by  
  • Establishment of national standards of SARS-CoV-2 variants in Taiwan
    Ming-Sian Wu, Pu-Chieh Chang, Po-Lin Lin, Chun-Hsi Tso, Hsin-Mei Chen, Yi-Hsuan Peng, Po-Chih Wu, Jia-Chuan Hsu, Der-Yuan Wang
    Heliyon.2024; 10(19): e38275.     CrossRef
  • EU surveys insights: analytical tools, future directions, and the essential requirement for reference materials in wastewater monitoring of SARS-CoV-2, antimicrobial resistance and beyond
    Valentina Paracchini, Mauro Petrillo, Anandasagari Arcot Rajashekar, Piotr Robuch, Ursula Vincent, Philippe Corbisier, Simona Tavazzi, Barbara Raffael, Elisabetta Suffredini, Giuseppina La Rosa, Bernd Manfred Gawlik, Antonio Marchini
    Human Genomics.2024;[Epub]     CrossRef
  • Silica-coated magnetic particles for efficient RNA extraction for SARS-CoV-2 detection
    Natalia Capriotti, Leslie C. Amorós Morales, Elisa de Sousa, Luciana Juncal, Matias Luis Pidre, Lucila Traverso, Maria Florencia López, Maria Leticia Ferelli, Gabriel Lavorato, Cristian Lillo, Odin Vazquez Robaina, Nicolas Mele, Carolina Vericat, Patricia
    Heliyon.2024; 10(3): e25377.     CrossRef
  • Validating the inactivation of viral pathogens with a focus on SARS-CoV-2 to safely transfer samples from high-containment laboratories
    Sankar Prasad Chaki, Melissa M. Kahl-McDonagh, Benjamin W. Neuman, Kurt A. Zuelke
    Frontiers in Cellular and Infection Microbiology.2024;[Epub]     CrossRef
  • COPMAN: A novel high-throughput and highly sensitive method to detect viral nucleic acids including SARS-CoV-2 RNA in wastewater
    Yuka Adachi Katayama, Shin Hayase, Yoshinori Ando, Tomohiro Kuroita, Kazuya Okada, Ryo Iwamoto, Toru Yanagimoto, Masaaki Kitajima, Yusaku Masago
    Science of The Total Environment.2023; 856: 158966.     CrossRef
  • Sputum handling for rheology
    Lydia Esteban Enjuto, Matthieu Robert de Saint Vincent, Max Maurin, Bruno Degano, Hugues Bodiguel
    Scientific Reports.2023;[Epub]     CrossRef
  • A novel strategy to avoid sensitivity loss in pooled testing for SARS-CoV-2 surveillance: validation using nasopharyngeal swab and saliva samples
    Georgia G. Millward, Shane M. Popelka, Anthony G. Gutierrez, William J. Kowallis, Robert L. von Tersch, Subrahmanyam V. Yerramilli
    Frontiers in Public Health.2023;[Epub]     CrossRef
  • The Biosafety Research Road Map: The Search for Evidence to Support Practices in the Laboratory—SARS-CoV-2
    Stuart D. Blacksell, Sandhya Dhawan, Marina Kusumoto, Kim Khanh Le, Kathrin Summermatter, Joseph O'Keefe, Joseph Kozlovac, Salama Suhail Almuhairi, Indrawati Sendow, Christina M. Scheel, Anthony Ahumibe, Zibusiso M. Masuku, Kazunobu Kojima, David R. Harpe
    Applied Biosafety.2023; 28(2): 87.     CrossRef
  • Comparative Performance of Serological (IgM/IgG) and Molecular Testing (RT-PCR) of COVID-19 in Three Private Universities in Cameroon during the Pandemic
    Rodrigue Kamga Wouambo, Cecile Ingrid Djuikoué, Livo Forgu Esemu, Luc Aime Kagoue Simeni, Murielle Chantale Tchitchoua, Paule Dana Djouela Djoulako, Joseph Fokam, Madeleine Singwe-Ngandeu, Eitel Mpoudi Ngolé, Teke Apalata
    Viruses.2023; 15(2): 407.     CrossRef
  • Molecular test for COVID-19 diagnosis based on a colorimetric genomagnetic assay
    Tássia Regina de Oliveira, Taíse Helena Oliveira Leite, Wyllian Neves Miranda, Erika Regina Manuli, Fábio Leal, Ester Sabino, Henrique Pott-Junior, Matias Melendez, Ronaldo Censi Faria
    Analytica Chimica Acta.2023; 1257: 341167.     CrossRef
  • Methods of Inactivation of Highly Pathogenic Viruses for Molecular, Serology or Vaccine Development Purposes
    Simon Elveborg, Vanessa Monteil, Ali Mirazimi
    Pathogens.2022; 11(2): 271.     CrossRef
  • A collaborative study to establish the national standard for SARS-CoV-2 RNA nucleic acid amplification techniques (NAAT) in Taiwan
    Po-Lin Lin, Ming-Sian Wu, Po-Chi Wu, Hsin-Mei Chen, Yi-Hsuan Peng, Jia-Chuan Hsu, Der-Yuan Wang
    Biologicals.2022; 79: 31.     CrossRef
  • COVID-19 diagnosis by SARS-CoV-2 Spike protein detection in saliva using an ultrasensitive magneto-assay based on disposable electrochemical sensor
    Evair D. Nascimento, Wilson T. Fonseca, Tássia R. de Oliveira, Camila R.S.T.B. de Correia, Vitor M. Faça, Beatriz P. de Morais, Virginia C. Silvestrini, Henrique Pott-Junior, Felipe R. Teixeira, Ronaldo C. Faria
    Sensors and Actuators B: Chemical.2022; 353: 131128.     CrossRef
  • Use of MALDI-TOF mass spectrometry for virus identification: a review
    Tomas Do, Roman Guran, Vojtech Adam, Ondrej Zitka
    The Analyst.2022; 147(14): 3131.     CrossRef
  • COPMAN: A Novel High-Throughput and Highly Sensitive Method to Detect Viral Nucleic Acids Including SARS-CoV-2 RNA in Wastewater
    Yuka Adachi Katayama, Shin Hayase, Yoshinori Ando, Tomohiro Kuroita, Kazuya Okada, Ryo Iwamoto, Toru Yanagimoto, Masaaki Kitajima, Yusaku Masago
    SSRN Electronic Journal .2022;[Epub]     CrossRef
  • Effect of heat inactivation for the detection of severe acute respiratory syndrome-corona virus-2 (SARS-CoV-2) with reverse transcription real time polymerase chain reaction (rRT-PCR): evidence from Ethiopian study
    Belete Woldesemayat, Gebremedihin Gebremicael, Kidist Zealiyas, Amelework Yilma, Sisay Adane, Mengistu Yimer, Gadissa Gutema, Altaye Feleke, Kassu Desta
    BMC Infectious Diseases.2022;[Epub]     CrossRef
  • Evaluation of the SARS-CoV-2 Inactivation Efficacy Associated With Buffers From Three Kits Used on High-Throughput RNA Extraction Platforms
    Ruth E. Thom, Lin S. Eastaugh, Lyn M. O’Brien, David O. Ulaeto, James S. Findlay, Sophie J. Smither, Amanda L. Phelps, Helen L. Stapleton, Karleigh A. Hamblin, Simon A. Weller
    Frontiers in Cellular and Infection Microbiology.2021;[Epub]     CrossRef
  • Viral Inactivation Impacts Microbiome Estimates in a Tissue-Specific Manner
    Alba Boix-Amorós, Enrica Piras, Kevin Bu, David Wallach, Matthew Stapylton, Ana Fernández-Sesma, Dolores Malaspina, Jose C. Clemente, Ileana M. Cristea
    mSystems.2021;[Epub]     CrossRef
  • Alternative RNA extraction-free techniques for the real-time RT-PCR detection of SARS-CoV-2 in nasopharyngeal swab and sputum samples
    Stephany D. Villota, Victoria E. Nipaz, Andrés Carrazco-Montalvo, Sarah Hernandez, Jesse J. Waggoner, Patricio Ponce, Josefina Coloma, Alberto Orlando, Varsovia Cevallos
    Journal of Virological Methods.2021; 298: 114302.     CrossRef
  • Comparison of the Modified Centers for Disease Control and Prevention 2019-Novel Coronavirus Real-Time RT-PCR Method for Detection of Infectious and Heat-Inactivated Virus on Stainless Steel
    Sharon L Brunelle, Patrick M Bird, Jeremy Boone, Maria Nelson, Zerlinde Johnson, Scott Coates
    Journal of AOAC INTERNATIONAL.2021; 104(4): 867.     CrossRef
  • Heat-Treated Virus Inactivation Rate Depends Strongly on Treatment Procedure: Illustration with SARS-CoV-2
    Amandine Gamble, Robert J. Fischer, Dylan H. Morris, Claude Kwe Yinda, Vincent J. Munster, James O. Lloyd-Smith, Christopher A. Elkins
    Applied and Environmental Microbiology.2021;[Epub]     CrossRef
  • Comparison of Seven Commercial Severe Acute Respiratory Syndrome Coronavirus 2 Nucleic Acid Detection Reagents with Pseudovirus as Quality Control Material
    Ying Yan, Le Chang, Wenxin Luo, Junyi Liu, Fei Guo, Lunan Wang
    The Journal of Molecular Diagnostics.2021; 23(3): 300.     CrossRef
  • Evaluation of the persistence of SARS-CoV-2 (ATCC® VR-1986HK™) on two different food contact materials: flow pack polyethylene and polystyrene food trays
    Marta Castrica, Claudia Balzaretti, Dino Miraglia, Patrizio Lorusso, Annamaria Pandiscia, Giuseppina Tantillo, Francesca Romana Massacci, Valentina Terio
    LWT.2021; 146: 111606.     CrossRef
Partial characteristics of hemolytic factors secreted from airborne Aspergillus and Penicillium, and an enhancement of hemolysis by Aspergillus micronesiensis CAMP-like factor via Staphylococcus aureus-sphingomyelinase
Sumonrat Kaveemongkonrat , Kwanjit Duangsonk , Jos Houbraken , Phimchat Suwannaphong , Nongnuch Vanittanakom Vanittanakom , Malee Mekaprateep
J. Microbiol. 2019;57(12):1086-1094.   Published online November 4, 2019
DOI: https://doi.org/10.1007/s12275-019-9133-4
  • 49 View
  • 0 Download
  • 3 Web of Science
  • 2 Crossref
AbstractAbstract
One of the advantages for initial survival of inhaled fungal spores in the respiratory tract is the ability for iron acquisition via hemolytic factor-production. To examine the ability of indoor Aspergillus and Penicillium affecting hemolysis, the secreted factors during the growth of thirteen strains from eight species were characterized in vitro for their hemolytic activity (HA) and CAMP-like reaction. The hemolytic index of HA on human blood agar of Aspergillus micronesiensis, Aspergillus wentii, Aspergillus westerdijkiae, Penicillium citrinum, Penicillium copticola, Penicillium paxilli, Penicillium steckii, and Penicillium sumatrense were 1.72 ± 0.34, 1.61 ± 0.41, 1.69 ± 0.16, 1.58 ± 0.46, 3.10 ± 0.51, 1.22 ± 0.19, 2.55 ± 0.22, and 1.90 ± 0.14, respectively. The secreted factors of an Aspergillus wentii showed high HA when grown in undernourished broth at 25°C at an exponential phase and were heat sensitive. Its secreted proteins have an estimated relative molecular weight over 50 kDa. Whereas, the factors of Penicillium steckii were secreted in a similar condition at a late exponential phase but showed low HA and heat tolerance. In a CAMP-like test with sheep blood, the synergistic hemolytic reactions between most tested mold strains and Staphylococcus aureus were identified. Moreover, the enhancement of α-hemolysis of Staphylococcus aureus could occur through the interaction of Staphylococcus aureus-sphingomyelinase and CAMP-like factors secreted from Aspergillus micronesiensis. Further studies on the characterization of purified hemolytic- and CAMP-like-factors secreted from Aspergillus wentii and Aspergillus micronesiensis may lead to more understanding of their involvement of hemolysis

Citations

Citations to this article as recorded by  
  • Green Synthesis of Endolichenic Fungi Functionalized Silver Nanoparticles: The Role in Antimicrobial, Anti-Cancer, and Mosquitocidal Activities
    Yugal Kishore Mohanta, Debasis Nayak, Awdhesh Kumar Mishra, Ishani Chakrabartty, Manjit Kumar Ray, Tapan Kumar Mohanta, Kumananda Tayung, Rajapandian Rajaganesh, Murugan Vasanthakumaran, Saravanan Muthupandian, Kadarkarai Murugan, Gouridutta Sharma, Hans-
    International Journal of Molecular Sciences.2022; 23(18): 10626.     CrossRef
  • Group B Streptococcus CAMP Factor Does Not Contribute to Interactions with the Vaginal Epithelium and Is Dispensable for Vaginal Colonization in Mice
    Mallory B. Ballard, Vicki Mercado-Evans, Madelynn G. Marunde, Hephzibah Nwanosike, Jacob Zulk, Kathryn A. Patras, Mariola J. Edelmann
    Microbiology Spectrum.2021;[Epub]     CrossRef
Arthrobacter dokdonellae sp. nov., isolated from a plant of the genus Campanula
Hyeon-Woo Koh , Myung-Suk Kang , Ki-Eun Lee , Eun-Young Lee , Hongik Kim , Soo-Je Park
J. Microbiol. 2019;57(9):732-737.   Published online May 11, 2019
DOI: https://doi.org/10.1007/s12275-019-8540-x
  • 47 View
  • 0 Download
  • 5 Web of Science
  • 4 Crossref
AbstractAbstract
A Gram-stain-positive, oxidase- and catalase-positive, motile, aerobic, and rod-shaped bacterial strain, designated as DCT-5T, was isolated from a native plant belonging to the genus Campanula at Dokdo island, Republic of Korea. Growth of the strain DCT-5T was observed at 15–37°C (optimum 30°C) on R2A broth, pH 6.0–8.0 (optimum 7.0), and 0–5% (w/v) NaCl concentration (optimum 0%). The 16S rRNA gene sequence analysis revealed that strain DCT-5T was most closely related to Arthrobacter silviterrae KIS14-16T, Arthrobacter livingstonensis LI2T, Arthrobacter stackebrandtii CCM 2783T, Arthrobacter cryoconiti Cr6-08T, Arthrobacter ramosus CCM 1646T, and Arthrobacter psychrochitiniphilus GP3T with pairwise sequence similarities of 98.76%, 97.47%, 97.25%, 97.11%, 97.11%, and 97.00%, respectively. The DNA G+C content of strain DCT-5T was 64.7 mol%, and its DNA–DNA relatedness values with A. silviterrae KIS14-16T, A. livingstonensis LI2T, A. stackebrandtii CCM 2783T, A. psychrochitiniphilus GP3T, A. ramosus CCM 1646T, and A. cryoconiti Cr6-08T were 32.57 ± 2.02%, 28.75 ± 0.88%, 31.93 ± 1.15%, 34.73 ± 1.86%, 29.12 ± 1.56%, and 27.23 ± 0.88%, respectively. The major quinone was MK-9(H2) and major fatty acids were anteiso-C15:0, anteiso-C17:0, iso-C15:0, and iso-C16:0. The polar lipids were diphosphatidylglycerol (DPG), phosphatidylglycerol (PG), phosphatidylinositol (PI), unidentified glycolipid (GL), two unidentified aminophospholipids (APLs), and three unidentified lipids (Ls). The peptidoglycan type was A3α. On the basis of phenotypic, phylogenetic, genotypic, and chemotaxonomic characteristics, strain DCT-5T represents a novel species of the genus Arthrobacter, for which the name Arthrobacter dokdonellae sp. nov. is proposed. The type strain is DCT-5T (= KCTC 49189T = LMG 31284T).

Citations

Citations to this article as recorded by  
  • Biodegradation of dimethachlon by Arthrobacter sp. K5: Mechanistic insights and ecological implications
    Zhenyu Qian, Yingpei Wang, Peicheng Lu, Minghui Wu, Haipeng Xie, Xiangyi Kong, Xiaoyan Wu, Shunli Hu
    Journal of Environmental Chemical Engineering.2024; 12(6): 114473.     CrossRef
  • Microbial adaptation to different environmental conditions: molecular perspective of evolved genetic and cellular systems
    Atif Khurshid Wani, Nahid Akhtar, Farooq Sher, Acacio Aparecido Navarrete, Juliana Heloisa Pinê Américo-Pinheiro
    Archives of Microbiology.2022;[Epub]     CrossRef
  • Arthrobacter sunyaminii sp. nov. and Arthrobacter jiangjiafuii sp. nov., new members in the genus Arthrobacter
    Gui Zhang, Jing Yang, Dong Jin, Xin-He Lai, Shan Lu, Zhihong Ren, Tian Qin, Liyun Liu, Ji Pu, Yue Liu, Lin Ye, Juan Zhou, Xianglian Lv, Yuanmeihui Tao, Jianguo Xu
    International Journal of Systematic and Evolutionary Microbiology .2022;[Epub]     CrossRef
  • Genotype to ecotype in niche environments: adaptation of Arthrobacter to carbon availability and environmental conditions
    Sara Gushgari-Doyle, Lauren M Lui, Torben N Nielsen, Xiaoqin Wu, Ria G Malana, Andrew J Hendrickson, Heloise Carion, Farris L Poole, Michael W W Adams, Adam P Arkin, Romy Chakraborty
    ISME Communications.2022;[Epub]     CrossRef
Genetic characterization of African swine fever virus in Cameroon, 2010–2018
Abel Wade , Jenna Elizabeth Achenbach , Carmina Gallardo , Tirumala Bharani K. Settypalli , Abdoulkadiri Souley , Gaston Djonwe , Angelika Loitsch , Gwenaelle Dauphin , Jean Justin Essia Ngang , Onana Boyomo , Giovanni Cattoli , Adama Diallo , Charles Euloge Lamien
J. Microbiol. 2019;57(4):316-324.   Published online March 30, 2019
DOI: https://doi.org/10.1007/s12275-019-8457-4
  • 46 View
  • 0 Download
  • 31 Web of Science
  • 26 Crossref
AbstractAbstract
African swine fever (ASF) is a highly lethal haemorrhagic disease in domestic and wild swine that has acquired great importance in sub-Saharan Africa since 1997. ASF was first reported in Cameroon in 1982 and was detected only in Southern Cameroon (South, West, East, Northwest, Southwest, Littoral, and Centre regions) until February 2010 when suspected ASF outbreaks were reported in the North and Far North regions. We investigated those outbreaks by analysing samples that were collected from sick pigs between 2010 and 2018. We confirmed 428 positive samples by ELISA and realtime PCR and molecularly characterized 48 representative isolates. All the identified virus isolates were classified as ASFV genotype I based on the partial B646L gene (C-terminal end of VP72 gene) and the full E183L gene encoding p54 protein analysis. Furthermore, analysis of the central variable region (CVR) within the B602L gene demonstrated that there were 3 different variants of ASFV genotype I, with 19, 20, and 21 tetrameric tandem repeat sequences (TRSs), that were involved in the 2010–2018 outbreaks in Cameroon. Among them, only variant A (19 TRSs) was identical to the Cam/82 isolate found in the country during the first outbreaks in 1981–1982. This study demonstrated that the three variants of ASFV isolates involved in these outbreaks were similar to those of neighbouring countries, suggesting a movement of ASFV strains across borders. Designing common control measures in affected regions and providing a compensation programme for farmers will help reduce the incidence and spread of this disease.

Citations

Citations to this article as recorded by  
  • African swine fever; insights into genomic aspects, reservoirs and transmission patterns of virus
    Bader S. Alotaibi, Chia-Hung Wu, Majid Khan, Mohsin Nawaz, Chien-Chin Chen, Abid Ali
    Frontiers in Veterinary Science.2024;[Epub]     CrossRef
  • Assessment of Nine Real-Time PCR Kits for African Swine Fever Virus Approved in Republic of Korea
    Siwon Lee, Tae Uk Han, Jin-Ho Kim
    Viruses.2024; 16(10): 1627.     CrossRef
  • A multi gene-approach genotyping method identifies 24 genetic clusters within the genotype II-European African swine fever viruses circulating from 2007 to 2022
    Carmina Gallardo, Nadia Casado, Alejandro Soler, Igor Djadjovski, Laura Krivko, Encarnación Madueño, Raquel Nieto, Covadonga Perez, Alicia Simon, Emiliya Ivanova, Daniel Donescu, Vesna Milicevik, Eleni Chondrokouki, Imbi Nurmoja, Maciej Frant, Francesco F
    Frontiers in Veterinary Science.2023;[Epub]     CrossRef
  • Internal Validation of the ASFV MONODOSE dtec-qPCR Kit for African Swine Fever Virus Detection under the UNE-EN ISO/IEC 17025:2005 Criteria
    Gema Bru, Marta Martínez-Candela, Paloma Romero, Aaron Navarro, Antonio Martínez-Murcia
    Veterinary Sciences.2023; 10(9): 564.     CrossRef
  • Porcine circovirus‐2 in Africa: Identification of continent‐specific clusters and evidence of independent viral introductions from Europe, North America and Asia
    Giovanni Franzo, Tirumala B.K. Settypalli, Ebere Roseann Agusi, Clement Meseko, Germaine Minoungou, Bruno Lalidia Ouoba, Zerbo Lamouni Habibata, Abel Wade, José Luís de Barros, Curé Georges Tshilenge, Esayas Gelaye, Martha Yami, Daniel Gizaw, Tesfaye Rufa
    Transboundary and Emerging Diseases.2022;[Epub]     CrossRef
  • A QP509L/QP383R-Deleted African Swine Fever Virus Is Highly Attenuated in Swine but Does Not Confer Protection against Parental Virus Challenge
    Dan Li, Panxue Wu, Huanan Liu, Tao Feng, Wenping Yang, Yi Ru, Pan Li, Xiaolan Qi, Zhengwang Shi, Haixue Zheng, Tom Gallagher
    Journal of Virology.2022;[Epub]     CrossRef
  • Comparison of the sensitivity, specificity, correlation and inter‐assay agreement of eight diagnostic in vitro assays for the detection of African swine fever virus
    Agathe Auer, Tirumala B.K. Settypalli, Beatrice Mouille, Angelique Angot, Cristian De Battisti, Charles E. Lamien, Giovanni Cattoli
    Transboundary and Emerging Diseases.2022;[Epub]     CrossRef
  • Review of the Pig-Adapted African Swine Fever Viruses in and Outside Africa
    Mary-Louise Penrith, Juanita Van Heerden, Livio Heath, Edward Okoth Abworo, Armanda D. S. Bastos
    Pathogens.2022; 11(10): 1190.     CrossRef
  • Molecular characterization of African swine fever viruses from Burkina Faso, 2018
    Moctar Sidi, Habibata Lamouni Zerbo, Bruno Lalidia Ouoba, Tirumala Bharani K. Settypalli, Gregorie Bazimo, Hamidou Sandaogo Ouandaogo, Boubacar N’paton Sie, Ilboudo Sidwatta Guy, Drabo Dji-tombo Adama, Joseph Savadogo, Anne Kabore-Ouedraogo, Marietou Guit
    BMC Veterinary Research.2022;[Epub]     CrossRef
  • Functional Analysis and Proteomics Profiling of Extracellular Vesicles From Swine Plasma Infected by African Swine Fever Virus
    Guowei Xu, Xijuan Shi, Huanan Liu, Chaochao Shen, Bo Yang, Ting Zhang, Xuehui Chen, Dengshuai Zhao, Jinke Yang, Yu Hao, Huimei Cui, Xingguo Yuan, Xiangtao Liu, Keshan Zhang, Haixue Zheng
    Frontiers in Cellular and Infection Microbiology.2022;[Epub]     CrossRef
  • Molecular Characterization of African Swine Fever Virus From 2019-2020 Outbreaks in Guangxi Province, Southern China
    Kaichuang Shi, Huixin Liu, Yanwen Yin, Hongbin Si, Feng Long, Shuping Feng
    Frontiers in Veterinary Science.2022;[Epub]     CrossRef
  • Molecular Characterization of ASFV and Differential Diagnosis of Erysipelothrix in ASFV-Infected Pigs in Pig Production Regions in Cameroon
    Ebanja Joseph Ebwanga, Stephen Mbigha Ghogomu, Jan Paeshuyse
    Veterinary Sciences.2022; 9(8): 440.     CrossRef
  • Risk factors of African swine fever virus in suspected infected pigs in smallholder farming systems in South-Kivu province, Democratic Republic of Congo
    Patrick N. Bisimwa, Michel Dione, Bisimwa Basengere, Ciza Arsène Mushagalusa, Lucilla Steinaa, Juliette Ongus
    Journal of Veterinary Science.2021;[Epub]     CrossRef
  • Molecular characterization of African Swine fever viruses in Burkina Faso, Mali, and Senegal 1989–2016
    Germaine L. Minoungou, Mariame Diop, Marthin Dakouo, Abdoul Karim Ouattara, Tirumala Bharani K. Settypalli, Modou M. Lo, Satigui Sidibe, Estelle Kanyala, Yaya Sidi Kone, Moctar Sidi Diallo, Anne Ouedraogo, Kadiatou Coulibaly, Victorine Ouedraogo, Ibrahim
    Transboundary and Emerging Diseases.2021; 68(5): 2842.     CrossRef
  • Advance of African swine fever virus in recent years
    Fengxue Wang, He Zhang, Lina Hou, Chao Yang, Yongjun Wen
    Research in Veterinary Science.2021; 136: 535.     CrossRef
  • African Swine Fever Virus (ASFV): Biology, Genomics and Genotypes Circulating in Sub-Saharan Africa
    Emma P. Njau, Eunice M. Machuka, Sarah Cleaveland, Gabriel M. Shirima, Lughano J. Kusiluka, Edward A. Okoth, Roger Pelle
    Viruses.2021; 13(11): 2285.     CrossRef
  • African Swine Fever in Cameroon: A Review
    Ebanja Joseph Ebwanga, Stephen Mbigha Ghogomu, Jan Paeshuyse
    Pathogens.2021; 10(4): 421.     CrossRef
  • African Swine Fever: Prevalence, Farm Characteristics, Farmer’s Insight and Attitude toward Reporting of African Swine Fever Cases in the Northwest, West, Littoral and Southwest Regions of Cameroon
    Ebanja Joseph Ebwanga, Stephen Mbigha Ghogomu, Jan Paeshuyse
    Agriculture.2021; 12(1): 44.     CrossRef
  • Isolation and Genetic Characterization of African Swine Fever Virus from Domestic Pig Farms in South Korea, 2019
    Hyun-Joo Kim, Ki-Hyun Cho, Ji-Hyoung Ryu, Min-Kyung Jang, Ha-Gyeong Chae, Ji-Da Choi, Jin-Ju Nah, Yong-Joo Kim, Hae-Eun Kang
    Viruses.2020; 12(11): 1237.     CrossRef
  • Genetic Analysis of African Swine Fever Virus From the 2018 Outbreak in South-Eastern Burundi
    Jean N. Hakizimana, Lionel Nyabongo, Jean B. Ntirandekura, Clara Yona, Désiré Ntakirutimana, Olivier Kamana, Hans Nauwynck, Gerald Misinzo
    Frontiers in Veterinary Science.2020;[Epub]     CrossRef
  • A Pool of Eight Virally Vectored African Swine Fever Antigens Protect Pigs against Fatal Disease
    Lynnette C. Goatley, Ana Luisa Reis, Raquel Portugal, Hannah Goldswain, Gareth L. Shimmon, Zoe Hargreaves, Chak-Sum Ho, María Montoya, Pedro J. Sánchez-Cordón, Geraldine Taylor, Linda K. Dixon, Christopher L. Netherton
    Vaccines.2020; 8(2): 234.     CrossRef
  • Epidemiology of African Swine Fever in Piggeries in the Center, South and South-West of Cameroon
    Victor Ngu Ngwa, Abdelrazak Abouna, André Pagnah Zoli, Anna-Rita Attili
    Veterinary Sciences.2020; 7(3): 123.     CrossRef
  • A seven-gene-deleted African swine fever virus is safe and effective as a live attenuated vaccine in pigs
    Weiye Chen, Dongming Zhao, Xijun He, Renqiang Liu, Zilong Wang, Xianfeng Zhang, Fang Li, Dan Shan, Hefeng Chen, Jiwen Zhang, Lulu Wang, Zhiyuan Wen, Xijun Wang, Yuntao Guan, Jinxiong Liu, Zhigao Bu
    Science China Life Sciences.2020; 63(5): 623.     CrossRef
  • African swine fever – A review of current knowledge
    Sandra Blome, Kati Franzke, Martin Beer
    Virus Research.2020; 287: 198099.     CrossRef
  • Molecular Characterization of African Swine Fever Virus Isolates in Estonia in 2014–2019
    Annika Vilem, Imbi Nurmoja, Tarmo Niine, Taavi Riit, Raquel Nieto, Arvo Viltrop, Carmina Gallardo
    Pathogens.2020; 9(7): 582.     CrossRef
  • Molecular characterization of African swine fever virus from outbreaks in Namibia in 2018
    Umberto Molini, Borden Mushonga, Tirumala B. K. Settypalli, William G. Dundon, Siegfried Khaiseb, Mark Jago, Giovanni Cattoli, Charles E. Lamien
    Transboundary and Emerging Diseases.2020; 67(2): 1008.     CrossRef
Role of putative virulence traits of Campylobacter jejuni in regulating differential host immune responses
Ankita Singh , Amirul Islam Mallick
J. Microbiol. 2019;57(4):298-309.   Published online February 22, 2019
DOI: https://doi.org/10.1007/s12275-019-8165-0
  • 46 View
  • 0 Download
  • 13 Web of Science
  • 10 Crossref
AbstractAbstract
Among the major enteric pathogens, Campylobacter jejuni is considered an important source of diarrheal illness in humans. In contrast to the acute gastroenteritis in humans, C. jejuni exhibits prolonged cecal colonization at a high level with little or no pathology in chickens. Although several known virulence determinants of C. jejuni have been found to be associated with a higher degree of pathogenesis in humans, to date, little is known about their functions in the persistent colonization of chickens. The present study was undertaken to assess the role of C. jejuni in imparting differential host immune responses in human and chicken cells. Based on the abundance of major genes encoding virulence factors (GEVFs), we used a particular isolate that harbors the cadF, flaA, peb1, racR, ciaB, cdtB, and hcp genes. This study showed that hypervirulent C. jejuni isolate that encodes a functional type VI secretion system (T6SS) has a greater ability to invade and create characteristic “attaching and effacing” lesions in human INT407 compared to primary chicken embryo intestinal cells (CEICs). Furthermore, we demonstrated that the higher bacterial invasion in human INT407 triggered higher levels of expression of major proinflammatory cytokines, such as IL- 1β and IL-6, and significant downregulation of IL-17A gene expression (P ≤ 0.05). The findings of the present study suggest that the enhanced ability of C. jejuni to invade human cells is tightly regulated by proinflammatory cytokines in the gut and possibly holds the keys to the observed differences in pathogenesis between human and chicken cells.

Citations

Citations to this article as recorded by  
  • Targeted Bioimaging of Microencapsulated Recombinant LAB Vector Expressing Fluorescent Reporter Protein: A Non-invasive Approach for Microbial Tracking
    Prakash Biswas, Afruja Khan, Amirul Islam Mallick
    ACS Biomaterials Science & Engineering.2024; 10(8): 5210.     CrossRef
  • Identification and functional characterization of putative ligand binding domain(s) of JlpA protein of Campylobacter jejuni
    Chandan Gorain, Subhadeep Gupta, S.S. Mahafujul Alam, Mehboob Hoque, Andrey V. Karlyshev, Amirul Islam Mallick
    International Journal of Biological Macromolecules.2024; 264: 130388.     CrossRef
  • Heterogeneity and Compositional Diversities of Campylobacter jejuni Outer Membrane Vesicles (OMVs) Drive Multiple Cellular Uptake Processes
    Afruja Khan, Avijit Sardar, Pradip K. Tarafdar, Amirul I. Mallick
    ACS Infectious Diseases.2023; 9(11): 2325.     CrossRef
  • Multimodal Biofilm Inactivation Using a Photocatalytic Bismuth Perovskite–TiO2–Ru(II)polypyridyl-Based Multisite Heterojunction
    Noufal Kandoth, Sonu Pratap Chaudhary, Subhadeep Gupta, Kumari Raksha, Atin Chatterjee, Shresth Gupta, Safakath Karuthedath, Catherine S. P. De Castro, Frédéric Laquai, Sumit Kumar Pramanik, Sayan Bhattacharyya, Amirul Islam Mallick, Amitava Das
    ACS Nano.2023; 17(11): 10393.     CrossRef
  • In Silico and In Vitro Analysis of Helicobacter pullorum Type Six Secretory Protein Hcp and Its Role in Bacterial Invasion and Pathogenesis
    Kashaf Javed, Farzana Gul, Rashda Abbasi, Sidra Batool, Zobia Noreen, Habib Bokhari, Sundus Javed
    Current Microbiology.2022;[Epub]     CrossRef
  • Gut Microbe-Derived Outer Membrane Vesicles: A Potential Platform to Control Cecal Load of Campylobacter jejuni
    Ankita Singh, Afruja Khan, Tamal Ghosh, Samiran Mondal, Amirul I. Mallick
    ACS Infectious Diseases.2021; 7(5): 1186.     CrossRef
  • Mucosal delivery of live Lactococcus lactis expressing functionally active JlpA antigen induces potent local immune response and prevent enteric colonization of Campylobacter jejuni in chickens
    Chandan Gorain, Ankita Singh, Sudipta Bhattacharyya, Anirban Kundu, Aritraa Lahiri, Subhadeep Gupta, Amirul I. Mallick
    Vaccine.2020; 38(7): 1630.     CrossRef
  • Immunopathological properties of the Campylobacter jejuni flagellins and the adhesin CadF as assessed in a clinical murine infection model
    Anna-Maria Schmidt, Ulrike Escher, Soraya Mousavi, Nicole Tegtmeyer, Manja Boehm, Steffen Backert, Stefan Bereswill, Markus M. Heimesaat
    Gut Pathogens.2019;[Epub]     CrossRef
  • A One Health approach to prevention, treatment, and control of campylobacteriosis
    Francesca Schiaffino, James Platts-Mills, Margaret N. Kosek
    Current Opinion in Infectious Diseases.2019; 32(5): 453.     CrossRef
  • Immunogenicity and protective efficacy of mucosal delivery of recombinant hcp of Campylobacter jejuni Type VI secretion system (T6SS) in chickens
    Ankita Singh, Khairun Nisaa, Sudipta Bhattacharyya, Amirul Islam Mallick
    Molecular Immunology.2019; 111: 182.     CrossRef
Paraburkholderia dokdonella sp. nov., isolated from a plant from the genus Campanula
Man-Young Jung , Myung-Suk Kang , Ki-Eun Lee , Eun-Young Lee , Soo-Je Park
J. Microbiol. 2019;57(2):107-112.   Published online November 19, 2018
DOI: https://doi.org/10.1007/s12275-019-8500-5
  • 49 View
  • 1 Download
  • 8 Web of Science
  • 8 Crossref
AbstractAbstract
The novel Gram-stain-negative, rod-shaped, aerobic bacterial strain DCR-13T was isolated from a native plant belonging to the genus Campanula on Dokdo, an island in the Republic of Korea. Comparative analysis of the 16S rRNA gene sequence indicated that this strain is closely related to Paraburkholderia peleae PP52-1T (98.43% 16S rRNA gene sequence similarity), Paraburkholderia oxyphila NBRC 105797T (98.42%), Paraburkholderia sacchari IPT 101T (98.28%), Paraburkholderia mimosarum NBRC 106338T (97.80%), Paraburkholderia denitrificans KIS30-44T (97.46%), and Paraburkholderia paradise WAT (97.45%). This analysis of the 16S rRNA gene sequence also suggested that DCR-13T and the six closely related strains formed a clade within the genus Paraburkholderia, but that DCR-13T was clearly separated from the established species. DCR-13T had ubiquinone 8 as its predominant respiratory quinone, and its genomic DNA G + C content was 63.9 mol%. The isolated strain grew at a pH of 6.0–8.0 (with an optimal pH of 6.5), 0–4% w/v NaCl (with an optimal level of 0%), and a temperature of 18–42°C (with an optimal temperature of 30°C). The predominant fatty acids were C16:0, summed feature 8 (C18:1 ω7c/C18:1 ω6c), C17:0 cyclo, C19:0 cyclo ω8c, summed feature 3 (C16:1 ω6c/C16:1 ω7c) and summed feature 2 (C12:0 aldehyde), and the major polar lipids were phosphatidylglycerol and phosphatidylethanolamine. On the basis of polyphasic evidence, it is proposed that strain DCR-13T (= KCTC 62811T = LMG 30889T) represents the type strain of a novel species, Paraburkholderia dokdonella sp. nov.

Citations

Citations to this article as recorded by  
  • Genome-based taxonomy of Burkholderia sensu lato: Distinguishing closely related species
    Evelise Bach, Camila Gazolla Volpiano, Fernando Hayashi Sant’Anna, Luciane Maria Pereira Passaglia
    Genetics and Molecular Biology.2023;[Epub]     CrossRef
  • Genome-based Reclassification of Paraburkholderia insulsa as a Later Heterotypic Synonym of Paraburkholderia fungorum and Proposal of Paraburkholderia terrae subsp. terrae subsp. nov. and Paraburkholderia terrae subsp. steynii subsp. nov.
    Munusamy Madhaiyan, Shankar Sriram, Nedounsejian Kiruba, Venkatakrishnan Sivaraj Saravanan
    Current Microbiology.2022;[Epub]     CrossRef
  • Engineering of a newly isolated Bacillus tequilensis BL01 for poly-γ-glutamic acid production from citric acid
    Dexin Wang, Xiaoping Fu, Dasen Zhou, Jiaqi Gao, Wenqin Bai
    Microbial Cell Factories.2022;[Epub]     CrossRef
  • The Hidden Genomic Diversity, Specialized Metabolite Capacity, and Revised Taxonomy of Burkholderia Sensu Lato
    Alex J. Mullins, Eshwar Mahenthiralingam
    Frontiers in Microbiology.2021;[Epub]     CrossRef
  • The history and distribution of nodulating Paraburkholderia, a potential inoculum for Fynbos forage species
    Chrizelle W. Beukes, Stephanus N. Venter, Emma T. Steenkamp
    Grass and Forage Science.2021; 76(1): 10.     CrossRef
  • International Committee on Systematics of Prokaryotes Subcommittee on the Taxonomy of Rhizobia and Agrobacteria Minutes of the closed meeting by videoconference, 17 July 2019
    Philippe de Lajudie, J. Peter W. Young
    International Journal of Systematic and Evolutionary Microbiology .2020; 70(5): 3563.     CrossRef
  • Spontaneous formation and mechanism of anaerobic ammonium oxidation (anammox) bacteria in swine wastewater treatment system
    Zhenzhong Pan, Ruizhi Dai, Jingsong Liao, Jih-Gaw Lin, Yiguo Hong, Jiayin Ling, Yanbin Xu, Yuxin Li, Jiaen Peng
    International Biodeterioration & Biodegradation.2020; 154: 105058.     CrossRef
  • A newly isolated Bacillus siamensis SB1001 for mass production of poly-γ-glutamic acid
    Dexin Wang, Jin-Su Hwang, Dong-Ho Kim, Sungbeom Lee, Dae-Hyuk Kim, Min-Ho Joe
    Process Biochemistry.2020; 92: 164.     CrossRef
Paenibacillus seodonensis sp. nov., isolated from a plant of the genus Campanula
Myung-Suk Kang , Ki-Eun Lee , Eun-Young Lee , Soo-Je Park
J. Microbiol. 2018;56(12):874-879.   Published online October 25, 2018
DOI: https://doi.org/10.1007/s12275-018-8455-y
  • 59 View
  • 0 Download
  • 1 Web of Science
  • 1 Crossref
AbstractAbstract
Strain DCT-19T, representing a Gram-stain-positive, rodshaped, aerobic bacterium, was isolated from a native plant belonging to the genus Campanula on Dokdo, the Republic of Korea. Comparative analysis of the 16S rRNA gene sequence showed that this strain was closely related to Paenibacillus amylolyticus NRRL NRS-290T (98.6%, 16S rRNA gene sequence similarity), Paenibacillus tundrae A10bT (98.1%), and Paenibacillus xylanexedens NRRL B-51090T (97.6%). DNADNA hybridization indicated that this strain had relatively low levels of DNA-DNA relatedness with P. amylolyticus NRRL NRS-290T (30.0%), P. xylanexedens NRRL B-51090T (29.0%), and P. tundrae A10bT (24.5%). Additionally, the genomic DNA G + C content of DCT-19T was 44.8%. The isolated strain grew at pH 6.0–8.0 (optimum, pH 7.0), 0–4% (w/v) NaCl (optimum, 0%), and a temperature of 15–45°C (optimum 25–30°C). The sole respiratory quinone in the strain was menaquinone-7, and the predominant fatty acids were C15:0 anteiso, C16:0 iso, and C16:0. In addition, the major polar lipids were diphosphatidylglycerol and phosphatidylethanolamine. Based on its phenotypic properties, genotypic distinctiveness, and chemotaxonomic features, strain DCT-19T is proposed as a novel species in the genus Paenibacillus, for which the name Paenibacillus seodonensis sp. nov. is proposed (=KCTC 43009T =LMG 30888T). The type strain of Paenibacillus seodonensis is DCT-19T.

Citations

Citations to this article as recorded by  
  • Molecular Evidence of Crosstalk Between Bacterial Endophytes and Plant Transcriptome in Brassica juncea
    Garima Sharma, Pooja Gokhale Sinha, Vartika Mathur
    Journal of Plant Growth Regulation.2024; 43(12): 4397.     CrossRef
De novo transcriptome assembly and characterization of the 10-hydroxycamptothecin-producing Xylaria sp. M71 following salicylic acid treatment
Xiaowei Ding , Kaihui Liu , Yonggui Zhang , Feihu Liu
J. Microbiol. 2017;55(11):871-876.   Published online October 27, 2017
DOI: https://doi.org/10.1007/s12275-017-7173-1
  • 46 View
  • 0 Download
  • 6 Crossref
AbstractAbstract
In the present study, we identified genes that are putatively involved in the production of fungal 10-hydroxycamptothecin via transcriptome sequencing and characterization of the Xylaria sp. M71 treated with salicylic acid (SA). A total of 60,664,200 raw reads were assembled into 26,044 unigenes. BLAST assigned 8,767 (33.7%) and 10,840 (41.6%) unigenes to 40 Gene Ontology (GO) annotations and 108 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, respectively. A total of 3,713 unigenes comprising 1,504 upregulated and 2,209 downregulated unigenes were found to be differentially expressed between SA-induced and control fungi. Based on the camptothecin biosynthesis pathway in plants, 13 functional genes of Xylaria sp. M71 were mapped to the mevalonate (MVA) pathway, suggesting that the fungal 10-hydroxycamptothecin is produced via the MVA pathway. In summary, analysis of the Xylaria sp. M71 transcriptome allowed the identification of unigenes that are putatively involved in 10-hydroxycamptothecin biosynthesis in fungi.

Citations

Citations to this article as recorded by  
  • The hidden treasures in endophytic fungi: a comprehensive review on the diversity of fungal bioactive metabolites, usual analytical methodologies, and applications
    Jefferson Brendon Almeida dos Reis, Adriana Sturion Lorenzi, Danilo Batista Pinho, Patrícia Cardoso Cortelo, Helson Mario Martins do Vale
    Archives of Microbiology.2024;[Epub]     CrossRef
  • Genomic and transcriptomic analysis of camptothecin producing novel fungal endophyte: Alternaria burnsii NCIM 1409
    Shakunthala Natarajan, Boas Pucker, Smita Srivastava
    Scientific Reports.2023;[Epub]     CrossRef
  • Plant probiotics – Endophytes pivotal to plant health
    Shiv Shanker Pandey, Rahul Jain, Priyanka Bhardwaj, Ankita Thakur, Manju Kumari, Shashi Bhushan, Sanjay Kumar
    Microbiological Research.2022; 263: 127148.     CrossRef
  • Using Next-Generation Sequencing Technology to Explore Genetic Pathways in Endophytic Fungi in the Syntheses of Plant Bioactive Metabolites
    Monika Bielecka, Bartosz Pencakowski, Rosario Nicoletti
    Agriculture.2022; 12(2): 187.     CrossRef
  • Microbial endophytes: application towards sustainable agriculture and food security
    Vagish Dwibedi, Santosh Kumar Rath, Mahavir Joshi, Rajinder Kaur, Gurleen Kaur, Davinder Singh, Gursharan Kaur, SukhminderJit Kaur
    Applied Microbiology and Biotechnology.2022; 106(17): 5359.     CrossRef
  • How and why do endophytes produce plant secondary metabolites?
    Sachin Naik, Ramanan Uma Shaanker, Gudasalamani Ravikanth, Selvadurai Dayanandan
    Symbiosis.2019; 78(3): 193.     CrossRef
Epidemiological relationships of Campylobacter jejuni strains isolated from humans and chickens in South Korea
Jae-Young Oh , Yong-Kuk Kwon , Bai Wei , Hyung-Kwan Jang , Suk-Kyung Lim , Cheon-Hyeon Kim , Suk-Chan Jung , Min-Su Kang
J. Microbiol. 2017;55(1):13-20.   Published online December 30, 2016
DOI: https://doi.org/10.1007/s12275-017-6308-8
  • 51 View
  • 0 Download
  • 30 Crossref
AbstractAbstract
Thirty-nine human isolates of Campylobacter jejuni obtained from a national university hospital during 2007–2010 and 38 chicken isolates of C. jejuni were collected from poultry farms during 2009–2010 in South Korea were used in this study. Campylobacter genomic species and virulence-associated genes were identified by PCR. Pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) were performed to compare their genetic relationships. All isolates were highly resistant to ciprofloxacin, nalidixic acid, and tetracycline. Of all isolates tested, over 94% contained seven virulence associated genes (flaA, cadF, racR, dnaJ, cdtA, cdtB, and cdtC). All isolates were classified into 39 types by PFGE clustering with 90% similarity. Some chicken isolates were incorporated into some PFGE types of human isolates. MLST analysis for the 39 human isolates and 38 chicken isolates
result
ed in 14 and 23 sequence types (STs), respectively, of which 10 STs were new. STs overlapped in both chicken and human isolates included ST-21, ST-48, ST-50, ST-51, and ST-354, of which ST-21 was the predominant ST in both human and chicken isolates. Through combined analysis of PFGE types and STs, three chicken isolates were clonally related to the three human isolates associated with food poisoning (VII-ST-48, XXII-ST-354, and XXVIII-ST-51). They were derived from geographically same or distinct districts. Remarkably, clonal spread of food poisoning pathogens between animals and humans was confirmed by population genetic analysis. Consequently, contamination of campylobacters with quinolone resistance and potential virulence genes in poultry production and consumption may increase the risk of infections in humans.

Citations

Citations to this article as recorded by  
  • Trends, clinical characteristics, antimicrobial susceptibility patterns, and outcomes of Campylobacter bacteraemia: a multicentre retrospective study
    Yae Jee Baek, Je Eun Song, Eun Jin Kim, Heun Choi, Yujin Sohn, Yong Duk Jeon, Eun Hwa Lee, Jin Young Ahn, Su Jin Jeong, Nam Su Ku, Jun Yong Choi, Joon-Sup Yeom, Young Goo Song, Jung Ho Kim
    Infection.2024; 52(3): 857.     CrossRef
  • Molecular Detection of Virulence‐Associated Markers in Campylobacter coli and Campylobacter jejuni Isolates From Water, Cattle, and Chicken Faecal Samples From Kajiado County, Kenya
    Daniel W. Wanja, Christine M. Mbindyo, Paul G. Mbuthia, Lilly C. Bebora, Gabriel O. Aboge, Kalman Imre
    BioMed Research International.2024;[Epub]     CrossRef
  • Epidemiological and Genomic Characterization of a Campylobacter jejuni Outbreak in Lishui, China
    Yumei Ge, Youqi Ji, Jianhua Mei, Maojun Zhang, Yumin Li, Bifeng Ye, Honghu Chen, Xiuying Chen
    Foodborne Pathogens and Disease.2024;[Epub]     CrossRef
  • Virulence Genes, Antimicrobial Resistance, and Genotypes of Campylobacter jejuni Isolated from Chicken Slaughterhouses in South Korea
    Jiyeon Jeong, Ji-Youn Lee, Jin-San Moon, Min-Su Kang, Sung-Il Kang, O-Mi Lee, So-Hee Lee, Yong-Kuk Kwon, Myeongju Chae, Seongbeom Cho
    Foodborne Pathogens and Disease.2024;[Epub]     CrossRef
  • Antimicrobial Susceptibility Patterns and Genetic Diversity of Campylobacter spp. Isolates from Patients with Diarrhea in South Korea
    So Yeon Kim, Dongheui An, Hyemi Jeong, Jonghyun Kim
    Microorganisms.2024; 12(1): 94.     CrossRef
  • Campylobacterspp. isolated from poultry in Iran: Antibiotic resistance profiles, virulence genes, and molecular mechanisms
    Seyedeh Bita Mousavinafchi, Ebrahim Rahimi, Amir Shakerian
    Food Science & Nutrition.2023; 11(2): 1142.     CrossRef
  • Persistence of Campylobacter spp. in Poultry Flocks after Disinfection, Virulence, and Antimicrobial Resistance Traits of Recovered Isolates
    Manel Gharbi, Awatef Béjaoui, Safa Hamrouni, Amel Arfaoui, Abderrazak Maaroufi
    Antibiotics.2023; 12(5): 890.     CrossRef
  • Relationships between Virulence Genes and Antibiotic Resistance Phenotypes/Genotypes in Campylobacter spp. Isolated from Layer Hens and Eggs in the North of Tunisia: Statistical and Computational Insights
    Manel Gharbi, Selim Kamoun, Chaima Hkimi, Kais Ghedira, Awatef Béjaoui, Abderrazak Maaroufi
    Foods.2022; 11(22): 3554.     CrossRef
  • Prevalence and Antimicrobial Susceptibility of Campylobacter Species with Particular Focus on the Growth Promoting, Immunostimulant and Anti-Campylobacter jejuni Activities of Eugenol and Trans-Cinnamaldehyde Mixture in Broiler Chickens
    Ahmed Aljazzar, Marwa I. Abd El-Hamid, Rania M. S. El-Malt, Waleed Rizk El-Gharreb, Sherief M. Abdel-Raheem, Abdelazim M. Ibrahim, Adel M. Abdelaziz, Doaa Ibrahim
    Animals.2022; 12(7): 905.     CrossRef
  • Genotypical Relationship Between Human and Poultry Strains of Campylobacter jejuni
    Roberta Torres de Melo, Carolyne Ferreira Dumont, Raquelline Figueiredo Braz, Guilherme Paz Monteiro, Micaela Guidotti Takeuchi, Eduarda Cristina Alves Lourenzatto, Jandra Pacheco dos Santos, Daise Aparecida Rossi
    Current Microbiology.2021; 78(8): 2980.     CrossRef
  • Genomic Characterization of Fluoroquinolone-Resistant Thermophilic Campylobacter Strains Isolated from Layer Chicken Feces in Gangneung, South Korea by Whole-Genome Sequencing
    Noel Gahamanyi, Dae-Geun Song, Kye-Yoon Yoon, Leonard E. G. Mboera, Mecky I. Matee, Dieudonné Mutangana, Erick V. G. Komba, Cheol-Ho Pan, Raghavendra G. Amachawadi
    Genes.2021; 12(8): 1131.     CrossRef
  • Genomic Relatedness, Antibiotic Resistance and Virulence Traits of Campylobacter jejuni HS19 Isolates From Cattle in China Indicate Pathogenic Potential
    Xiaoqi Zang, Pingyu Huang, Jie Li, Xinan Jiao, Jinlin Huang
    Frontiers in Microbiology.2021;[Epub]     CrossRef
  • DNA sequencing, genomes and genetic markers of microbes on fruits and vegetables
    Youming Shen, Jiyun Nie, Lixue Kuang, Jianyi Zhang, Haifei Li
    Microbial Biotechnology.2021; 14(2): 323.     CrossRef
  • Longitudinal Study of the Distribution of Antimicrobial-Resistant Campylobacter Isolates from an Integrated Broiler Chicken Operation
    Bo-Ram Kwon, Bai Wei, Se-Yeoun Cha, Ke Shang, Jun-Feng Zhang, Min Kang, Hyung-Kwan Jang
    Animals.2021; 11(2): 246.     CrossRef
  • Review on Stress Tolerance in Campylobacter jejuni
    Se-Hun Kim, Ramachandran Chelliah, Sudha Rani Ramakrishnan, Ayyappasamy Sudalaiyadum Perumal, Woo-Suk Bang, Momna Rubab, Eric Banan-Mwine Daliri, Kaliyan Barathikannan, Fazle Elahi, Eunji Park, Hyeon Yeong Jo, Su-Bin Hwang, Deog Hwan Oh
    Frontiers in Cellular and Infection Microbiology.2021;[Epub]     CrossRef
  • Antimicrobial Resistance and PFGE Molecular Typing of Salmonella enterica serovar Gallinarum Isolates from Chickens in South Korea from 2013 to 2018
    Jun-Feng Zhang, Ke Shang, Jong-Yeol Park, Yea-Jin Lee, Yu-Ri Choi, Sang-Won Kim, Se-Yeoun Cha, Hyung-Kwan Jang, Bai Wei, Min Kang
    Animals.2021; 12(1): 83.     CrossRef
  • Antimicrobial Resistance Profiles, Virulence Genes, and Genetic Diversity of Thermophilic Campylobacter Species Isolated From a Layer Poultry Farm in Korea
    Noel Gahamanyi, Dae-Geun Song, Kye-Yoon Yoon, Leonard E. G. Mboera, Mecky I. Matee, Dieudonné Mutangana, Raghavendra G. Amachawadi, Erick V. G. Komba, Cheol-Ho Pan
    Frontiers in Microbiology.2021;[Epub]     CrossRef
  • Prevalence, Antimicrobial Susceptibility, Virulence and Genotyping of Campylobacter jejuni with a Special Reference to the Anti-Virulence Potential of Eugenol and Beta-Resorcylic Acid on Some Multi-Drug Resistant Isolates in Egypt
    Ahmed M. Ammar, El-Sayed Y. El-Naenaeey, Rania M. S. El-Malt, Attia A. El-Gedawy, Eman Khalifa, Shimaa S. Elnahriry, Marwa I. Abd El-Hamid
    Animals.2020; 11(1): 3.     CrossRef
  • Epidemiological and Whole Genomic Sequencing Analysis of a Campylobacter jejuni Outbreak in Zhejiang Province, China, May 2019
    Honghu Chen, Yaxin Dai, Jiancai Chen, Yunyi Zhang, Li Zhan, Lingling Mei, Hongling Wang
    Foodborne Pathogens and Disease.2020; 17(12): 775.     CrossRef
  • Molecular Characterization and Antibiotic Resistant Profiles of Campylobacter Species Isolated From Poultry and Diarrheal Patients in Southeastern China 2017–2019
    Leyi Zhang, Yi Li, Yongqiang Shao, Yuqin Hu, Huihuang Lou, Xiaonan Chen, Yuejin Wu, Lingling Mei, Biao Zhou, Xibin Zhang, Wenwu Yao, Lei Fang, Yanjun Zhang
    Frontiers in Microbiology.2020;[Epub]     CrossRef
  • Comparative restriction enzyme mapping of Campylobacter jejuni isolates from turkeys and broilers based on flaA flagellar gene using HpyF3I endonuclease
    Elham Atefi Tabar, Hamid Staji, Ali Mahdavi
    Folia Microbiologica.2019; 64(2): 189.     CrossRef
  • Genetic Diversity of Campylobacter jejuni Isolated From Avian and Human Sources in Egypt
    Marwa I. Abd El-Hamid, Norhan K. Abd El-Aziz, Mohamed Samir, El-sayed Y. El-Naenaeey, Etab M. Abo Remela, Rasha A. Mosbah, Mahmoud M. Bendary
    Frontiers in Microbiology.2019;[Epub]     CrossRef
  • Prevalence, antimicrobial resistance profiles and virulence-associated genes of thermophilic Campylobacter spp. isolated from ducks in a Chinese slaughterhouse
    Xinfeng Han, Xingai Guan, Hang Zeng, Jiakang Li, Xuelin Huang, Yiping Wen, Qin Zhao, Xiaobo Huang, Qigui Yan, Yong Huang, Sanjie Cao, Rui Wu, Xiaoping Ma, Likou Zou
    Food Control.2019; 104: 157.     CrossRef
  • Clinical and microbiological characteristics of patients with bacteremia caused by Campylobacter species with an emphasis on the subspecies of C. fetus
    Yen-Hung Liu, Wataru Yamazaki, Yu-Tsung Huang, Chun-Hsing Liao, Wang-Hui Sheng, Po-Ren Hsueh
    Journal of Microbiology, Immunology and Infection.2019; 52(1): 122.     CrossRef
  • Source attribution of Campylobacter jejuni shows variable importance of chicken and ruminants reservoirs in non-invasive and invasive French clinical isolates
    Elvire Berthenet, Amandine Thépault, Marianne Chemaly, Katell Rivoal, Astrid Ducournau, Alice Buissonnière, Lucie Bénéjat, Emilie Bessède, Francis Mégraud, Samuel K. Sheppard, Philippe Lehours
    Scientific Reports.2019;[Epub]     CrossRef
  • A Review of the Effect of Management Practices on Campylobacter Prevalence in Poultry Farms
    Nompilo Sibanda, Aaron McKenna, Anne Richmond, Steven C. Ricke, Todd Callaway, Alexandros Ch. Stratakos, Ozan Gundogdu, Nicolae Corcionivoschi
    Frontiers in Microbiology.2018;[Epub]     CrossRef
  • The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2016

    EFSA Journal.2018;[Epub]     CrossRef
  • Comparative clustering and genotyping of Campylobacter jejuni strains isolated from broiler and turkey feces by using RAPD-PCR and ERIC-PCR analysis
    Hamid Staji, Soghra Farhani Birgani, Behnaz Raeisian
    Annals of Microbiology.2018; 68(11): 755.     CrossRef
  • Antibiotic Susceptibility, Genetic Diversity, and the Presence of Toxin Producing Genes in Campylobacter Isolates from Poultry
    Jeeyeon Lee, Jiyeon Jeong, Heeyoung Lee, Jimyeong Ha, Sejeong Kim, Yukyung Choi, Hyemin Oh, Kunho Seo, Yohan Yoon, Soomin Lee
    International Journal of Environmental Research and Public Health.2017; 14(11): 1400.     CrossRef
  • Molecular Detection, Typing, and Quantification of Campylobacter spp. in Foods of Animal Origin
    Beatriz da Silva Frasao, Victor Augustus Marin, Carlos Adam Conte‐Junior
    Comprehensive Reviews in Food Science and Food Safety.2017; 16(4): 721.     CrossRef
Review
MINIREVIEW] Clinical relevance of infections with zoonotic and human oral species of Campylobacter
Soomin Lee , Jeeyeon Lee , Jimyeong Ha , Yukyung Choi , Sejeong Kim , Heeyoung Lee , Yohan Yoon , Kyoung-Hee Choi
J. Microbiol. 2016;54(7):459-467.   Published online June 28, 2016
DOI: https://doi.org/10.1007/s12275-016-6254-x
  • 46 View
  • 0 Download
  • 34 Crossref
AbstractAbstract
Genus Campylobacter has been recognized as a causative bacterial agent of animal and human diseases. Human Campylobacter infections have caused more concern. Campylobacters can be classified into two groups in terms of their original host: zoonotic and human oral species. The major zoonotic species are Campylobacter jejuni and Campylobacter coli, which mostly reside in the intestines of avian species and are transmitted to humans via consumption of contaminated poultry products, thus causing human gastroenteritis and other diseases as sequelae. The other campylobacters, human oral species, include C. concisus, C. showae, C. gracilis, C. ureolyticus, C. curvus, and C. rectus. These species are isolated from the oral cavity, natural colonization site, but have potential clinical relevance in the periodontal region to varying extent. Two species, C. jejuni and C. coli, are believed to be mainly associated with intestinal diseases, but recent studies suggested that oral Campylobacter species also play a significant role in intestinal diseases. This review offers an outline of the two Campylobacter groups (zoonotic and human oral), their virulence traits, and the associated illnesses including gastroenteritis.

Citations

Citations to this article as recorded by  
  • Cardiac Tamponade Caused by Campylobacter ureolyticus Purulent Effusion
    Michael Obregon, Ahmed Khan
    Cureus.2024;[Epub]     CrossRef
  • Occurrence of Florfenicol and Linezolid Resistance and Emergence of optrA Gene in Campylobacter coli Isolates from Tunisian Avian Farms
    Manel Gharbi, Rihab Tiss, Chadlia Hamdi, Safa Hamrouni, Abderrazak Maaroufi, Daniel Gyamfi Amoako
    International Journal of Microbiology.2024;[Epub]     CrossRef
  • Protective effects of sulforaphane on inflammation, oxidative stress and intestinal dysbacteriosis induced by triphenyltin in Cyprinus carpio haematopterus
    Jianshuang Ma, Bingke Wang, Changchang Pu, Kuo Chang, Yinfeng Cheng, Ruyi Sun, Qian Qi, Ruiyi Xu, Junliang Chen, Chunnuan Zhang
    Fish & Shellfish Immunology.2023; 142: 109135.     CrossRef
  • Oncogenic potential of Campylobacter infection in the gastrointestinal tract: narrative review
    Ikuko Kato, Julia Minkevitch, Jun Sun
    Scandinavian Journal of Gastroenterology.2023; 58(12): 1453.     CrossRef
  • Molecular Confirmation of the Causative Agents of Diarrhea and Its Antimicrobial Susceptibility Tests
    Enerel Enkhbayar, Narangerel Baatar, Avarzed Amgalanbaatar, Oyungerel Ravjir
    Central Asian Journal of Medical Sciences.2023; 9(3): 117.     CrossRef
  • Species Delineation and Comparative Genomics within theCampylobacter ureolyticusComplex
    Joel J. Maki, Mondraya Howard, Sara Connelly, Matthew A. Pettengill, Dwight J. Hardy, Andrew Cameron, Nathan A. Ledeboer
    Journal of Clinical Microbiology.2023;[Epub]     CrossRef
  • A global overview of the most important zoonotic bacteria pathogens transmitted from Rattus norvegicus to humans in urban environments
    Sahar Sabour, Taher Azimi, Ahmad Nasser, Nahal Hadi, Amin Mohsenzadeh, Aref Shariati
    Infectious Medicine.2022; 1(3): 192.     CrossRef
  • Large animal veterinarians’ knowledge, attitudes, and practices regarding livestock abortion-associated zoonoses in the United States indicate potential occupational health risk
    Cara C. Cherry, María E. Negrón Sureda, John D. Gibbins, Christa R. Hale, G. Sean Stapleton, Emma S. Jones, Megin C. Nichols
    Journal of the American Veterinary Medical Association.2022; 260(7): 780.     CrossRef
  • Empiema necessitatis por Campylobacter rectus. Identificación rápida por MALDI-TOF MS
    Claudia Barberis, María Florencia Veiga, Daniela Tolosa, Carlos Vay, Pablo Schuarzberg
    Revista Argentina de Microbiología.2022; 54(4): 305.     CrossRef
  • Polyphenolic phytochemicals as natural feed additives to control bacterial pathogens in the chicken gut
    Afnan Al-Mnaser, Mohammed Dakheel, Fatemah Alkandari, Martin Woodward
    Archives of Microbiology.2022;[Epub]     CrossRef
  • New Insights into the Role of Oral Microbiota Dysbiosis in the Pathogenesis of Inflammatory Bowel Disease
    Ying Qi, Hui-min Wu, Zhao Yang, Yi-fei Zhou, Lei Jin, Miao-fang Yang, Fang-yu Wang
    Digestive Diseases and Sciences.2022; 67(1): 42.     CrossRef
  • Co-pathogens in Periodontitis and Inflammatory Bowel Disease
    Zhengwen Cai, Tao Zhu, Fengshuo Liu, Zixuan Zhuang, Lei Zhao
    Frontiers in Medicine.2021;[Epub]     CrossRef
  • Association Between Serum Thyroid-Stimulating Hormone Levels and Salivary Microbiome Shifts
    Ting Dong, Fen Zhao, Keyong Yuan, Xiaohan Zhu, Ningjian Wang, Fangzhen Xia, Yingli Lu, Zhengwei Huang
    Frontiers in Cellular and Infection Microbiology.2021;[Epub]     CrossRef
  • Influence of the dental topical application of a nisin-biogel in the oral microbiome of dogs: a pilot study
    Eva Cunha, Sara Valente, Mariana Nascimento, Marcelo Pereira, Luís Tavares, Ricardo Dias, Manuela Oliveira
    PeerJ.2021; 9: e11626.     CrossRef
  • High-throughput sequencing provides insights into oral microbiota dysbiosis in association with inflammatory bowel disease
    Ying Qi, Sheng-qi Zang, Juan Wei, Hong-chuan Yu, Zhao Yang, Hui-min Wu, Ying Kang, Hui Tao, Miao-fang Yang, Lei Jin, Ke Zen, Fang-yu Wang
    Genomics.2021; 113(1): 664.     CrossRef
  • Salivary microbial community alterations due to probiotic yogurt in preschool children with healthy deciduous teeth
    Lei Xu, Yuan Wang, ZhiFang Wu, ShuLi Deng
    Archives of Microbiology.2021; 203(6): 3045.     CrossRef
  • Odontogenic Brain Abscess With Campylobacter gracilis and Fusobacterium nucleatum Complicated by Rupture Into the Ventricle
    Timothy L. Jang, Brian P. Elliott, David G. Herman, Katelyn J. Booher
    Infectious Diseases in Clinical Practice.2021; 29(6): e437.     CrossRef
  • How Do Polymer Coatings Affect the Growth and Bacterial Population of a Biofilm Formed by Total Human Salivary Bacteria?—A Study by 16S-RNA Sequencing
    Ali Al-Ahmad, Kira Wollensak, Sibylle Rau, Diana Lorena Guevara Solarte, Stefan Paschke, Karen Lienkamp, Ori Staszewski
    Microorganisms.2021; 9(7): 1427.     CrossRef
  • Campylobacter sp.: Pathogenicity factors and prevention methods—new molecular targets for innovative antivirulence drugs?
    Vanessa Kreling, Franco H. Falcone, Corinna Kehrenberg, Andreas Hensel
    Applied Microbiology and Biotechnology.2020; 104(24): 10409.     CrossRef
  • Microbiota Features Associated With a High-Fat/Low-Fiber Diet in Healthy Adults
    María Bailén, Carlo Bressa, Sara Martínez-López, Rocío González-Soltero, Maria Gregoria Montalvo Lominchar, Celia San Juan, Mar Larrosa
    Frontiers in Nutrition.2020;[Epub]     CrossRef
  • Clinical Detection of Chronic Rhinosinusitis through Next-Generation Sequencing of the Oral Microbiota
    Ben-Chih Yuan, Yao-Tsung Yeh, Ching-Chiang Lin, Cheng-Hsieh Huang, Hsueh-Chiao Liu, Chih-Po Chiang
    Microorganisms.2020; 8(6): 959.     CrossRef
  • Diversity of transducer-like proteins (Tlps) in Campylobacter
    Clifford Clark, Chrystal Berry, Walter Demczuk, Jean-François Pombert
    PLOS ONE.2019; 14(3): e0214228.     CrossRef
  • The possible relationship between Campylobacter spp./Arcobacter spp. and patients with ulcerative colitis
    Mustafa Akar, Fuat Aydin, Mustafa A. Yurci, Seçil Abay, İhsan Ateş, Kemal Deniz
    European Journal of Gastroenterology & Hepatology.2018; 30(5): 531.     CrossRef
  • Active matrix metalloproteinase‐8 and periodontal bacteria—interlink between periodontitis and inflammatory bowel disease?
    J. Schmidt, M. Weigert, C. Leuschner, H. Hartmann, D. Raddatz, R. Haak, R.F. Mausberg, T. Kottmann, G. Schmalz, D. Ziebolz
    Journal of Periodontology.2018; 89(6): 699.     CrossRef
  • The effect of bacterial chemotaxis on host infection and pathogenicity
    Miguel A Matilla, Tino Krell
    FEMS Microbiology Reviews.2018;[Epub]     CrossRef
  • Residential proximity to high-density poultry operations associated with campylobacteriosis and infectious diarrhea
    Melissa N. Poulsen, Jonathan Pollak, Deborah L. Sills, Joan A. Casey, Sara G. Rasmussen, Keeve E. Nachman, Sara E. Cosgrove, Dalton Stewart, Brian S. Schwartz
    International Journal of Hygiene and Environmental Health.2018; 221(2): 323.     CrossRef
  • Salmonella and Campylobacter biofilm formation: a comparative assessment from farm to fork
    Alexandre Lamas, Patricia Regal, Beatriz Vázquez, José M Miranda, Alberto Cepeda, Carlos M Franco
    Journal of the Science of Food and Agriculture.2018; 98(11): 4014.     CrossRef
  • Campylobacter fetus impairs barrier function in HT‐29/B6 cells through focal tight junction alterations and leaks
    Roland Bücker, Susanne M. Krug, Anja Fromm, Hans Linde Nielsen, Michael Fromm, Henrik Nielsen, Jörg‐Dieter Schulzke
    Annals of the New York Academy of Sciences.2017; 1405(1): 189.     CrossRef
  • Incidence of Campylobacter concisus and C. ureolyticus in traveler’s diarrhea cases and asymptomatic controls in Nepal and Thailand
    Oralak Serichantalergs, Sirigade Ruekit, Prativa Pandey, Sinn Anuras, Carl Mason, Ladaporn Bodhidatta, Brett Swierczewski
    Gut Pathogens.2017;[Epub]     CrossRef
  • Lactobacillus fermentum 3872 as a potential tool for combatting Campylobacter jejuni infections
    B. Lehri, A. M. Seddon, A. V. Karlyshev
    Virulence.2017; 8(8): 1753.     CrossRef
  • Behavior of two Tannerella forsythia strains and their cell surface mutants in multispecies oral biofilms
    Susanne Bloch, Thomas Thurnheer, Yukitaka Murakami, Georgios N. Belibasakis, Christina Schäffer
    Molecular Oral Microbiology.2017; 32(5): 404.     CrossRef
  • Towards understanding clinical campylobacter infection and its transmission: time for a different approach?
    E. Casey, E. Fitzgerald, B. Lucey
    British Journal of Biomedical Science.2017; 74(2): 53.     CrossRef
  • Sensory Repertoire of Bacterial Chemoreceptors
    Álvaro Ortega, Igor B. Zhulin, Tino Krell
    Microbiology and Molecular Biology Reviews.2017;[Epub]     CrossRef
  • Bibliometric analysis of publications on Campylobacter: (2000–2015)
    Waleed M. Sweileh, Samah W. Al-Jabi, Ansam F. Sawalha, Adham S. AbuTaha, Sa’ed H. Zyoud
    Journal of Health, Population and Nutrition.2016;[Epub]     CrossRef

Journal of Microbiology : Journal of Microbiology
TOP