Search
- Page Path
-
HOME
> Search
Journal Article
- Enhancement of the solubility of recombinant proteins by fusion with a short-disordered peptide
-
Jun Ren , Suhee Hwang , Junhao Shen , Hyeongwoo Kim , Hyunjoo Kim , Jieun Kim , Soyoung Ahn , Min-gyun Kim , Seung Ho Lee , Dokyun Na
-
J. Microbiol. 2022;60(9):960-967. Published online July 14, 2022
-
DOI: https://doi.org/10.1007/s12275-022-2122-z
-
-
14
View
-
0
Download
-
5
Citations
-
Abstract
- In protein biotechnology, large soluble fusion partners are
widely utilized for increased yield and solubility of recombinant
proteins. However, the production of additional large
fusion partners poses an additional burden to the host, leading
to a decreased protein yield. In this study, we identified
two highly disordered short peptides that were able to increase
the solubility of an artificially engineered aggregationprone
protein, GFP-GFIL4, from 0.6% to 61% (D3-DP00592)
and 46% (D4-DP01038) selected from DisProt database. For
further confirmation, the peptides were applied to two insoluble
E. coli proteins (YagA and YdiU). The peptides also
enhanced solubility from 52% to 90% (YagA) and from 27%
to 93% (YdiU). Their ability to solubilize recombinant proteins
was comparable with strong solubilizing tags, maltosebinding
protein (40 kDa) and TrxA (12 kDa), but much smaller
(< 7 kDa) in size. For practical application, the two peptides
were fused with a restriction enzyme, I-SceI, and they increased
I-SceI solubility from 24% up to 75%. The highly disordered
peptides did not affect the activity of I-SceI while I-SceI fused
with MBP or TrxA displayed no restriction activity. Despite
the small size, the highly disordered peptides were able to
solubilize recombinant proteins as efficiently as conventional
fusion tags and did not interfere with the function of recombinant
proteins. Consequently, the identified two highly disordered
peptides would have practical utility in protein biotechnology
and industry.
Review
- [Minireview]The rationale and potential for using Lactobacillus in the management of periodontitis
-
Jiaqi Wang , Yingman Liu , Weiru Wang , Jiaojiao Ma , Manman Zhang , Xiaoying Lu , Jie Liu , Yurong Kou
-
J. Microbiol. 2022;60(4):355-363. Published online March 28, 2022
-
DOI: https://doi.org/10.1007/s12275-022-1514-4
-
-
24
View
-
0
Download
-
11
Citations
-
Abstract
- Periodontitis refers to a wide range of the inflammatory conditions
of supporting dental structures. For some patients with
periodontitis, antibacterial agents are needed as an adjuvant
to mechanical debridement treatments and oral hygiene maintenance.
However, the widespread use of broad-spectrum antibiotics
for the prophylaxis and treatment of periodontal infections
results
in the emergence of resistant pathogens. Therefore,
probiotics have become markedly interesting to researchers
as a potentially safe alternative to periodontal treatment
and maintenance. Probiotics have been used in medicine for
decades and extensively applied to the treatment of inflammatory
diseases through the modulation of microbial synergy
and other mechanisms. A growing amount of evidence has
shown that using Lactobacillus strains for oral cavity maintenance
could improve periodontal health. In this study, we
reviewed studies showing proof of the inhibitory effects of
Lactobacillus species on periodontal inflammation. We also
explored the rationale and potential for using Lactobacillus
species in the management of periodontitis.
Journal Articles
- [PROTOCOL] High-throughput cultivation based on dilution-to-extinction with catalase supplementation and a case study of cultivating acI bacteria from Lake Soyang
-
Suhyun Kim , Miri S. Park , Jaeho Song , Ilnam Kang , Jang-Cheon Cho
-
J. Microbiol. 2020;58(11):893-905. Published online October 30, 2020
-
DOI: https://doi.org/10.1007/s12275-020-0452-2
-
-
16
View
-
0
Download
-
13
Citations
-
Abstract
- Multi-omics approaches, including metagenomics and single-
cell amplified genomics, have revolutionized our understanding
of the hidden diversity and function of microbes
in nature. Even in the omics age, cultivation is an essential
discipline in microbial ecology since microbial cultures are
necessary to assess the validity of an in silico prediction about
the microbial metabolism and to isolate viruses infecting bacteria
and archaea. However, the ecophysiological characteristics
of predominant freshwater bacterial lineages remain
largely unknown due to the scarcity of cultured representatives.
In an ongoing effort to cultivate the uncultured majority
of freshwater bacteria, the most abundant freshwater
Actinobacteria acI clade has recently been cultivated from
Lake Soyang through catalase-supplemented high-throughput
cultivation based on dilution-to-extinction. This method
involves physical isolation of target microbes from mixed populations,
culture media simulating natural habitats, and removal
of toxic compounds. In this protocol, we describe detailed
procedures for isolating freshwater oligotrophic microbes,
as well as the essence of the dilution-to-extinction culturing.
As a case study employing the catalase-supplemented
dilution-to-extinction protocol, we also report a cultivation
trial using a water sample collected from Lake Soyang. Of the
480 cultivation wells inoculated with a single lake-water sample,
75 new acI strains belonging to 8 acI tribes (acI-A1, A2,
A4, A5, A6, A7, B1, B4, C1, and C2) were cultivated, and each
representative strain per subclade could be revived from glycerol
stocks. These cultivation results demonstrate that the
protocol described in this study is efficient in isolating freshwater
bacterioplankton harboring streamlined genomes.
- Development of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) thermal inactivation method with preservation of diagnostic sensitivity
-
Young-Il Kim , Mark Anthony B. Casel , Se-Mi Kim , Seong-Gyu Kim , Su-Jin Park , Eun-Ha Kim , Hye Won Jeong , Haryoung Poo , Young Ki Choi
-
J. Microbiol. 2020;58(10):886-891. Published online September 29, 2020
-
DOI: https://doi.org/10.1007/s12275-020-0335-6
-
-
18
View
-
0
Download
-
21
Citations
-
Abstract
- Various treatments and agents had been reported to inactivate
RNA viruses. Of these, thermal inactivation is generally
considered an effective and cheap method of sample
preparation for downstream assays. The purpose of this study
is to establish a safe inactivation method for SARS-CoV-2
without compromising the amount of amplifiable viral genome
necessary for clinical diagnoses. In this study, we demonstrate
the infectivity and genomic stability of SARSCoV-
2 by thermal inactivation at both 56°C and 65°C. The
results
substantiate that viable SARS-CoV-2 is readily inactivated
when incubated at 56°C for 30 min or at 65°C for
10 min. qRT-PCR of specimens heat-inactivated at 56°C for
30 min or 65°C for 15 min revealed similar genomic RNA
stability compared with non-heat inactivated specimens. Further,
we demonstrate that 30 min of thermal inactivation at
56°C could inactivate viable viruses from clinical COVID-19
specimens without attenuating the qRT-PCR diagnostic sensitivity.
Heat treatment of clinical specimens from COVID-19
patients at 56°C for 30 min or 65°C for 15 min could be a useful
method
for the inactivation of a highly contagious agent,
SARS-CoV-2. Use of this method would reduce the potential
for secondary infections in BSL2 conditions during diagnostic
procedures. Importantly, infectious virus can be inactivated
in clinical specimens without compromising the
sensitivity of the diagnostic RT-PCR assay.
TOP