Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
4 "CaM"
Filter
Filter
Article category
Keywords
Publication year
Journal Article
Enhancement of the solubility of recombinant proteins by fusion with a short-disordered peptide
Jun Ren , Suhee Hwang , Junhao Shen , Hyeongwoo Kim , Hyunjoo Kim , Jieun Kim , Soyoung Ahn , Min-gyun Kim , Seung Ho Lee , Dokyun Na
J. Microbiol. 2022;60(9):960-967.   Published online July 14, 2022
DOI: https://doi.org/10.1007/s12275-022-2122-z
  • 14 View
  • 0 Download
  • 5 Citations
AbstractAbstract
In protein biotechnology, large soluble fusion partners are widely utilized for increased yield and solubility of recombinant proteins. However, the production of additional large fusion partners poses an additional burden to the host, leading to a decreased protein yield. In this study, we identified two highly disordered short peptides that were able to increase the solubility of an artificially engineered aggregationprone protein, GFP-GFIL4, from 0.6% to 61% (D3-DP00592) and 46% (D4-DP01038) selected from DisProt database. For further confirmation, the peptides were applied to two insoluble E. coli proteins (YagA and YdiU). The peptides also enhanced solubility from 52% to 90% (YagA) and from 27% to 93% (YdiU). Their ability to solubilize recombinant proteins was comparable with strong solubilizing tags, maltosebinding protein (40 kDa) and TrxA (12 kDa), but much smaller (< 7 kDa) in size. For practical application, the two peptides were fused with a restriction enzyme, I-SceI, and they increased I-SceI solubility from 24% up to 75%. The highly disordered peptides did not affect the activity of I-SceI while I-SceI fused with MBP or TrxA displayed no restriction activity. Despite the small size, the highly disordered peptides were able to solubilize recombinant proteins as efficiently as conventional fusion tags and did not interfere with the function of recombinant proteins. Consequently, the identified two highly disordered peptides would have practical utility in protein biotechnology and industry.
Review
[Minireview]The rationale and potential for using Lactobacillus in the management of periodontitis
Jiaqi Wang , Yingman Liu , Weiru Wang , Jiaojiao Ma , Manman Zhang , Xiaoying Lu , Jie Liu , Yurong Kou
J. Microbiol. 2022;60(4):355-363.   Published online March 28, 2022
DOI: https://doi.org/10.1007/s12275-022-1514-4
  • 24 View
  • 0 Download
  • 11 Citations
AbstractAbstract
Periodontitis refers to a wide range of the inflammatory conditions of supporting dental structures. For some patients with periodontitis, antibacterial agents are needed as an adjuvant to mechanical debridement treatments and oral hygiene maintenance. However, the widespread use of broad-spectrum antibiotics for the prophylaxis and treatment of periodontal infections
results
in the emergence of resistant pathogens. Therefore, probiotics have become markedly interesting to researchers as a potentially safe alternative to periodontal treatment and maintenance. Probiotics have been used in medicine for decades and extensively applied to the treatment of inflammatory diseases through the modulation of microbial synergy and other mechanisms. A growing amount of evidence has shown that using Lactobacillus strains for oral cavity maintenance could improve periodontal health. In this study, we reviewed studies showing proof of the inhibitory effects of Lactobacillus species on periodontal inflammation. We also explored the rationale and potential for using Lactobacillus species in the management of periodontitis.
Journal Articles
[PROTOCOL] High-throughput cultivation based on dilution-to-extinction with catalase supplementation and a case study of cultivating acI bacteria from Lake Soyang
Suhyun Kim , Miri S. Park , Jaeho Song , Ilnam Kang , Jang-Cheon Cho
J. Microbiol. 2020;58(11):893-905.   Published online October 30, 2020
DOI: https://doi.org/10.1007/s12275-020-0452-2
  • 16 View
  • 0 Download
  • 13 Citations
AbstractAbstract
Multi-omics approaches, including metagenomics and single- cell amplified genomics, have revolutionized our understanding of the hidden diversity and function of microbes in nature. Even in the omics age, cultivation is an essential discipline in microbial ecology since microbial cultures are necessary to assess the validity of an in silico prediction about the microbial metabolism and to isolate viruses infecting bacteria and archaea. However, the ecophysiological characteristics of predominant freshwater bacterial lineages remain largely unknown due to the scarcity of cultured representatives. In an ongoing effort to cultivate the uncultured majority of freshwater bacteria, the most abundant freshwater Actinobacteria acI clade has recently been cultivated from Lake Soyang through catalase-supplemented high-throughput cultivation based on dilution-to-extinction. This method involves physical isolation of target microbes from mixed populations, culture media simulating natural habitats, and removal of toxic compounds. In this protocol, we describe detailed procedures for isolating freshwater oligotrophic microbes, as well as the essence of the dilution-to-extinction culturing. As a case study employing the catalase-supplemented dilution-to-extinction protocol, we also report a cultivation trial using a water sample collected from Lake Soyang. Of the 480 cultivation wells inoculated with a single lake-water sample, 75 new acI strains belonging to 8 acI tribes (acI-A1, A2, A4, A5, A6, A7, B1, B4, C1, and C2) were cultivated, and each representative strain per subclade could be revived from glycerol stocks. These cultivation results demonstrate that the protocol described in this study is efficient in isolating freshwater bacterioplankton harboring streamlined genomes.
Development of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) thermal inactivation method with preservation of diagnostic sensitivity
Young-Il Kim , Mark Anthony B. Casel , Se-Mi Kim , Seong-Gyu Kim , Su-Jin Park , Eun-Ha Kim , Hye Won Jeong , Haryoung Poo , Young Ki Choi
J. Microbiol. 2020;58(10):886-891.   Published online September 29, 2020
DOI: https://doi.org/10.1007/s12275-020-0335-6
  • 18 View
  • 0 Download
  • 21 Citations
AbstractAbstract
Various treatments and agents had been reported to inactivate RNA viruses. Of these, thermal inactivation is generally considered an effective and cheap method of sample preparation for downstream assays. The purpose of this study is to establish a safe inactivation method for SARS-CoV-2 without compromising the amount of amplifiable viral genome necessary for clinical diagnoses. In this study, we demonstrate the infectivity and genomic stability of SARSCoV- 2 by thermal inactivation at both 56°C and 65°C. The
results
substantiate that viable SARS-CoV-2 is readily inactivated when incubated at 56°C for 30 min or at 65°C for 10 min. qRT-PCR of specimens heat-inactivated at 56°C for 30 min or 65°C for 15 min revealed similar genomic RNA stability compared with non-heat inactivated specimens. Further, we demonstrate that 30 min of thermal inactivation at 56°C could inactivate viable viruses from clinical COVID-19 specimens without attenuating the qRT-PCR diagnostic sensitivity. Heat treatment of clinical specimens from COVID-19 patients at 56°C for 30 min or 65°C for 15 min could be a useful
method
for the inactivation of a highly contagious agent, SARS-CoV-2. Use of this method would reduce the potential for secondary infections in BSL2 conditions during diagnostic procedures. Importantly, infectious virus can be inactivated in clinical specimens without compromising the sensitivity of the diagnostic RT-PCR assay.

Journal of Microbiology : Journal of Microbiology
TOP