Research Support, Non-U.S. Gov't
- Role of the extracytoplasmic function sigma factor CarQ in oxidative response of Bradyrhizobium japonicum
-
Anchana Thaweethawakorn , Dylan Parks , Jae-Seong So , Woo-Suk Chang
-
J. Microbiol. 2015;53(8):526-534. Published online July 31, 2015
-
DOI: https://doi.org/10.1007/s12275-015-5308-9
-
-
45
View
-
0
Download
-
3
Crossref
-
Abstract
-
As a nitrogen-fixing bacterium, Bradyrhizobium japonicum
can establish a symbiotic relationship with the soybean plant
(Glycine max). To be a successful symbiont, B. japonicum
must deal with plant defense responses, such as an oxidative
burst. Our previous functional genomics study showed that
carQ (bll1028) encoding extracytoplasmic function (ECF)
sigma factor was highly expressed (107.8-fold induction)
under oxidative stress. Little is known about the underlying
mechanisms of how CarQ responds to oxidative stress. In
this study, a carQ knock-out mutant was constructed using
site-specific mutagenesis to identify the role of carQ in the
oxidative response of B. japonicum. The carQ mutant showed
a longer generation time than the wild type and exhibited
significantly decreased survival at 10 mM H2O2 for 10 min
of exposure. Surprisingly, there was no significant difference
in expression of oxidative stress-responsive genes such as
katG and sod between the wild type and carQ mutant. The
mutant also showed a significant increase in susceptibility to
H2O2 compared to the wild type in the zone inhibition assay.
Nodulation phenotypes of the carQ mutant were distinguishable
compared to those of the wild type, including lower
numbers of nodules, decreased nodule dry weight, decreased
plant dry weight, and a lower nitrogen fixation capability.
Moreover, desiccation of mutant cells also resulted in significantly
lower percent of survival in both early (after 4 h) and
late (after 24 h) desiccation periods. Taken together, this
information will provide an insight into the role of the ECF
sigma factor in B. japonicum to deal with a plant-derived
oxidative burst.
-
Citations
Citations to this article as recorded by

-
Implication of the σ
E
Regulon Members OmpO and σ
N
in the Δ
ompA
299–356
-Mediated Decrease of Oxidative Stress Tolerance in St
Ren-Hsuan Ku, Li-Hua Li, Yi-Fu Liu, En-Wei Hu, Yi-Tsung Lin, Hsu-Feng Lu, Tsuey-Ching Yang, Silvia T. Cardona
Microbiology Spectrum.2023;[Epub] CrossRef - Identification and Validation of Reference Genes for Expression Analysis in Nitrogen-Fixing Bacteria under Environmental Stress
Dylan Parks, Christian Peterson, Woo-Suk Chang
Life.2022; 12(9): 1379. CrossRef - MostSinorhizobium melilotiExtracytoplasmic Function Sigma Factors Control Accessory Functions
Claus Lang, Melanie J. Barnett, Robert F. Fisher, Lucinda S. Smith, Michelle E. Diodati, Sharon R. Long, Craig D. Ellermeier, Claude Bruand, Sarah Ades, Hans-Martin Fischer
mSphere.2018;[Epub] CrossRef