Research Support, Non-U.S. Gov't
- Isolation and Characterization of a Rhodococcus Species Strain Able to Grow on ortho- and para-Xylene
-
Jung Yeon Jang , Dockyu Kim , Hyun Won Bae , Ki Young Choi , Jong-Chan Chae , Gerben J. Zylstra , Young Min Kim , Eungbin Kim
-
J. Microbiol. 2005;43(4):325-330.
-
DOI: https://doi.org/2258 [pii]
-
-
Abstract
- Rhodococcus sp. strain YU6 was isolated from soil for the ability to grow on o-xylene as the sole carbon and energy source. Unlike most other o-xylene-degrading bacteria, YU6 is able to grow on p-xylene. Numerous growth substrate range experiments, in addition to the ring-cleavage enzyme assay data, suggest that YU6 initially metabolizes o- and p-xylene by direct aromatic ring oxidation. This leads to the formation of dimethylcatechols, which was further degraded largely through meta-cleavage pathway. The gene encoding meta-cleavage dioxygenase enzyme was PCR cloned from genomic YU6 DNA using previously known gene sequence data from the o-xylene-degrading Rhodococcus sp. strain DK17. Subsequent sequencing of the 918-bp PCR product revealed a 98% identity to the gene, encoding methylcatechol 2,3-dioxygenase from DK17. PFGE analysis followed by Southern hybridization with the catechol 2,3-dioxygenase gene demonstrated that the gene is located on an approximately 560-kb megaplasmid, designated pJYJ1
<br>
- Characteristics of Catechol 2,3-dioxygenase Produced by 4-Chlorobenzoate-degrading Pseudomonas sp. S-47
-
Kim, Ki Pil , Seo, Dong In , Min, Kyung Hee , Ka, Jong Ok , Park, Yong Keun , Kim, Chi Kyung
-
J. Microbiol. 1997;35(4):295-299.
-
-
-
Abstract
- Pseudomonas sp. S-47 is capable of transforming 4-chlorobenzoate to 4-chlorocatechol which is subsequently oxidized bty meta-cleavage dioxygenase to prodyce 5-chloro-2-hydroxymuconic semialdehyde. Catechol 2,3-dioxygenase (C23O) produced by Pseudomonas sp. S-47 was purified and characterized in this study. The C23O enzyme was maximally produced in the late logarithmic growth phase, and the temperature and pH for maximunm enzyme activity were 30~35℃ and 7.0, respectively. The enzyme was purified and concentrated 5 fold from the crude cell extracts through Q Sepharose chromatography and Sephadex G-100 gel filtration after acetone precipitation. The enzyme was identified as consisting of 35 kDa subunits when analyzed by SDS-PAGE. The C23O produced by Pseudomonas sp. S-47 was similar to Xy1E of Pseudomonas putida with respect to substrate specificity for several catecholic compounds.