Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
2 "Clostridia"
Filter
Filter
Article category
Keywords
Publication year
Journal Article
Chemokine CCL6 Plays Key Role in the Inhibitory Effect of Vitamin A on Norovirus Infection
Heetae Lee , Giljae Lee , You-Hee Cho , Youngcheon Song , GwangPyo Ko
J. Microbiol. 2023;61(5):579-587.   Published online May 26, 2023
DOI: https://doi.org/10.1007/s12275-023-00047-3
  • 48 View
  • 0 Download
AbstractAbstract
Norovirus (NoV) is the most common viral cause of acute gastroenteritis worldwide. Vitamin A has demonstrated the potential to protect against gastrointestinal infections. However, the effects of vitamin A on human norovirus (HuNoV) infections remain poorly understood. This study aimed to investigate how vitamin A administration affects NoV replication. We demonstrated that treatment with retinol or retinoic acid (RA) inhibited NoV replication in vitro based on their effects on HuNoV replicon-bearing cells and murine norovirus-1 (MNV-1) replication in murine cells. MNV replication in vitro showed significant transcriptomic changes, which were partially reversed by retinol treatment. RNAi knockdown of CCL6, a chemokine gene that was downregulated by MNV infection but upregulated by retinol administration, resulted in increased MNV replication in vitro. This suggested a role of CCL6 in the host response to MNV infections. Similar gene expression patterns were observed in the murine intestine after oral administration of RA and/or MNV-1.CW1. CCL6 directly decreased HuNoV replication in HG23 cells, and might indirectly regulate the immune response against NoV infection. Finally, relative replication levels of MNV-1.CW1 and MNV-1.CR6 were significantly increased in CCL6 knockout RAW 264.7 cells. This study is the first to comprehensively profile transcriptomes in response to NoV infection and vitamin A treatment in vitro, and thus may provide new insights into dietary prophylaxis and NoV infections.
Research Support, Non-U.S. Gov't
Abyssisolibacter fermentans gen. nov. sp. nov., isolated from deep sub-seafloor sediment
Wonduck Kim , Jung-Hyun Lee , Kae Kyoung Kwon
J. Microbiol. 2016;54(5):347-352.   Published online April 20, 2016
DOI: https://doi.org/10.1007/s12275-016-6048-1
  • 44 View
  • 0 Download
  • 8 Crossref
AbstractAbstract
A Gram-staining-negative, thin rod-shaped, anaerobic bacterium designated MCWD3T was isolated from sediment of the deep sea in Ulleung Basin, East Sea, Korea. The ranges of temperature, pH and NaCl for growth of this strain were 15– 40°C (optimum 29°C), 5.0–10.0 (optimum pH 6.5), and 1–5%, respectively. The major fatty acids were iso-C15:0 (30%) and iso-C15:0 dimethyl acetal (17%). The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, and unidentified aminophospholipids, phospholipids, and aminolipids. The fermentation product from yeast extract was acetate. Phylogenetic analysis based on 16S rRNA genes indicated that the isolate was related to Sporosalibacterium faouarense (92.8% sequence identity), Clostridiisalibacter paucivorans (92.6%), and Brassicibacter mesophilus (92.4%). However, the isolate was differentiated from these genera by both physiological and chemotaxonomical properties. On the basis of a polyphasic taxonomic analysis, we propose that MCWD3T represents a novel taxon with the name Abyssisolibacter fermentans gen. nov. sp. nov.

Citations

Citations to this article as recorded by  
  • Validation List no. 220. Valid publication of new names and new combinations effectively published outside the IJSEM
    Aharon Oren, Markus Göker
    International Journal of Systematic and Evolutionary Microbiology .2024;[Epub]     CrossRef
  • The Phylogeny, Metabolic Potentials, and Environmental Adaptation of an Anaerobe, Abyssisolibacter sp. M8S5, Isolated from Cold Seep Sediments of the South China Sea
    Ying Liu, Songze Chen, Jiahua Wang, Baoying Shao, Jiasong Fang, Junwei Cao
    Microorganisms.2023; 11(9): 2156.     CrossRef
  • Description of Fervidibacillus gen. nov. with Two Species, Fervidibacillus albus sp. nov., and Fervidibacillus halotolerans sp. nov., Isolated from Tidal Flat Sediments and Emendation of Misclassificed Taxa in the Genus Caldibacillus
    Sung-Hyun Yang, Mi-Jeong Park, Hyun-Myung Oh, Kae Kyoung Kwon
    Journal of Microbiology.2023; 61(2): 175.     CrossRef
  • Vibrio ostreae sp. nov., a novel gut bacterium isolated from a Yellow Sea oyster
    Neak Muhammad, Tra T.H. Nguyen, Yong-Jae Lee, Jaeho Ko, Forbes Avila, Song-Gun Kim
    International Journal of Systematic and Evolutionary Microbiology .2022;[Epub]     CrossRef
  • A Deep-Sea Sediment Sampling System: Design, Analysis and Experimental Verification
    Guangping Liu, Yongping Jin, Youduo Peng, Buyan Wan, Kun Xie
    Journal of Pressure Vessel Technology.2022;[Epub]     CrossRef
  • Alkalibacter rhizosphaerae sp. nov., a CO-utilizing bacterium isolated from tidal flat sediment, and emended description of the genus Alkalibacter
    Teddy Namirimu, Jihyun Yu, Jhung-Ahn Yang, Sung-Hyun Yang, Yun Jae Kim, Kae Kyoung Kwon
    International Journal of Systematic and Evolutionary Microbiology .2022;[Epub]     CrossRef
  • Anaerosacchariphilus polymeriproducens gen. nov., sp. nov., an anaerobic bacterium isolated from a salt field
    Wonduck Kim, Sung-Hyun Yang, Mi-Jeong Park, Jihye Oh, Jung-Hyun Lee, Kae Kyoung Kwon
    International Journal of Systematic and Evolutionary Microbiology .2019; 69(7): 1934.     CrossRef
  • Isolation and characterization of anaerobic microbes from marine environments in Korea
    Wonduck Kim, Jung-Hyun Lee, Kae Kyoung Kwon
    The Korean Journal of Microbiology.2016; 52(2): 183.     CrossRef

Journal of Microbiology : Journal of Microbiology
TOP