Soil-borne diseases are closely related to rhizosphere microecosystem. While, plant species and genotypes are important
factors affected rhizosphere microecosystem. In this study, the rhizosphere soil microbial community and metabolites of
susceptible and resistant tobacco cultivars were investigated. The results showed that there were significant differences in
the rhizosphere microbial community and metabolites between susceptible cultivar Yunyan87 and resistant cultivar Fandi3.
Furthermore, the rhizosphere soil of Fandi3 showed a higher microbial diversity than that of Yunyan87. The abundance of
R. solanacearum was much higher in the rhizosphere soil of Yunyan87 than in the rhizosphere soil of Fandi3, resulting in a
higher disease incidence and index. While the abundance of beneficial bacteria in the rhizosphere soil of Fandi3 were higher
than that of Yunyan87. Additionally, there were significant differences in metabolites between Yunyan87 and Fandi3 cultivars,
and 4-hydroxybenzaldehyde, 3-hydroxy-4-methoxybenzoic acid, vamillic aldehyde, benzoic acid, 4-hydroxybenzyl alcohol,
p-hydroxybenzoic acid and phthalic acid were notably high in Yunyan87. Redundancy analysis (RDA) indicated that the
rhizosphere microbial community of Fandi3 and Yunyan87 were highly correlated with various environmental factors and
metabolites. Overall, susceptible and resistant tobacco cultivars had different impact on rhizosphere microbial community
and metabolites. The results expand our understanding of the roles of tobacco cultivars in plant-micro-ecosystem interactions,
and provide a basis for the control of tobacco bacterial wilt.