Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
2 "Culture supernatant"
Filter
Filter
Article category
Keywords
Publication year
Journal Article
Direct current exerts electricidal and bioelectric effects on Porphyromonas gingivalis biofilms partially via promoting oxidative stress and antibiotic transport
Peihui Zou , Peng Li , Jia Liu , Pei Cao , Qingxian Luan
J. Microbiol. 2022;60(1):70-78.   Published online November 26, 2021
DOI: https://doi.org/10.1007/s12275-022-1238-5
  • 55 View
  • 0 Download
  • 6 Web of Science
  • 7 Crossref
AbstractAbstract
Low electric current can inhibit certain microbial biofilms and enhance the efficacy of antimicrobials against them. This study investigated the electricidal and bioelectric effects of direct current (DC) against Porphyromonas gingivalis biofilms as well as the underlying mechanisms. Here, we firstly showed that DC significantly suppressed biofilm formation of P. gingivalis in time- and intensity-dependent manners, and markedly inhibited preformed P. gingivalis biofilms. Moreover, DC enhanced the killing efficacy of metronidazole (MTZ) and amoxicillin with clavulanate potassium (AMC) against the biofilms. Notably, DC-treated biofilms displayed upregulated intracellular ROS and expression of ROS related genes (sod, feoB, and oxyR) as well as porin gene. Interestingly, DC-induced killing of biofilms was partially reversed by ROS scavenger N-dimethylthiourea (DMTU), and the synergistic effect of DC with MTZ/AMC was weakened by small interfering RNA of porin gene (si-Porin). In conclusion, DC can exert electricidal and bioelectric effects against P. gingivalis biofilms partially via promotion of oxidative stress and antibiotic transport, which offers a promising approach for effective management of periodontitis.

Citations

Citations to this article as recorded by  
  • Antifungal Activity, Synergism with Fluconazole or Amphotericin B and Potential Mechanism of Direct Current against Candida albicans Biofilms and Persisters
    Peihui Zou, Jia Liu, Peng Li, Qingxian Luan
    Antibiotics.2024; 13(6): 521.     CrossRef
  • Smart dental materials for antimicrobial applications
    Carolina Montoya, Lina Roldan, Michelle Yu, Sara Valliani, Christina Ta, Maobin Yang, Santiago Orrego
    Bioactive Materials.2023; 24: 1.     CrossRef
  • Molecular Study of Porphyromonas Gingivalis Strains With fimA Genotypes in Periodontitis Patients
    Zhraa F. Faruq, Sami Khalaf Jabar
    Iranian Journal of Medical Microbiology.2023; 17(6): 663.     CrossRef
  • Drug delivery approaches for enhanced antibiofilm therapy
    Tao Wang, Erik Jan Cornel, Chang Li, Jianzhong Du
    Journal of Controlled Release.2023; 353: 350.     CrossRef
  • Weak direct current exerts synergistic effect with antibiotics and reduces the antibiotic resistance: An in vitro subgingival plaque biofilm model
    Peihui Zou, Yanfeng Wang, Pei Cao, Peng Li, Jia Liu, Qingxian Luan
    Journal of Periodontal Research.2023; 58(1): 143.     CrossRef
  • Bioelectric device for effective biofilm inflammation management of dental implants
    Jihyun Lee, Young Wook Kim
    Scientific Reports.2023;[Epub]     CrossRef
  • A Highly Efficacious Electrical Biofilm Treatment System for Combating Chronic Wound Bacterial Infections
    Fan Zhao, Yajuan Su, Junying Wang, Svetlana Romanova, Dominick J. DiMaio, Jingwei Xie, Siwei Zhao
    Advanced Materials.2023;[Epub]     CrossRef
Randomized Controlled Trial
Antimicrobial Activity of Enterocins from Enterococcus faecalis SL-5 against Propionibacterium acnes, the Causative Agent in Acne Vulgaris, and Its Therapeutic Effect
Bong Seon Kang , Jae-Gu Seo , Gwa-Su Lee , Jung-Hwa Kim , Sei Yeon Kim , Ye Won Han , Hoon Kang , Hyung Ok Kim , Ji Hwan Rhee , Myung-Jun Chung , Young Min Park
J. Microbiol. 2009;47(1):101-109.   Published online February 20, 2009
DOI: https://doi.org/10.1007/s12275-008-0179-y
  • 33 View
  • 0 Download
  • 136 Scopus
AbstractAbstract
A lactic acid bacterial strain was isolated from human fecal specimen and identified as Enterococcus faecalis SL-5. The isolated strain showed antimicrobial activity against Gram-positive pathogens assayed, especially the highest activity against Propionibacterium acnes. The antimicrobial substance was purified and verified as a bacteriocin (named ESL5) of E. faecalis SL-5 by activity-staining using P. acnes as an indicator. N-terminal sequence of ESL5 was determined (MGAIAKLVAK) and sequence analysis revealed that it is almost identical to the some of enterocins including L50A/B of E. faecium L50 and MR10A/B of E. faecalis MRR 10-3. From the sequencing data of L50A/B structural genes, the nucleotide sequence showed 100% identity with that of the MR10A/B structural genes, implying that ESL5 is an equivalent of enterocin MR10. Meanwhile, we also tested the therapeutic effect of anti-P. acnes activity in patients with mild to moderate acne because of its pathogenic role to acne vulgaris. For this purpose, a concentrated powder of CBT SL-5 was prepared using cell-free culture supernatant (CFCS) of E. faecalis SL-5 and included in a lotion for application in the patients. The study showed that CBT SL-5 lotion significantly reduced the inflammatory lesions like pustules compared to the placebo lotion. Therefore our results indicate that the anti-P. acnes activity produced by E. faecalis SL-5 has potential role to the treatment of acne as an alternative to topical antibiotics.

Journal of Microbiology : Journal of Microbiology
TOP