Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
15 "Dog"
Filter
Filter
Article category
Keywords
Publication year
Authors
Journal Articles
Vaccine Development for Severe Fever with Thrombocytopenia Syndrome Virus in Dogs
Seok-Chan Park, Da-Eun Jeong, Sun-Woo Han, Joon-Seok Chae, Joo-Yong Lee, Hyun-Sook Kim, Bumseok Kim, Jun-Gu Kang
J. Microbiol. 2024;62(4):327-335.   Published online April 18, 2024
DOI: https://doi.org/10.1007/s12275-024-00119-y
  • 59 View
  • 0 Download
  • 1 Web of Science
AbstractAbstract
Severe fever with thrombocytopenia syndrome (SFTS) is a life-threatening viral zoonosis. The causative agent of this disease is the Dabie bandavirus, which is usually known as the SFTS virus (SFTSV). Although the role of vertebrates in SFTSV transmission to humans remains uncertain, some reports have suggested that dogs could potentially transmit SFTSV to humans. Consequently, preventive measures against SFTSV in dogs are urgently needed. In the present study, dogs were immunized three times at two-week intervals with formaldehyde-inactivated SFTSV with two types of adjuvants. SFTSV (KCD46) was injected into all dogs two weeks after the final immunization. Control dogs showed viremia from 2 to 4 days post infection (dpi), and displayed white pulp atrophy in the spleen, along with a high level of terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling assay (TUNEL) positive area. However, the inactivated SFTSV vaccine groups exhibited rare pathological changes and significantly reduced TUNEL positive areas in the spleen. Furthermore, SFTSV viral loads were not detected at any of the tested dpi. Our results indicate that both adjuvants can be safely used in combination with an inactivated SFTSV formulation to induce strong neutralizing antibodies. Inactivated SFTSV vaccines effectively prevent pathogenicity and viremia in dogs infected with SFTSV. In conclusion, our study highlighted the potential of inactivated SFTSV vaccination for SFTSV control in dogs.
Cytophaga hutchinsonii chu_2177, encoding the O-antigen ligase, is essential for cellulose degradation
Yahong Tan , Wenxia Song , Lijuan Gao , Weican Zhang , Xuemei Lu
J. Microbiol. 2022;60(4):364-374.   Published online January 7, 2022
DOI: https://doi.org/10.1007/s12275-022-1531-3
  • 55 View
  • 0 Download
  • 1 Web of Science
  • 2 Crossref
AbstractAbstract
Cytophaga hutchinsonii can efficiently degrade crystalline cellulose, in which the cell surface cellulases secreted by the type IX secretion system (T9SS) play important roles, but the degradation mechanism remains unclear, and the anchor mechanism of cellulases on the outer membrane in C. hutchinsonii has not been studied. Here, chu_2177 was identified by transposon mutagenesis and was proved to be indispensable for cellulose utilization in C. hutchinsonii. Disruption of chu_2177 resulted in O-antigen deficiency and chu_ 177 could confer O-antigen ligase activity upon an Escherichia coli waal mutant, indicating that chu_2177 encoded the Ontigen ligase. Moreover, deletion of chu_2177 caused defects in cellulose utilization, cell motility, biofilm formation, and stress resistance. Further study showed that the endoglucanase activity was markedly decreased in the outer membrane but was increased in the culture fluid without chu_2177. Western blot proved that endoglucanase CHU_1336 was not located on the outer membrane but was released in the culture fluid of the Δ2177 mutant. Further proteomics analysis showed that many cargo proteins of T9SS were missing in the outer membrane of the Δ2177 mutant. Our study revealed that the deletion of chu_2177 affected the localization of many T9SS cargo proteins including cellulases on the outer membrane of C. hutchinsonii.

Citations

Citations to this article as recorded by  
  • Screening and genome-wide analysis of lignocellulose-degrading bacteria from humic soil
    Tianjiao Zhang, Shuli Wei, Yajie Liu, Chao Cheng, Jie Ma, Linfang Yue, Yanrong Gao, Yuchen Cheng, Yongfeng Ren, Shaofeng Su, Xiaoqing Zhao, Zhanyuan Lu
    Frontiers in Microbiology.2023;[Epub]     CrossRef
  • The type IX secretion system: Insights into its function and connection to glycosylation in Cytophaga hutchinsonii
    Wenxia Song, Xueke Zhuang, Yahong Tan, Qingsheng Qi, Xuemei Lu
    Engineering Microbiology.2022; 2(3): 100038.     CrossRef
The effects of deletion of cellobiohydrolase genes on carbon source-dependent growth and enzymatic lignocellulose hydrolysis in Trichoderma reesei
Meibin Ren , Yifan Wang , Guoxin Liu , Bin Zuo , Yuancheng Zhang , Yunhe Wang , Weifeng Liu , Xiangmei Liu , Yaohua Zhong
J. Microbiol. 2020;58(8):687-695.   Published online June 10, 2020
DOI: https://doi.org/10.1007/s12275-020-9630-5
  • 57 View
  • 0 Download
  • 8 Web of Science
  • 8 Crossref
AbstractAbstract
The saprophytic fungus Trichoderma reesei has long been used as a model to study microbial degradation of lignocellulosic biomass. The major cellulolytic enzymes of T. reesei are the cellobiohydrolases CBH1 and CBH2, which constitute more than 70% of total proteins secreted by the fungus. However, their physiological functions and effects on enzymatic hydrolysis of cellulose substrates are not sufficiently elucidated. Here, the cellobiohydrolase-encoding genes cbh1 and cbh2 were deleted, individually or combinatively, by using an auxotrophic marker-recycling technique in T. reesei. When cultured on media with different soluble carbon sources, all three deletion strains (Δcbh1, Δcbh2, and Δcbh1Δcbh2) exhibited no dramatic variation in morphological phenotypes, but their growth rates increased apparently when cultured on soluble cellulase-inducing carbon sources. In addition, Δcbh1 showed dramatically reduced growth and Δcbh1Δcbh2 could hardly grew on microcrystalline cellulose (MCC), whereas all strains grew equally on sodium carboxymethyl cellulose (CMC-Na), suggesting that the influence of the CBHs on growth was carbon source-dependent. Moreover, five representative cellulose substrates were used to analyse the influence of the absence of CBHs on saccharification efficiency. CBH1 deficiency significantly affected the enzymatic hydrolysis rates of various cellulose substrates, where acid pre-treated corn stover (PCS) was influenced the least. CBH2 deficiency reduced the hydrolysis of MCC, PCS, and acid pre-treated and delignified corncob but improved the hydrolysis ability of filter paper. These results demonstrate the specific contributions of CBHs to the hydrolysis of different types of biomass, which could facilitate the development of tailor-made strains with highly efficient hydrolysis enzymes for certain biomass types in the biofuel industry.

Citations

Citations to this article as recorded by  
  • An efficient CRISPR/Cas9 genome editing system based on a multiple sgRNA processing platform in Trichoderma reesei for strain improvement and enzyme production
    Jiaxin Zhang, Kehang Li, Yu Sun, Cheng Yao, Weifeng Liu, Hong Liu, Yaohua Zhong
    Biotechnology for Biofuels and Bioproducts.2024;[Epub]     CrossRef
  • Transcriptome-wide analysis of a superior xylan degrading isolate Penicillium oxalicum 5–18 revealed active lignocellulosic degrading genes
    Shuang Hu, Pei Han, Bao-Teng Wang, Long Jin, Hong-Hua Ruan, Feng-Jie Jin
    Archives of Microbiology.2024;[Epub]     CrossRef
  • Engineering the secretome of Aspergillus niger for cellooligosaccharides production from plant biomass
    Fernanda Lopes de Figueiredo, Fabiano Jares Contesini, César Rafael Fanchini Terrasan, Jaqueline Aline Gerhardt, Ana Beatriz Corrêa, Everton Paschoal Antoniel, Natália Sayuri Wassano, Lucas Levassor, Sarita Cândida Rabelo, Telma Teixeira Franco, Uffe Hasb
    Microbial Cell Factories.2024;[Epub]     CrossRef
  • Constitutive overexpression of cellobiohydrolase 2 in Trichoderma reesei reveals its ability to initiate cellulose degradation
    Yubo Wang, Meibin Ren, Yifan Wang, Lu Wang, Hong Liu, Mei Shi, Yaohua Zhong
    Engineering Microbiology.2023; 3(1): 100059.     CrossRef
  • Inducer-free recombinant protein production in Trichoderma reesei: secretory production of endogenous enzymes and heterologous nanobodies using glucose as the sole carbon source
    Toshiharu Arai, Mayumi Wada, Hiroki Nishiguchi, Yasushi Takimura, Jun Ishii
    Microbial Cell Factories.2023;[Epub]     CrossRef
  • The Influence of Trctf1 Gene Knockout by CRISPR–Cas9 on Cellulase Synthesis by Trichoderma reesei with Various Soluble Inducers
    Yudian Chen, Yushan Gao, Zancheng Wang, Nian Peng, Xiaoqin Ran, Tingting Chen, Lulu Liu, Yonghao Li
    Fermentation.2023; 9(8): 746.     CrossRef
  • The effect of cellobiohydrolase 1 gene knockout for composition and hydrolytic activity of the enzyme complex secreted by filamentous fungus Penicillium verruculosum
    Valeriy Yu. Kislitsin, Andrey M. Chulkin, Ivan N. Zorov, Yuri А. Denisenko, Arkadiy P. Sinitsyn, Alexandra M. Rozhkova
    Bioresource Technology Reports.2022; 18: 101023.     CrossRef
  • Deciphering the efficient cellulose degradation by the thermophilic fungus Myceliophthora thermophila focused on the synergistic action of glycoside hydrolases and lytic polysaccharide monooxygenases
    Xing Qin, Jiahuan Zou, Kun Yang, Jinyang Li, Xiaolu Wang, Tao Tu, Yuan Wang, Bin Yao, Huoqing Huang, Huiying Luo
    Bioresource Technology.2022; 364: 128027.     CrossRef
Evolution of a major bovine mastitic genotype (rpoB sequence type 10-2) of Staphylococcus aureus in cows
Dae-Sung Ko , Danil Kim , Eun-Kyung Kim , Jae-Hong Kim , Hyuk-Joon Kwon
J. Microbiol. 2019;57(7):587-596.   Published online June 27, 2019
DOI: https://doi.org/10.1007/s12275-019-8699-1
  • 46 View
  • 0 Download
  • 5 Web of Science
  • 5 Crossref
AbstractAbstract
Staphylococcus aureus is the major pathogen leading to bovine mastitis globally while livestock-associated methicillin resistant S. aureus (LA-MRSA) has become a potential threat to public health. MRSA from bovine mastitis is not common but a methicillin susceptible S. aureus (MSSA) genotype, rpoB sequence type (RST)10-2 (RST10-2), is prevalent in Korea. To date, many genomic sequences from S. aureus have been elucidated, but the complete genome sequences of RST10-2 MSSA from bovine mastitis has never been reported. In this study, we determined the complete genome sequence of two RST10-2 MSSA that differ from each other in staphylococcal protein A and molecular prophage types [PMB64-1 (t2489/ mPPT0) and PMB81-4 (t127/mPPT1-2-3)] and conducted a comparative genomics study. The genomic sequences of PMB64-1 and PMB81-4 were more homologous to the representative human RST10-2 strains (MSSA476, MW2 etc.) compared to other RSTs. Most of them shared five common pseudogenes, along with high amino acid identity of four variable virulence genes that were identified in this study. However, PMB64-1 and PMB81-4 acquired different strainspecific pseudogenes and mobile genetic elements than the human strains. The unique pseudogene profile and high identity of the virulence genes were verified in RST10-2 field strains from bovine mastitis. Thus, bovine mastitic RST10-2 MSSA may have an evolutionary relationship with the human RST10- 2 community-associated (CA) MSSA and CA-MRSA strains but may have adapted to cows.

Citations

Citations to this article as recorded by  
  • Rapid Antibacterial Activity Assessment of Chimeric Lysins
    Jin-Mi Park, Jun-Hyun Kim, Gun Kim, Hun-Ju Sim, Sun-Min Ahn, Kang-Seuk Choi, Hyuk-Joon Kwon
    International Journal of Molecular Sciences.2024; 25(4): 2430.     CrossRef
  • Tracing the Evolutionary Pathways of Serogroup O78 Avian Pathogenic Escherichia coli
    Eun-Jin Ha, Seung-Min Hong, Seung-Ji Kim, Sun-Min Ahn, Ho-Won Kim, Kang-Seuk Choi, Hyuk-Joon Kwon
    Antibiotics.2023; 12(12): 1714.     CrossRef
  • Genetic characterization of Staphylococcus aureus isolated from Norway rats in Boston, Massachusetts
    Gracen R. Gerbig, Helen Piontkivska, Tara C. Smith, Ruairi White, Jean Mukherjee, Hayley Benson, Marieke Rosenbaum, Jessica H. Leibler
    Veterinary Medicine and Science.2023; 9(1): 272.     CrossRef
  • Rapid Screening and Comparison of Chimeric Lysins for Antibacterial Activity against Staphylococcus aureus Strains
    Jin-Mi Park, Dae-Sung Ko, Hee-Soo Kim, Nam-Hyung Kim, Eun-Kyoung Kim, Young-Hye Roh, Danil Kim, Jae-Hong Kim, Kang-Seuk Choi, Hyuk-Joon Kwon
    Antibiotics.2023; 12(4): 667.     CrossRef
  • Comparative genomics of bovine mastitis-origin Staphylococcus aureus strains classified into prevalent human genotypes
    Dae-Sung Ko, Nam-Hyung Kim, Eun-Kyung Kim, Eun-Jin Ha, Young-Hye Ro, Danil Kim, Kang-Seuk Choi, Hyuk-Joon Kwon
    Research in Veterinary Science.2021; 139: 67.     CrossRef
Potential for colonization of O111:H25 atypical enteropathogenic E. coli
Marta O. Domingos , Keyde C.M. Melo , Irys Viana Neves , Cristiane M. Mota , Rita C. Ruiz , Bruna S. Melo , Raphael C. Lima , Denise S.P.Q. Horton , Monamaris M. Borges , Marcia R. Franzolin
J. Microbiol. 2016;54(11):745-752.   Published online October 29, 2016
DOI: https://doi.org/10.1007/s12275-016-6015-x
  • 54 View
  • 0 Download
  • 5 Crossref
AbstractAbstract
Using clonal phylogenetic methods, it has been demonstrated that O111:H25 atypical enteropathogenic E. coli (aEPEC) strains belong to distinct clones, suggesting the possibility that their ability to interact with different hosts and abiotic surfaces can vary from one clone to another. Accordingly, the ability of O111:H25 aEPEC strains derived from human, cat and dogs to adhere to epithelial cells has been investigated, along with their ability to interact with macrophages and to form biofilms on polystyrene, a polymer used to make biomedical devices. The results demonstrated that all the strains analyzed were able to adhere to, and to form pedestals on, epithelial cells, mechanisms used by E. coli to become strongly attached to the host. The strains also show a Localized-Adherence- Like (LAL) pattern of adhesion on HEp-2 cells, a behavior associated with acute infantile diarrhea. In addition, the O111:H25 aEPEC strains derived either from human or domestic animals were able to form long filaments, a phenomenon used by some bacteria to avoid phagocytosis. O111:H25 aEPEC strains were also encountered inside vacuoles, a characteristic described for several bacterial strains as a way of protecting themselves against the environment. They were also able to induce TNF-α release via two routes, one dependent on TLR-4 and the other dependent on binding of Type I fimbriae. These O111:H25 strains were also able to form biofilms on polystyrene. In summary the results suggest that, regardless of their source (i.e. linked to human origin or otherwise), O111:H25 aEPEC strains carry the potential to cause human disease.

Citations

Citations to this article as recorded by  
  • Differences of Escherichia coli isolated from different organs of the individual sheep: molecular typing, antibiotics resistance, and biofilm formation
    Zihao Wu, Haoming Chi, Tingting Han, Guangxi Li, Jixue Wang, Wei Chen
    Folia Microbiologica.2024; 69(3): 567.     CrossRef
  • Hidden carbapenem resistance in the community- and hospital-associated OXA-48 gene-carrying uropathogenic Escherichia coli
    Maryam Talebi, Shahin Najar-Peerayeh, Bita Bakhshi
    Gene Reports.2020; 21: 100897.     CrossRef
  • Genetic relation and virulence factors of carbapenemase-producing Uropathogenic Escherichia coli from urinary tract infections in Iraq
    Amal Talib Al-Sa'ady, Ghaidaa Jihadi Mohammad, Bashdar Mahmud Hussen
    Gene Reports.2020; 21: 100911.     CrossRef
  • Host characteristics and virulence typing of Escherichia coli isolated from diabetic patients
    Najar Peerayeh Shahin, Eslami Majid, Talebi Bezmin Abadi Amin, Bakhshi Bita
    Gene Reports.2019; 15: 100371.     CrossRef
  • Characterization of uropathogenic E. coli O25b‐B2‐ST131, O15:K52:H1, and CGA: Neutrophils apoptosis, serum bactericidal assay, biofilm formation, and virulence typing
    Seyyed Khalil Shokouhi Mostafavi, Shahin Najar‐Peerayeh, Ashraf Mohabbati Mobarez, Mehdi Kardoust Parizi
    Journal of Cellular Physiology.2019; 234(10): 18272.     CrossRef
Diversity and enzyme activity of Penicillium species associated with macroalgae in Jeju Island
Myung Soo Park , Seobihn Lee , Seung-Yoon Oh , Ga Youn Cho , Young Woon Lim
J. Microbiol. 2016;54(10):646-654.   Published online September 30, 2016
DOI: https://doi.org/10.1007/s12275-016-6324-0
  • 50 View
  • 0 Download
  • 16 Crossref
AbstractAbstract
A total of 28 strains of 19 Penicillium species were isolated in a survey of extracellular enzyme-producing fungi from macroalgae along the coast of Jeju Island of Korea. Penicillium species were identified based on morphological and β-tubulin sequence analyses. In addition, the halo-tolerance and enzyme activity of all strains were evaluated. The diversity of Penicillium strains isolated from brown algae was higher than the diversity of strains isolated from green and red algae. The commonly isolated species were Penicillium antarcticum, P. bialowiezense, P. brevicompactum, P. crustosum, P. oxalicum, P. rubens, P. sumatrense, and P. terrigenum. While many strains showed endoglucanase, β-glucosidase, and protease activity, no alginase activity was detected. There was a positive correlation between halo-tolerance and endoglucanase activity within Penicillium species. Among 19 Penicillium species, three species–P. kongii, P. olsonii, and P. viticola– have not been previously recorded in Korea.

Citations

Citations to this article as recorded by  
  • Plastic-inhabiting fungi in marine environments and PCL degradation activity
    Sung Hyun Kim, Jun Won Lee, Ji Seon Kim, Wonjun Lee, Myung Soo Park, Young Woon Lim
    Antonie van Leeuwenhoek.2022; 115(12): 1379.     CrossRef
  • Marine fungal abilities to enzymatically degrade algal polysaccharides, proteins and lipids: a review
    Yoran Le Strat, Nicolas Ruiz, Joël Fleurence, Yves-François Pouchus, Paul Déléris, Justine Dumay
    Journal of Applied Phycology.2022; 34(3): 1131.     CrossRef
  • Characterization of two 1,3-β-glucan-modifying enzymes from Penicillium sumatraense reveals new insights into 1,3-β-glucan metabolism of fungal saprotrophs
    Valentina Scafati, Francesca Troilo, Sara Ponziani, Moira Giovannoni, Anna Scortica, Daniela Pontiggia, Francesco Angelucci, Adele Di Matteo, Benedetta Mattei, Manuel Benedetti
    Biotechnology for Biofuels and Bioproducts.2022;[Epub]     CrossRef
  • Four Unrecorded Aspergillus Species from the Rhizosphere Soil in South Korea
    Jun Won Lee, Sung Hyun Kim, Young-Hyun You, Young Woon Lim, Myung Soo Park
    Mycobiology.2021; 49(4): 346.     CrossRef
  • Advances in research on calf rennet substitutes and their effects on cheese quality
    Xiaofeng Liu, Yuanfeng Wu, Rongfa Guan, Guochao Jia, YuChen Ma, Yao Zhang
    Food Research International.2021; 149: 110704.     CrossRef
  • Mutation, Chemoprofiling, Dereplication, and Isolation of Natural Products from Penicillium oxalicum
    Vidushi Abrol, Manoj Kushwaha, Divya Arora, Sharada Mallubhotla, Sundeep Jaglan
    ACS Omega.2021; 6(25): 16266.     CrossRef
  • Evaluating the xerophilic potential of moulds on selected egg tempera paints on glass and wooden supports using fluorescent microscopy
    Janez Kosel, Maša Kavčič, Lea Legan, Klara Retko, Polonca Ropret
    Journal of Cultural Heritage.2021; 52: 44.     CrossRef
  • Dietary effects on gut microbiota of the mesquite lizard Sceloporus grammicus (Wiegmann, 1828) across different altitudes
    Nina Montoya-Ciriaco, Selene Gómez-Acata, Ligia Catalina Muñoz-Arenas, Luc Dendooven, Arturo Estrada-Torres, Aníbal H. Díaz de la Vega-Pérez, Yendi E. Navarro-Noya
    Microbiome.2020;[Epub]     CrossRef
  • Penicillium from Rhizosphere Soil in Terrestrial and Coastal Environments in South Korea
    Myung Soo Park, Jun Won Lee, Sung Hyun Kim, Ji-Hyun Park, Young-Hyun You, Young Woon Lim
    Mycobiology.2020; 48(6): 431.     CrossRef
  • Three Unrecorded Species Belonging toPenicilliumSectionSclerotiorafrom Marine Environments in Korea
    Myung Soo Park, Dawoon Chung, Kyunghwa Baek, Young Woon Lim
    Mycobiology.2019; 47(2): 165.     CrossRef
  • Fungal Diversity and Enzyme Activity Associated with the Macroalgae, Agarum clathratum
    Seobihn Lee, Myung Soo Park, Hanbyul Lee, Jae-Jin Kim, John A. Eimes, Young Woon Lim
    Mycobiology.2019; 47(1): 50.     CrossRef
  • Biodiversity of Penicillium species from marine environments in Portugal and description of Penicillium lusitanum sp. nov., a novel species isolated from sea water
    Micael F. M. Gonçalves, Liliana Santos, Bruno M. V. Silva, Alberto C. Abreu, Tânia F. L. Vicente, Ana C. Esteves, Artur Alves
    International Journal of Systematic and Evolutionary Microbiology.2019; 69(10): 3014.     CrossRef
  • Taxonomic revision of the biotechnologically important species Penicillium oxalicum with the description of two new species from acidic and saline soils
    Alena Kubátová, Martina Hujslová, Jens C. Frisvad, Milada Chudíčková, Miroslav Kolařík
    Mycological Progress.2019; 18(1-2): 215.     CrossRef
  • The diversity and ecological roles of Penicillium in intertidal zones
    Myung Soo Park, Seung-Yoon Oh, Jonathan J. Fong, Jos Houbraken, Young Woon Lim
    Scientific Reports.2019;[Epub]     CrossRef
  • Fungal Root Microbiome from Healthy and Brittle Leaf Diseased Date Palm Trees (Phoenix dactylifera L.) Reveals a Hidden Untapped Arsenal of Antibacterial and Broad Spectrum Antifungal Secondary Metabolites
    Fedia B. Mefteh, Amal Daoud, Ali Chenari Bouket, Faizah N. Alenezi, Lenka Luptakova, Mostafa E. Rateb, Adel Kadri, Neji Gharsallah, Lassaad Belbahri
    Frontiers in Microbiology.2017;[Epub]     CrossRef
  • Species List of Aspergillus, Penicillium and Talaromyces in Korea, Based on ‘One Fungus One Name’ System

    The Korean Journal of Mycology.2016;[Epub]     CrossRef
Antagonistic effect of peptidoglycan of Streptococcus sanguinis on lipopolysaccharide of major periodontal pathogens
Sung-Hoon Lee
J. Microbiol. 2015;53(8):553-560.   Published online July 31, 2015
DOI: https://doi.org/10.1007/s12275-015-5319-6
  • 51 View
  • 0 Download
  • 15 Crossref
AbstractAbstract
Streptococcus sanguinis is often found in subgingival biofilm including periodontopathogens, and is correlated with a delay in colonization by periodontopathogens. However, the effect of S. sanguinis on inflammation induced by periodontopathogens is poorly understood. Thus, this study investigated the effect of S. sanguinis peptidoglycan (PGN) on induction of TNF-α, IL-6, and IL-8 expression by lipopolysaccharide (LPS) of periodontal pathogens. LPS was extracted from Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, and Tannerella forsythia, and PGN was isolated from S. sanguinis. THP-1 cells, a monocytic cell-line, were cotreated with LPS of the periodontal pathogens and S. sanguinis PGN, and then the expression of inflammatory cytokines was analyzed by real-time RT-PCR. To analyze the underlying mechanism, the binding assay of the LPS to CD14 or LPS-binding protein (LBP) was performed in the presence or absence of the PGN after coating recombinant human CD14 and LBP on EIA plate. The PGN inhibited the binding of LPS to CD14 and LBP in a dose-dependent manner. Also, THP-1 cells were co-treated with the LPS in the presence of N-acetylmuramic acid and N-acetylglucosamine, as components of PGN, and the competition binding assay to CD14 and LBP was performed. N-acetylmuramic acid inhibited the induction of inflammatory cytokine expression by LPS and the binding of LPS to CD14 or LBP whereas Nacetylglucosamine did not show such effect. Collectively, the
results
suggest that S. sanguinis PGN inhibited the cytokine expression induced by the LPS of periodontopathogens due to the inhibition of LPS binding to LBP and CD14. N-acetylmuramic acid of PGN may play a role in inhibition of the LPS binding of periodontopathogens to CD14 and LBP.

Citations

Citations to this article as recorded by  
  • Inflammasome regulation by the cell surface ecto-5′-nucleotidase of the oral commensal, Streptococcus oralis
    Natsuno Nakamura, Hirobumi Morisaki, Momoe Itsumi, Nobuo Okahashi, Haruka Fukamachi, Ayako Sato, Miki Kadena, Mariko Kikuchi, Shohei Matsui, Takahiro Funatsu, Hirotaka Kuwata
    Biochemical and Biophysical Research Communications.2025; 744: 151206.     CrossRef
  • New putative periodontopathogens and periodontal health‐associated species: A systematic review and meta‐analysis
    Angéline Antezack, Damien Etchecopar‐Etchart, Bernard La Scola, Virginie Monnet‐Corti
    Journal of Periodontal Research.2023; 58(5): 893.     CrossRef
  • Correlation and mechanism between cardiac magnetic resonance imaging and oral streptococcus count in patients with primary microvascular angina pectoris
    Qi Huang, Shi Sheng Wang, Rong Hua Luo
    Medicine.2022; 101(12): e29060.     CrossRef
  • Oral ecological environment modifications by hard-cheese: from pH to microbiome: a prospective cohort study based on 16S rRNA metabarcoding approach
    Erna Cecilia Lorenzini, Barbara Lazzari, Gianluca Martino Tartaglia, Giampietro Farronato, Valentina Lanteri, Sara Botti, Filippo Biscarini, Paolo Cozzi, Alessandra Stella
    Journal of Translational Medicine.2022;[Epub]     CrossRef
  • Biofilm growth and IL-8 & TNF-α-inducing properties of Candida albicans in the presence of oral gram-positive and gram-negative bacteria
    Radhika G. Bhardwaj, Arjuna Ellepolla, Hana Drobiova, Maribasappa Karched
    BMC Microbiology.2020;[Epub]     CrossRef
  • Genetics ofsanguinis-Group Streptococci in Health and Disease
    Angela Nobbs, Jens Kreth, Vincent A. Fischetti, Richard P. Novick, Joseph J. Ferretti, Daniel A. Portnoy, Miriam Braunstein, Julian I. Rood
    Microbiology Spectrum.2019;[Epub]     CrossRef
  • Influence of a light‐activated glaze on the adhesion of Streptococcus sanguinis to the surface of polymers used in fabrication of interim prostheses
    Daniela Micheline dos Santos, Betina Chiarelo Commar, Emily Vivianne Freitas da Silva, Valentim Adelino Ricardo Barão, Adaias Oliveira Matos, Marcelo Coelho Goiato
    Journal of Investigative and Clinical Dentistry.2019;[Epub]     CrossRef
  • Novel nanotechnology and near-infrared photodynamic therapy to kill periodontitis-related biofilm pathogens and protect the periodontium
    Manlin Qi, Xue Li, Xiaolin Sun, Chunyan Li, Franklin R. Tay, Michael D. Weir, Biao Dong, Yanmin Zhou, Lin Wang, Hockin H.K. Xu
    Dental Materials.2019; 35(11): 1665.     CrossRef
  • A wear-resistant TiO2 nanoceramic coating on titanium implants for visible-light photocatalytic removal of organic residues
    Hao Wu, Li Xie, Min He, Ruitao Zhang, Yuan Tian, Suru Liu, Tao Gong, Fangjun Huo, Ting Yang, Qingyuan Zhang, Shujuan Guo, Weidong Tian
    Acta Biomaterialia.2019; 97: 597.     CrossRef
  • Activity of the Chimeric Lysin ClyR against Common Gram-Positive Oral Microbes and Its Anticaries Efficacy in Rat Models
    Jingjing Xu, Hang Yang, Yongli Bi, Wuyou Li, Hongping Wei, Yuhong Li
    Viruses.2018; 10(7): 380.     CrossRef
  • Bacterial Adhesion on Lithium Disilicate Ceramic Surface Exposed to Different Hydrofluoric Solutions
    Daniela Micheline dos Santos, Emily Vivianne Freitas da Silva, Adaias Oliveira Matos, Beatriz Cristiane Zuin Monteiro, Rodrigo Antonio de Medeiros, Sandro Basso Bitencourt, Valentim Adelino Ricardo Barão, Elidiane Cipriano Rangel, Marcelo Coelho Goiato
    Ceramics.2018; 1(1): 145.     CrossRef
  • Inhibitory effect of Lactococcus lactis on the bioactivity of periodontopathogens
    Hyun-Seung Shin, Dong-Heon Baek, Sung-Hoon Lee
    The Journal of General and Applied Microbiology.2018; 64(2): 55.     CrossRef
  • The road less traveled – defining molecular commensalism with Streptococcus sanguinis
    J. Kreth, R.A. Giacaman, R. Raghavan, J. Merritt
    Molecular Oral Microbiology.2017; 32(3): 181.     CrossRef
  • Buckyballs conjugated with nucleic acid sequences identifies microorganisms in live cell assays
    Qingsu Cheng, Bahram Parvin
    Journal of Nanobiotechnology.2017;[Epub]     CrossRef
  • Antimicrobial activity and regulation of CXCL9 and CXCL10 in oral keratinocytes
    Alison Marshall, Antonio Celentano, Nicola Cirillo, Michele D. Mignogna, Michael McCullough, Stephen Porter
    European Journal of Oral Sciences.2016; 124(5): 433.     CrossRef
Research Support, Non-U.S. Gov't
Identification of Porcine Endogenous Retrovirus (PERV) packaging sequence and development of PERV packaging viral vector system
Jiwon Choi , Hoon-mi Kim , Jong Kwang Yoon , Yeondong Cho , Hee-Jung Lee , Kang Chang Kim , Chang-Kyu Kim , Gye-Woong Kim , Young Bong Kim
J. Microbiol. 2015;53(5):348-353.   Published online May 3, 2015
DOI: https://doi.org/10.1007/s12275-015-5134-0
  • 54 View
  • 0 Download
  • 1 Crossref
AbstractAbstract
Studies of the retroviruses have focused on the specific interaction of the nucleocapsid protein with a packaging signal in the viral RNA as important for this selectivity, but the packaging signal in porcine endogenous retrovirus (PERV) has not been defined. Herein, we identified and analyzed this packaging signal in PERV and found hairpin structures with conserved tetranucleotides in their loops and nucleocapsid recognition sequences; both of which are key elements in the viral packaging signal of MLV. We evaluated packaging efficiency of sequence variants isolated from viral and proviral integrated genomes. All viral packaging sequences (Ψ) were identical, while five distinct packaging sequences were identified from proviral sources. One proviral sequence (Ψ1) was identical to that of the viral Ψ and had the highest packaging efficiency. Three variants (Ψ2, Ψ3, Ψ4) maintained key elements of the viral packaging signal, but had nucleotide replacements and consequently demonstrated reduced packaging efficiency. Despite of the same overall hairpin structure, the proviral variant (Ψ5) had only one GACG sequence in the hairpin loop and showed the lowest packaging efficiency other than ΔΨ, in which the essential packaging sequence was removed. This result, thus, defined the packaging sequences in PERV and emphasized the importance of nucleotide sequence and RNA structure in the determination of packaging efficiency. In addition, we demonstrate efficient infection and gene expression from the PERVbased viral vector, which may serve as a novel alternative to current retroviral expression systems.

Citations

Citations to this article as recorded by  
  • Porcine Endogenous Retrovirus (PERV) – Molecular Structure and Replication Strategy in the Context of Retroviral Infection Risk of Human Cells
    Krzysztof Łopata, Emilia Wojdas, Roman Nowak, Paweł Łopata, Urszula Mazurek
    Frontiers in Microbiology.2018;[Epub]     CrossRef
Journal Article
Characterization of Trichoderma reesei Endoglucanase II Expressed Heterologously in Pichia pastoris for Better Biofinishing and Biostoning
Sutanu Samanta , Asitava Basu , Umesh Chandra Halder , Soumitra Kumar Sen
J. Microbiol. 2012;50(3):518-525.   Published online June 30, 2012
DOI: https://doi.org/10.1007/s12275-012-1207-5
  • 26 View
  • 0 Download
  • 24 Scopus
AbstractAbstract
The endoglucanase II of Trichoderma reesei is considered the most effective enzyme for biofinishing cotton fabrics and biostoning denim garments. However, the commercially available preparation of endoglucanase II is usually mixed with other cellulase components, especially endoglucanase I, resulting in hydrolysis and weight loss of garments during biofinishing and biostoning. We thus isolated the endoglucanase II gene from T. reesei to express this in Pichia pastoris, under the control of a methanol-inducible AOX1 promoter, to avoid the presence of other cellulase components. A highly expressible Mut+ transformant was selected and its expression in BMMH medium was found most suitable for the production of large amounts of the recombinant protein. Recombinant endoglucanase II was purified to electrophoretic homogeneity, and functionally characterized by activity staining. The specific activity of recombinant endoglucanase II was found to be 220.57 EU/mg of protein. Purified recombinant endoglucanase II was estimated to have a molecular mass of 52.8 kDa. The increase in molecular mass was likely due to hyperglycosylation. Hyperglycosylation of recombinant endoglucanase II secreted by P. pastoris did not change the temperature or pH optima as compared to the native protein, but did result in increased thermostability. Kinetic analysis showed that recombinant endoglucanase was most active against amorphous cellulose, such as carboxymethyl cellulose, for which it also had a high affinity.
Research Support, Non-U.S. Gov'ts
Acinetobacter baumannii Outer Membrane Protein A Modulates the Biogenesis of Outer Membrane Vesicles
Dong Chan Moon , Chul Hee Choi , Jung Hwa Lee , Chi-Won Choi , Hye-Yeon Kim , Jeong Soon Park , Seung Il Kim , Je Chul Lee
J. Microbiol. 2012;50(1):155-160.   Published online February 27, 2012
DOI: https://doi.org/10.1007/s12275-012-1589-4
  • 32 View
  • 0 Download
  • 94 Crossref
AbstractAbstract
Acinetobacter baumannii secretes outer membrane vesicles (OMVs) during both in vitro and in vivo growth, but the biogenesis mechanism by which A. baumannii produces OMVs remains undefined. Outer membrane protein A of A. baumannii (AbOmpA) is a major protein in the outer membrane and the C-terminus of AbOmpA interacts with diaminopimelate of peptidoglycan. This study investigated the role of AbOmpA in the biogenesis of A. baumannii OMVs. Quantitative and qualitative approaches were used to analyze OMV biogenesis in A. baumannii ATCC 19606T and an isogenic ΔAbOmpA mutant. OMV production was significantly increased in the ΔAbOmpA mutant compared to wild-type bacteria as demonstrated by quantitation of proteins and lipopolysaccharides (LPS) packaged in OMVs. LPS profiles prepared from OMVs from wild-type bacteria and the ΔAbOmpA mutant had identical patterns, but proteomic analysis showed different protein constituents in OMVs from wild-type bacteria compared to the ΔAbOmpA mutant. In conclusion, AbOmpA influences OMV biogenesis by controlling OMV production and protein composition.

Citations

Citations to this article as recorded by  
  • Brucella suis ΔmapB outer membrane vesicles as an acellular vaccine against systemic and mucosal B. suis infection
    Florencia Muñoz González, Magali G. Bialer, Maria L. Cerutti, Silvia M. Estein, Lila Y. Ramis, Pablo C. Baldi, Ángeles Zorreguieta, Mariana C. Ferrero
    Frontiers in Immunology.2025;[Epub]     CrossRef
  • Exploring the Multifaceted Genus Acinetobacter: the Facts, the Concerns and the Oppoptunities the Dualistic Geuns Acinetobacter
    Tsvetana Muleshkova, Inga Bazukyan, Konstantinos Papadimitriou, Velitchka Gotcheva, Angel Angelov, Svetoslav G. Dimov
    Journal of Microbiology and Biotechnology.2025;[Epub]     CrossRef
  • The aryl hydrocarbon receptor and FOS mediate cytotoxicity induced by Acinetobacter baumannii
    Chun Kew, Cristian Prieto-Garcia, Anshu Bhattacharya, Manuela Tietgen, Craig R. MacNair, Lindsey A. Carfrae, João Mello-Vieira, Stephan Klatt, Yi-Lin Cheng, Rajeshwari Rathore, Elise Gradhand, Ingrid Fleming, Man-Wah Tan, Stephan Göttig, Volkhard A. J. Ke
    Nature Communications.2024;[Epub]     CrossRef
  • Pathogenicity and virulence of Acinetobacter baumannii : Factors contributing to the fitness in healthcare settings and the infected host
    Massimiliano Lucidi, Daniela Visaggio, Antonella Migliaccio, Giulia Capecchi, Paolo Visca, Francesco Imperi, Raffaele Zarrilli
    Virulence.2024;[Epub]     CrossRef
  • Pan-Genome Plasticity and Virulence Factors: A Natural Treasure Trove for Acinetobacter baumannii
    Theodoros Karampatakis, Katerina Tsergouli, Payam Behzadi
    Antibiotics.2024; 13(3): 257.     CrossRef
  • Characterization and immunological effect of outer membrane vesicles from Pasteurella multocida on macrophages
    Jiaying Sun, Yee Huang, Xuefeng Li, Xiangfei Xu, Xuemei Cui, Fangjiao Hao, Quanan Ji, Chun Chen, Guolian Bao, Yan Liu
    Applied Microbiology and Biotechnology.2024;[Epub]     CrossRef
  • An in-depth exploration of the multifaceted roles of EVs in the context of pathogenic single-cell microorganisms
    Anna Sophia Feix, Emily Z. Tabaie, Aarshi N. Singh, Nathan J. Wittenberg, Emma H. Wilson, Anja Joachim, Melissa Bruckner Lodoen
    Microbiology and Molecular Biology Reviews.2024;[Epub]     CrossRef
  • Antimicrobial Resistance in Acinetobacter baumannii: A Challenge to Clinical Settings
    Shilpa Sharma, Amandeep Kaur, Renuka Bajaj, Kanwardeep Singh, Sarika Sharma, Sandeep Sharma
    Molecular Genetics, Microbiology and Virology.2024; 39(3): 219.     CrossRef
  • Outer membrane vesicles from genetically engineered Salmonella enterica serovar Typhimurium presenting Helicobacter pylori antigens UreB and CagA induce protection against Helicobact
    Qiong Liu, Yinpan Shang, Lu Shen, Xiaomin Yu, Yanli Cao, Lingbing Zeng, Hanchi Zhang, Zirong Rao, Yi Li, Ziwei Tao, Zhili Liu, Xiaotian Huang
    Virulence.2024;[Epub]     CrossRef
  • The role of extracellular vesicles in pyroptosis-mediated infectious and non-infectious diseases
    Cai-Hua Zhang, Ding-Ci Lu, Ying Liu, Lingzhi Wang, Gautam Sethi, Zhaowu Ma
    International Immunopharmacology.2024; 138: 112633.     CrossRef
  • Loss of Lipooligosaccharide Synthesis in Acinetobacter baumannii Produces Changes in Outer Membrane Vesicle Protein Content
    Beatriz Cano-Castaño, Andrés Corral-Lugo, Eva Gato, María C. Terrón, Antonio J. Martín-Galiano, Javier Sotillo, Astrid Pérez, Michael J. McConnell
    International Journal of Molecular Sciences.2024; 25(17): 9272.     CrossRef
  • The Role of Bacterial Extracellular Vesicles in the Immune Response to Pathogens, and Therapeutic Opportunities
    Eliud S. Peregrino, Jessica Castañeda-Casimiro, Luis Vázquez-Flores, Sergio Estrada-Parra, Carlos Wong-Baeza, Jeanet Serafín-López, Isabel Wong-Baeza
    International Journal of Molecular Sciences.2024; 25(11): 6210.     CrossRef
  • A genetic engineering strategy to enhance outer membrane vesicle-mediated extracellular electron transfer of Geobacter sulfurreducens
    Yanlun Fang, Guiqin Yang, Xian Wu, Canfen Lin, Baoli Qin, Li Zhuang
    Biosensors and Bioelectronics.2024; 250: 116068.     CrossRef
  • Bacterial extracellular vesicles: Emerging nanoplatforms for biomedical applications
    Sangiliyandi Gurunathan, Jin-Hoi Kim
    Microbial Pathogenesis.2023; 183: 106308.     CrossRef
  • Outer Membrane Vesicles from Acinetobacter baumannii: Biogenesis, Functions, and Vaccine Application
    Zheqi Weng, Ning Yang, Shujun Shi, Zining Xu, Zixu Chen, Chen Liang, Xiuwei Zhang, Xingran Du
    Vaccines.2023; 12(1): 49.     CrossRef
  • Non-typeable Haemophilus influenzae major outer membrane protein P5 contributes to bacterial membrane stability, and affects the membrane protein composition crucial for interactions with the human host
    Yu-Ching Su, Mahendar Kadari, Megan L. Straw, Martina Janoušková, Sandra Jonsson, Oskar Thofte, Farshid Jalalvand, Erika Matuschek, Linda Sandblad, Ákos Végvári, Roman A. Zubarev, Kristian Riesbeck
    Frontiers in Cellular and Infection Microbiology.2023;[Epub]     CrossRef
  • Acinetobacter baumannii in the critically ill: complex infections get complicated
    Ilaria Cavallo, Alessandra Oliva, Rebecca Pages, Francesca Sivori, Mauro Truglio, Giorgia Fabrizio, Martina Pasqua, Fulvia Pimpinelli, Enea Gino Di Domenico
    Frontiers in Microbiology.2023;[Epub]     CrossRef
  • Outer Membrane Porins Contribute to Antimicrobial Resistance in Gram-Negative Bacteria
    Gang Zhou, Qian Wang, Yingsi Wang, Xia Wen, Hong Peng, Ruqun Peng, Qingshan Shi, Xiaobao Xie, Liangqiu Li
    Microorganisms.2023; 11(7): 1690.     CrossRef
  • Deciphering the virulence factors, regulation, and immune response to Acinetobacter baumannii infection
    Afreen Shadan, Avik Pathak, Ying Ma, Ranjana Pathania, Rajnish Prakash Singh
    Frontiers in Cellular and Infection Microbiology.2023;[Epub]     CrossRef
  • Bacterial outer membrane vesicles provide an alternative pathway for trafficking of Escherichia coli O157 type III secreted effectors to epithelial cells
    Natalie Sirisaengtaksin, Eloise J. O'Donoghue, Sara Jabbari, Andrew J. Roe, Anne Marie Krachler, Craig D. Ellermeier
    mSphere.2023;[Epub]     CrossRef
  • Microbiota and plant-derived vesicles that serve as therapeutic agents and delivery carriers to regulate metabolic syndrome
    Guanting Niu, Tunyu Jian, Yanan Gai, Jian Chen
    Advanced Drug Delivery Reviews.2023; 196: 114774.     CrossRef
  • Bacterial extracellular vesicles and their interplay with the immune system
    Etienne Doré, Eric Boilard
    Pharmacology & Therapeutics.2023; 247: 108443.     CrossRef
  • An Explorative Review on Advanced Approaches to Overcome Bacterial Resistance by Curbing Bacterial Biofilm Formation
    F Mohamad, Raghad R Alzahrani, Ahlam Alsaadi, Bahauddeen M Alrfaei, Alaa Eldeen B Yassin, Manal M Alkhulaifi, Majed Halwani
    Infection and Drug Resistance.2023; Volume 16: 19.     CrossRef
  • The Two Faces of Bacterial Membrane Vesicles: Pathophysiological Roles and Therapeutic Opportunities
    Himadri B. Thapa, Stephan P. Ebenberger, Stefan Schild
    Antibiotics.2023; 12(6): 1045.     CrossRef
  • Bacterial outer membrane vesicles in cancer: Biogenesis, pathogenesis, and clinical application
    Deming Li, Lisi Zhu, Yuxiao Wang, Xiangyu Zhou, Yan Li
    Biomedicine & Pharmacotherapy.2023; 165: 115120.     CrossRef
  • Bacterial Outer Membrane Vesicles Promote Lung Inflammatory Responses and Macrophage Activation via Multi-Signaling Pathways
    Sunhyo Ryu, Kareemah Ni, Chenghao Wang, Ayyanar Sivanantham, Jonathan M. Carnino, Hong-Long Ji, Yang Jin
    Biomedicines.2023; 11(2): 568.     CrossRef
  • Vaccine development to control the rising scourge of antibiotic-resistant Acinetobacter baumannii: a systematic review
    Ravinder Singh, Neena Capalash, Prince Sharma
    3 Biotech.2022;[Epub]     CrossRef
  • Advances of bacteria-based delivery systems for modulating tumor microenvironment
    Shuping Li, Hua Yue, Shuang Wang, Xin Li, Xiaojun Wang, Peilin Guo, Guanghui Ma, Wei Wei
    Advanced Drug Delivery Reviews.2022; 188: 114444.     CrossRef
  • Engineered bacterial membrane vesicles are promising carriers for vaccine design and tumor immunotherapy
    Qiong Long, Peng Zheng, Xiao Zheng, Weiran Li, Liangqun Hua, Zhongqian Yang, Weiwei Huang, Yanbing Ma
    Advanced Drug Delivery Reviews.2022; 186: 114321.     CrossRef
  • Outer Membrane Vesicles of Acinetobacter baumannii DS002 Are Selectively Enriched with TonB-Dependent Transporters and Play a Key Role in Iron Acquisition
    Ganeshwari Dhurve, Ashok Kumar Madikonda, Medicharla Venkata Jagannadham, Dayananda Siddavattam, Ayush Kumar
    Microbiology Spectrum.2022;[Epub]     CrossRef
  • Peptidoglycan Recycling Promotes Outer Membrane Integrity and Carbapenem Tolerance in Acinetobacter baumannii
    Nowrosh Islam, Misha I. Kazi, Katie N. Kang, Jacob Biboy, Joe Gray, Feroz Ahmed, Richard D. Schargel, Cara C. Boutte, Tobias Dörr, Waldemar Vollmer, Joseph M. Boll, Vanessa Sperandio
    mBio.2022;[Epub]     CrossRef
  • Outer Membrane Vesicles: Biogenesis, Functions, and Issues
    Rokas Juodeikis, Simon R. Carding
    Microbiology and Molecular Biology Reviews.2022;[Epub]     CrossRef
  • Thioredoxin-mediated alteration of protein content and cytotoxicity of Acinetobacter baumannii outer membrane vesicles
    Swathi Shrihari, Holly C May, Jieh-Juen Yu, Sara B Papp, James P Chambers, M Neal Guentzel, Bernard P Arulanandam
    Experimental Biology and Medicine.2022; 247(3): 282.     CrossRef
  • Raman Microspectroscopy Imaging Analysis of Extracellular Vesicles Biogenesis by Filamentous Fungus Penicilium chrysogenum
    Ashok Zachariah Samuel, Shumpei Horii, Takuji Nakashima, Naoko Shibata, Masahiro Ando, Haruko Takeyama
    Advanced Biology.2022;[Epub]     CrossRef
  • The Discovery of the Role of Outer Membrane Vesicles against Bacteria
    Sofia Combo, Sérgio Mendes, Kaare Magne Nielsen, Gabriela Jorge da Silva, Sara Domingues
    Biomedicines.2022; 10(10): 2399.     CrossRef
  • Enhancement of Acinetobacter baumannii biofilm growth by cephem antibiotics via enrichment of protein and extracellular DNA in the biofilm matrices
    Kaoru Yamabe, Yukio Arakawa, Masaki Shoji, Katsushiro Miyamoto, Takahiro Tsuchiya, Katsuhiko Minoura, Yukihiro Akeda, Kazunori Tomono, Mitsuko Onda
    Journal of Applied Microbiology.2022; 133(3): 2002.     CrossRef
  • The role of Zur-regulated lipoprotein A in bacterial morphology, antimicrobial susceptibility, and production of outer membrane vesicles in Acinetobacter baumannii
    Nayeong Kim, Hyo Jeong Kim, Man Hwan Oh, Se Yeon Kim, Mi Hyun Kim, Joo Hee Son, Seung Il Kim, Minsang Shin, Yoo Chul Lee, Je Chul Lee
    BMC Microbiology.2021;[Epub]     CrossRef
  • Host immunity and cellular responses to bacterial outer membrane vesicles
    Varnesh Tiku, Man-Wah Tan
    Trends in Immunology.2021; 42(11): 1024.     CrossRef
  • Outer membrane vesicles mediated horizontal transfer of an aerobic denitrification gene between Escherichia coli
    Weichuan Qiao, Lianjie Wang, Yang Luo, Jiahui Miao
    Biodegradation.2021; 32(4): 435.     CrossRef
  • Comparative Analysis of Outer Membrane Vesicle Isolation Methods With an Escherichia coli tolA Mutant Reveals a Hypervesiculating Phenotype With Outer-Inner Membrane Vesicle Content
    Shelby L. Reimer, Daniel R. Beniac, Shannon L. Hiebert, Timothy F. Booth, Patrick M. Chong, Garrett R. Westmacott, George G. Zhanel, Denice C. Bay
    Frontiers in Microbiology.2021;[Epub]     CrossRef
  • Engineered Remolding and Application of Bacterial Membrane Vesicles
    Li Qiao, Yifan Rao, Keting Zhu, Xiancai Rao, Renjie Zhou
    Frontiers in Microbiology.2021;[Epub]     CrossRef
  • Inhibition of Virulence Factors and Biofilm Formation ofAcinetobacter Baumanniiby Naturally-derived and Synthetic Drugs
    Nilushi Indika Bamunuarachchi, Fazlurrahman Khan, Young-Mog Kim
    Current Drug Targets.2021; 22(7): 734.     CrossRef
  • Gut Microbiota Extracellular Vesicles as Signaling Molecules Mediating Host-Microbiota Communications
    Salma Sultan, Walid Mottawea, JuDong Yeo, Riadh Hammami
    International Journal of Molecular Sciences.2021; 22(23): 13166.     CrossRef
  • Mycobacterium tuberculosis extracellular vesicles: exploitation for vaccine technology and diagnostic methods
    Roghayeh Mohammadzadeh, Kiarash Ghazvini, Hadi Farsiani, Saman Soleimanpour
    Critical Reviews in Microbiology.2021; 47(1): 13.     CrossRef
  • Methoxy‐Substituted Hydroxychalcone Reduces Biofilm Production, Adhesion and Surface Motility of Acinetobacter baumannii by Inhibiting ompA Gene Expression
    Dušan Ušjak, Miroslav Dinić, Katarina Novović, Branka Ivković, Nenad Filipović, Magdalena Stevanović, Marina T. Milenković
    Chemistry & Biodiversity.2021;[Epub]     CrossRef
  • New Provisional Function of OmpA from Acinetobacter sp. Strain SA01 Based on Environmental Challenges
    Shahab Shahryari, Mahbubeh Talaee, Kamahldin Haghbeen, Lorenz Adrian, Hojatollah Vali, Hossein Shahbani Zahiri, Kambiz Akbari Noghabi, Jack A. Gilbert
    mSystems.2021;[Epub]     CrossRef
  • The extracellular vesicle generation paradox: a bacterial point of view
    Hannah M McMillan, Meta J Kuehn
    The EMBO Journal.2021;[Epub]     CrossRef
  • Bacteria- and host-derived extracellular vesicles – two sides of the same coin?
    Jeffrey S. Schorey, Yong Cheng, William R. McManus
    Journal of Cell Science.2021;[Epub]     CrossRef
  • INSIGHTS INTO THE VIRULENCE FACTORS OF ACINETOBACTER BAUMANNII AND THEIR ROLES IN PERSISTENCE AND INFECTIOUS PROCESS
    Al Shaikhli Nawfal Haitham, Irina Gheorghe, Andreea Gheorghe
    Romanian Archives of Microbiology and Immunology.2021; 80(2): 141.     CrossRef
  • Screening of small molecules attenuating biofilm formation of Acinetobacter baumannii by inhibition of ompA promoter activity
    Seok Hyeon Na, Hyejin Jeon, Man Hwan Oh, Yoo Jeong Kim, Je Chul Lee
    Journal of Microbiology.2021; 59(9): 871.     CrossRef
  • Membrane Vesicle Production as a Bacterial Defense Against Stress
    Negar Mozaheb, Marie-Paule Mingeot-Leclercq
    Frontiers in Microbiology.2020;[Epub]     CrossRef
  • Extracellular Vesicles: An Overlooked Secretion System in Cyanobacteria
    Steeve Lima, Jorge Matinha-Cardoso, Paula Tamagnini, Paulo Oliveira
    Life.2020; 10(8): 129.     CrossRef
  • The Outer Membrane Proteins OmpA, CarO, and OprD of Acinetobacter baumannii Confer a Two-Pronged Defense in Facilitating Its Success as a Potent Human Pathogen
    Siva R. Uppalapati, Abhiroop Sett, Ranjana Pathania
    Frontiers in Microbiology.2020;[Epub]     CrossRef
  • Microevolution in the major outer membrane protein OmpA of Acinetobacter baumannii
    Alejandro M. Viale, Benjamin A. Evans
    Microbial Genomics .2020;[Epub]     CrossRef
  • Small RNAs in Outer Membrane Vesicles and Their Function in Host-Microbe Interactions
    Sara Ahmadi Badi, Stefania Paola Bruno, Arfa Moshiri, Samira Tarashi, Seyed Davar Siadat, Andrea Masotti
    Frontiers in Microbiology.2020;[Epub]     CrossRef
  • Engineered Bacterial Outer Membrane Vesicles as Multifunctional Delivery Platforms
    Ruizhen Li, Qiong Liu
    Frontiers in Materials.2020;[Epub]     CrossRef
  • Outer Membrane Lipid Secretion and the Innate Immune Response to Gram-Negative Bacteria
    Nicole P. Giordano, Melina B. Cian, Zachary D. Dalebroux, Anthony R. Richardson
    Infection and Immunity.2020;[Epub]     CrossRef
  • The Role of Bacterial Membrane Vesicles in the Dissemination of Antibiotic Resistance and as Promising Carriers for Therapeutic Agent Delivery
    Md Jalal Uddin, Jirapat Dawan, Gibeom Jeon, Tao Yu, Xinlong He, Juhee Ahn
    Microorganisms.2020; 8(5): 670.     CrossRef
  • The Mutation of Conservative Asp268 Residue in the Peptidoglycan-Associated Domain of the OmpA Protein Affects Multiple Acinetobacter baumannii Virulence Characteristics
    Jūratė Skerniškytė, Emilija Karazijaitė, Julien Deschamps, Renatas Krasauskas, Romain Briandet, Edita Sužiedėlienė
    Molecules.2019; 24(10): 1972.     CrossRef
  • Role of OmpA1 and OmpA2 in Aggregatibacter actinomycetemcomitans and Aggregatibacter aphrophilus serum resistance
    Mark Lindholm, Kyaw Min Aung, Sun Nyunt Wai, Jan Oscarsson
    Journal of Oral Microbiology.2019; 11(1): 1536192.     CrossRef
  • Studies on the mechanism of multidrug resistance of Acinetobacter baumannii by proteomic analysis of the outer membrane vesicles of the bacterium
    Bina Agarwal, Raman Karthikeyan, P. Gayathri, B. RameshBabu, G. Ahmed, M. V. Jagannadham
    Journal of Proteins and Proteomics.2019; 10(1): 1.     CrossRef
  • Toll-Like Receptors 2 and 4 Modulate Pulmonary Inflammation and Host Factors Mediated by Outer Membrane Vesicles Derived from Acinetobacter baumannii
    Chad R. Marion, Jaewook Lee, Lokesh Sharma, Kyong-Su Park, Changjin Lee, Wei Liu, Pei Liu, Jingjing Feng, Yong Song Gho, Charles S. Dela Cruz, Vincent B. Young
    Infection and Immunity.2019;[Epub]     CrossRef
  • The sensor kinase BfmS controls production of outer membrane vesicles in Acinetobacter baumannii
    Se Yeon Kim, Mi Hyun Kim, Seung Il Kim, Joo Hee Son, Shukho Kim, Yoo Chul Lee, Minsang Shin, Man Hwan Oh, Je Chul Lee
    BMC Microbiology.2019;[Epub]     CrossRef
  • The Mechanisms of Disease Caused by Acinetobacter baumannii
    Faye C. Morris, Carina Dexter, Xenia Kostoulias, Muhammad Ikhtear Uddin, Anton Y. Peleg
    Frontiers in Microbiology.2019;[Epub]     CrossRef
  • Human pleural fluid triggers global changes in the transcriptional landscape of Acinetobacter baumannii as an adaptive response to stress
    Jasmine Martinez, Jennifer S. Fernandez, Christine Liu, Amparo Hoard, Anthony Mendoza, Jun Nakanouchi, Nyah Rodman, Robert Courville, Marisel R. Tuttobene, Carolina Lopez, Lisandro J. Gonzalez, Parvin Shahrestani, Krisztina M. Papp-Wallace, Alejandro J. V
    Scientific Reports.2019;[Epub]     CrossRef
  • Synergistic activity of an OmpA inhibitor and colistin against colistin-resistant Acinetobacter baumannii: mechanistic analysis and in vivo efficacy
    Raquel Parra-Millán, Xavier Vila-Farrés, Rafael Ayerbe-Algaba, Monica Varese, Viviana Sánchez-Encinales, Nuría Bayó, María Eugenia Pachón-Ibáñez, Meritxell Teixidó, Jordi Vila, Jerónimo Pachón, Ernest Giralt, Younes Smani
    Journal of Antimicrobial Chemotherapy.2018;[Epub]     CrossRef
  • Acinetobacter : an emerging pathogen with a versatile secretome
    Noha M. Elhosseiny, Ahmed S. Attia
    Emerging Microbes & Infections.2018; 7(1): 1.     CrossRef
  • Gram-negative bacterial membrane vesicle release in response to the host-environment: different threats, same trick?
    Charlotte Volgers, Paul H. M. Savelkoul, Frank R. M. Stassen
    Critical Reviews in Microbiology.2018; 44(3): 258.     CrossRef
  • Versatile effects of bacterium-released membrane vesicles on mammalian cells and infectious/inflammatory diseases
    You-jiang Yu, Xiao-hong Wang, Guo-Chang Fan
    Acta Pharmacologica Sinica.2018; 39(4): 514.     CrossRef
  • Tug of war betweenAcinetobacter baumanniiand host immune responses
    Fei-Ju Li, Lora Starrs, Gaetan Burgio
    Pathogens and Disease.2018;[Epub]     CrossRef
  • Outer Membrane Vesicles (OMVs) of Gram-negative Bacteria: A Perspective Update
    Arif Tasleem Jan
    Frontiers in Microbiology.2017;[Epub]     CrossRef
  • The Secrets of Acinetobacter Secretion
    Brent S. Weber, Rachel L. Kinsella, Christian M. Harding, Mario F. Feldman
    Trends in Microbiology.2017; 25(7): 532.     CrossRef
  • Biology of Acinetobacter baumannii: Pathogenesis, Antibiotic Resistance Mechanisms, and Prospective Treatment Options
    Chang-Ro Lee, Jung Hun Lee, Moonhee Park, Kwang Seung Park, Il Kwon Bae, Young Bae Kim, Chang-Jun Cha, Byeong Chul Jeong, Sang Hee Lee
    Frontiers in Cellular and Infection Microbiology.2017;[Epub]     CrossRef
  • LPS Remodeling Triggers Formation of Outer Membrane Vesicles in Salmonella
    Wael Elhenawy, Michael Bording-Jorgensen, Ezequiel Valguarnera, M. Florencia Haurat, Eytan Wine, Mario F. Feldman, John J. Mekalanos
    mBio.2016;[Epub]     CrossRef
  • Pangenome and immuno-proteomics analysis of Acinetobacter baumannii strains revealed the core peptide vaccine targets
    Afreenish Hassan, Anam Naz, Ayesha Obaid, Rehan Zafar Paracha, Kanwal Naz, Faryal Mehwish Awan, Syed Aun Muhmmad, Hussnain Ahmed Janjua, Jamil Ahmad, Amjad Ali
    BMC Genomics.2016;[Epub]     CrossRef
  • Proteomic profiling of Gram‐negative bacterial outer membrane vesicles: Current perspectives
    Jaewook Lee, Oh Youn Kim, Yong Song Gho
    PROTEOMICS – Clinical Applications.2016; 10(9-10): 897.     CrossRef
  • Outer membrane Protein A plays a role in pathogenesis ofAcinetobacter nosocomialis
    Sang Woo Kim, Man Hwan Oh, So Hyun Jun, Hyejin Jeon, Seung Il Kim, Kwangho Kim, Yoo Chul Lee, Je Chul Lee
    Virulence.2016; 7(4): 413.     CrossRef
  • Bacterial membrane vesicles: Biogenesis, immune regulation and pathogenesis
    Rishi D. Pathirana, Maria Kaparakis-Liaskos
    Cellular Microbiology.2016; 18(11): 1518.     CrossRef
  • Membrane Vesicles Released by a hypervesiculating Escherichia coli Nissle 1917 tolR Mutant Are Highly Heterogeneous and Show Reduced Capacity for Epithelial Cell Interaction and Entry
    Carla Pérez-Cruz, María-Alexandra Cañas, Rosa Giménez, Josefa Badia, Elena Mercade, Laura Baldomà, Laura Aguilera, Maria Kaparakis-Liaskos
    PLOS ONE.2016; 11(12): e0169186.     CrossRef
  • Outer membrane vesicles of Lysobacter sp. XL1: biogenesis, functions, and applied prospects
    Irina V. Kudryakova, Nina A. Shishkova, Natalia V. Vasilyeva
    Applied Microbiology and Biotechnology.2016; 100(11): 4791.     CrossRef
  • Immunization with a 22-kDa outer membrane protein elicits protective immunity to multidrug-resistant Acinetobacter baumannii
    Weiwei Huang, Yufeng Yao, Shijie Wang, Ye Xia, Xu Yang, Qiong Long, Wenjia Sun, Cunbao Liu, Yang Li, Xiaojie Chu, Hongmei Bai, Yueting Yao, Yanbing Ma
    Scientific Reports.2016;[Epub]     CrossRef
  • Bacterial outer membrane vesicles: New insights and applications
    Deepak Anand, Arunima Chaudhuri
    Molecular Membrane Biology.2016; 33(6-8): 125.     CrossRef
  • Pathogenic Acinetobacter: from the Cell Surface to Infinity and Beyond
    Brent S. Weber, Christian M. Harding, Mario F. Feldman, W. Margolin
    Journal of Bacteriology.2016; 198(6): 880.     CrossRef
  • Biogenesis ofLysobactersp. XL1 vesicles
    Irina V. Kudryakova, Natalia E. Suzina, Natalia V. Vasilyeva, Klaus Hantke
    FEMS Microbiology Letters.2015; 362(18): fnv137.     CrossRef
  • Roles of bacterial membrane vesicles
    Eric Daniel Avila-Calderón, Minerva Georgina Araiza-Villanueva, Juan Carlos Cancino-Diaz, Edgar Oliver López-Villegas, Nammalwar Sriranganathan, Stephen M. Boyle, Araceli Contreras-Rodríguez
    Archives of Microbiology.2015; 197(1): 1.     CrossRef
  • Outer-membrane vesicles from Gram-negative bacteria: biogenesis and functions
    Carmen Schwechheimer, Meta J. Kuehn
    Nature Reviews Microbiology.2015; 13(10): 605.     CrossRef
  • OmpA Binding Mediates the Effect of Antimicrobial Peptide LL-37 on Acinetobacter baumannii
    Ming-Feng Lin, Pei-Wen Tsai, Jeng-Yi Chen, Yun-You Lin, Chung-Yu Lan, Surajit Bhattacharjya
    PLOS ONE.2015; 10(10): e0141107.     CrossRef
  • Bacterial outer membrane nanovesicles: Structure, biogenesis, functions, and application in biotechnology and medicine (Review)
    K. A. Lusta
    Applied Biochemistry and Microbiology.2015; 51(5): 485.     CrossRef
  • Outer membrane vesicles as platform vaccine technology
    Leo van der Pol, Michiel Stork, Peter van der Ley
    Biotechnology Journal.2015; 10(11): 1689.     CrossRef
  • Modulation of bacterial outer membrane vesicle production by envelope structure and content
    Carmen Schwechheimer, Adam Kulp, Meta J Kuehn
    BMC Microbiology.2014;[Epub]     CrossRef
  • Gene Transfer Potential of Outer Membrane Vesicles of Acinetobacter baylyi and Effects of Stress on Vesiculation
    Shweta Fulsundar, Klaus Harms, Gøril E. Flaten, Pål J. Johnsen, Balu Ananda Chopade, Kaare M. Nielsen, M. Kivisaar
    Applied and Environmental Microbiology.2014; 80(11): 3469.     CrossRef
  • Acinetobacter baumannii Outer Membrane Vesicles Elicit a Potent Innate Immune Response via Membrane Proteins
    So Hyun Jun, Jung Hwa Lee, Bo Ra Kim, Seung Il Kim, Tae In Park, Je Chul Lee, Yoo Chul Lee, Özlem Yilmaz
    PLoS ONE.2013; 8(8): e71751.     CrossRef
  • Molecular paleontology and complexity in the last eukaryotic common ancestor
    V. Lila Koumandou, Bill Wickstead, Michael L. Ginger, Mark van der Giezen, Joel B. Dacks, Mark C. Field
    Critical Reviews in Biochemistry and Molecular Biology.2013; 48(4): 373.     CrossRef
  • Host-microbe interactions that shape the pathogenesis ofAcinetobacter baumanniiinfection
    Brittany L. Mortensen, Eric P. Skaar
    Cellular Microbiology.2012; 14(9): 1336.     CrossRef
Molecular Cloning, Purification, and Characterization of a Novel, Acidic, pH-Stable Endoglucanase from Martelella mediterranea
Junli Dong , Yuzhi Hong , Zongze Shao , Ziduo Liu
J. Microbiol. 2010;48(3):393-398.   Published online June 23, 2010
DOI: https://doi.org/10.1007/s12275-010-9361-0
  • 23 View
  • 0 Download
  • 31 Scopus
AbstractAbstract
A novel gene encoding an endoglucanase designated Cel5D was cloned from a marine bacterium Martelella mediterranea by genomic library. The gene had a 1,113 bp opening reading frame encoding a 371-amino-acid protein with a molecular mass of 40,508 Da and containing a putative signal peptide (41 amino acids). Cel5D had low similarity (48-51% identity) with other known endoglucanases and consisted of one single catalytic domain, which belonged to the glycosyl hydrolase family 5. The maximum activity of Cel5D was observed at 60°C and pH 5.0. Cel5D displayed broad pH stability within the range of pH 3.0-11.0 and retained hydrolytic activity in the presence of a wide variety of metal ions and some chemical reagents. These characteristics suggest that the enzyme has considerable potential in industrial applications.
Cel8H, a Novel Endoglucanase from the Halophilic Bacterium Halomonas sp. S66-4: Molecular Cloning, Heterogonous Expression, and Biochemical Characterization
Xiaoluo Huang , Zongze Shao , Yuzhi Hong , Ling Lin , Chanjuan Li , Fei Huang , Hui Wang , Ziduo Liu
J. Microbiol. 2010;48(3):318-324.   Published online June 23, 2010
DOI: https://doi.org/10.1007/s12275-009-0188-5
  • 38 View
  • 0 Download
  • 28 Scopus
AbstractAbstract
A recombinant Escherichia coli clone expressing an endoglucanase was identified from a genomic library of the halophilic bacterium Halomonas sp. S66-4, and the enzyme was designated Cel8H. The cel8H gene consisted of 1,053 bp and encoded 350 amino acids sharing the highest identity of 48% to other known endoglucanases. The protein was expressed in E. coli BL21 (DE3) and purified to homogeneity. The purified recombinant enzyme had an optimal activity of 4.9 U/mg at pH 5 and 45°C toward the substrate carboxymethylcellulose. It exhibited extraordinary properties which differed from endoglucanases reported previously at the point of high salt tolerance above 5 M, simultaneously with high pH stability at pH 4-12 and high temperature stability at 40-60°C. Various substrate tests indicated that the enzyme hydrolyzes β-1,4-glucosidic bonds specifically.
Degradation of Crystalline Cellulose by the Brown-rot Basidiomycete Fomitopsis palustris
Jeong-Jun Yoon , Young-Kyoon Kim
J. Microbiol. 2005;43(6):487-492.
DOI: https://doi.org/2301 [pii]
  • 38 View
  • 0 Download
AbstractAbstract
This study demonstrated that the brown rot basidiomycete Fomitopsis palustris was able to degrade crystalline cellulose (Avicel). This fungus could also produce the three major cellulases (exoglucanases, endoglucanases, and -glucosidase) when the cells were grown on 2.0% Avicel. Avicel degraded by F. palustris showed a decrease in relative crystallinity from 83% to 78.5% after 14 days of incubation. The characterization study indicated that optimum pH was 4.5 and optimum temperature was 70oC for exoglucanase (cellobiohydrolase) activity. Hydrolysis of Avicel by the crude enzyme from F. palustris yielded 1.6 mg/ml of glucose after 43 h, which corresponded to a cellulose conversion degree of 3.2%. Therefore, this study revealed for the first time that the brown rot basidiomycete F. palustris produces cellulases capable of yielding soluble sugars from crystalline cellulose.
Stage-specific change and regulation of endogenous protein phosphorylation in allomyces macrogynus
Park, Young Shik , Oh, Keun Hee , Lee, Soo Woong , Seong, Chang Soo , Park, I Ha , Yim, Jeong Bin
J. Microbiol. 1996;34(4):374-378.
  • 34 View
  • 0 Download
AbstractAbstract
In the aquatic fungus Allomyces macrogynus the effects of Ca^2+ and cAMP on the intracellular signal transduction of zeoospore germination were studied using in vitro protein phosphorylation assay system. An endogenuously phosphorylated protein (p50) having molecular weight of 50 kDa on SDS-PAGE was found in soluble fractions of both zeoospore and mycelium. In zoospore extract, the endogenous phophorylation of p50 was weak without any effectors, but was enhanced by Ca^2+ and even more by cAMP. Phosphorylation of the same protein in mycelial extract was high only in the absence of cAMP. Irrespective of the presence of Ca^2+ and cAMP, its phosphorylation was antagonistically suppressed in assay of combined zoospore and mycelial extracts. These results suggest that p50 is interconvertible in phosphorylation/dephosphorylation as a novel protein involved in germination of A. macrogynus. The antagonistic effect of cAMP to the phosphorylation of p50s from different developmental stages may be important in the regulation of cellular differentiation.
Staphylococcal methicillin resistance expression under various growth conditions
Lee, Yoo Nik , Poo Ha Ryoung , Lee, Young Ik
J. Microbiol. 1997;35(2):103-108.
  • 38 View
  • 0 Download
AbstractAbstract
To improve the detection of methicillin resistant staphylococci, lowered incubation temperature (30℃) and inclusion of sodium chloride in media have been empirically recommended. However, in this study, we found that sodium chloride in Peptone-Yeast Extract-K₂HPO₄(PYK) medium decreased methicillin minimum inhibitory concentrations. Divalent cations were shown to restore the expression of staphylococcal methicillin resistance. However, when it was determined by efficiency of plating, sodium chloride increased methicillin resistance expression on agar medium in which higher divalent cations were contained in the agar medium. The decrease of minimum inhibitory concentrations at 30℃ by sodium chloride occurred in Brain Heart Infusion but did not occur in other media investigated. Interestingly, both PYK and Brain Heart Infusion media had peptone, which contain cholic acids having detergent activities. Inclusion of sodium chloride in PYK caused a higher rate of autolysis. Penicillin binding protein 2a that has a low affinity to beta-lactam antibiotics, was highly inducible in methicillin resistant Staphylococcus epidermidis strains. In this study, we found that autolysins that are activated by the sodium chloride decreased the minimum inhibitory concentration at 30℃, and peptidoglycan is weakened due to the presence of methicillin. Peptone in the media may aggravate the fragile cells. However, stabilization due to the presence of divalent cations and production of penicilin binding protein 2a increase the survival of staphylococci.

Journal of Microbiology : Journal of Microbiology
TOP