Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
2 "Drosophila melanogaster"
Filter
Filter
Article category
Keywords
Publication year
Journal Articles
Comparison of virulence between matt and mucoid colonies of Klebsiella pneumoniae coproducing NDM-1 and OXA-232 isolated from a single patient
Haejeong Lee , Jin Yang Baek , So Yeon Kim , HyunJi Jo , KyeongJin Kang , Jae-Hoon Ko , Sun Young Cho , Doo Ryeon Chung , Kyong Ran Peck , Jae-Hoon Song , Kwan Soo Ko
J. Microbiol. 2018;56(9):665-672.   Published online August 23, 2018
DOI: https://doi.org/10.1007/s12275-018-8130-3
  • 48 View
  • 0 Download
  • 20 Crossref
AbstractAbstract
Nine Klebsiella pneumoniae isolates coproducing NDM-1 and OXA-232 carbapenemases were successively isolated from a single patient. Although they were isolated simultaneously and were isogenic, they presented different colony phenotypes (matt and mucoid). All nine isolates were resistant to most antibiotics except colistin and fosfomycin. In addition, matt-type isolates were resistant to tigecycline. No differences were detected in the cps cluster sequences, except for the insertion of IS5 in the wzb gene of two matt-type isolates. In vitro virulence assays based on production of capsular polysaccharide, biofilm formation, and resistance to human serum indicated that the mucoid-type isolates were significantly more virulent than the matt-type. In addition, mucoid-type isolates showed higher survival rates than the matt-type ones in infection experiments in the fruit fly, suggesting a higher virulence of K. pneumoniae isolates with a mucoid phenotype. To our knowledge, this is the first report of K. pneumoniae colonies with different phenotypes being isolated from the same sample. In addition, we show that virulence varies with colony phenotype. Dissemination of K. pneumoniae isolates expressing both antibiotic resistance and high virulence would constitute a great threat.

Citations

Citations to this article as recorded by  
  • Animal models of Klebsiella pneumoniae mucosal infections
    Lucas Assoni, Ana Julia Melo Couto, Brenda Vieira, Bárbara Milani, Alice Souza Lima, Thiago Rojas Converso, Michelle Darrieux
    Frontiers in Microbiology.2024;[Epub]     CrossRef
  • Development and validation of a quick, automated, and reproducible ATR FT-IR spectroscopy machine-learning model for Klebsiella pneumoniae typing
    Ângela Novais, Ana Beatriz Gonçalves, Teresa G. Ribeiro, Ana R. Freitas, Gema Méndez, Luis Mancera, Antónia Read, Valquíria Alves, Lorena López-Cerero, Jesús Rodríguez-Baño, Álvaro Pascual, Luísa Peixe, Patricia J. Simner
    Journal of Clinical Microbiology.2024;[Epub]     CrossRef
  • Genetic, virulence, and antimicrobial resistance characteristics associated with distinct morphotypes in ST11 carbapenem-resistant Klebsiella pneumoniae
    Tao Chen, Yuan Wang, Xiaohui Chi, Luying Xiong, Ping Lu, Xueting Wang, Yunbo Chen, Qixia Luo, Ping Shen, Yonghong Xiao
    Virulence.2024;[Epub]     CrossRef
  • Roles of crrAB two-component regulatory system in Klebsiella pneumoniae: growth yield, survival in initial colistin treatment stage, and virulence
    Sun Ju Kim, Jong Hyun Shin, Hyunkeun Kim, Kwan Soo Ko
    International Journal of Antimicrobial Agents.2024; 63(1): 107011.     CrossRef
  • Clinical and Genomic Characterization of Carbapenem-Resistant Klebsiella pneumoniae with Concurrent Production of NDM and OXA-48-like Carbapenemases in Southern California, 2016–2022
    Stacey Cerón, Zackary Salem-Bango, Deisy A. Contreras, Elizabeth L. Ranson, Shangxin Yang
    Microorganisms.2023; 11(7): 1717.     CrossRef
  • Improvement of transformation efficiency in hypermucoviscous Klebsiella pneumoniae using citric acid
    Suyeon Park, Kwan Soo Ko
    Journal of Microbiological Methods.2023; 205: 106673.     CrossRef
  • Emergence of the clinical rdar morphotype carbapenem-resistant and hypervirulent Klebsiella pneumoniae with enhanced adaption to hospital environment
    Congcong Liu, Ning Dong, Xueting Huang, Zixian Huang, Chang Cai, Jiayue Lu, Hongwei Zhou, Jingren Zhang, Yu Zeng, Fan Yang, Gongxiang Chen, Zhangqi Shen, Rong Zhang, Sheng Chen
    Science of The Total Environment.2023; 889: 164302.     CrossRef
  • Species identification, antibiotic resistance, and virulence in Enterobacter cloacae complex clinical isolates from South Korea
    Michidmaral Ganbold, Jungyu Seo, Yu Mi Wi, Ki Tae Kwon, Kwan Soo Ko
    Frontiers in Microbiology.2023;[Epub]     CrossRef
  • Genomic and Phenotypic Evolution of Tigecycline-Resistant Acinetobacter baumannii in Critically Ill Patients
    Jiangang Zhang, Jinru Xie, Henan Li, Zhiren Wang, Yuyao Yin, Shuyi Wang, Hongbin Chen, Qi Wang, Hui Wang, Daria Van Tyne
    Microbiology Spectrum.2022;[Epub]     CrossRef
  • Comparison of Virulence between Two Main Clones (ST11 and ST307) of Klebsiella pneumoniae Isolates from South Korea
    Yun Young Cho, Jee Hong Kim, Hyunkeun Kim, Junghwa Lee, Se Jin Im, Kwan Soo Ko
    Microorganisms.2022; 10(9): 1827.     CrossRef
  • Recent progress toward the implementation of phage therapy in Western medicine
    Jean-Paul Pirnay, Tristan Ferry, Grégory Resch
    FEMS Microbiology Reviews.2022;[Epub]     CrossRef
  • Two Distinct Genotypes of KPC-2-Producing Klebsiella pneumoniae Isolates from South Korea
    Jee Hong Kim, Yun Young Cho, Ji Young Choi, Yu Mi Wi, Kwan Soo Ko
    Antibiotics.2021; 10(8): 911.     CrossRef
  • Increased Capsule Thickness and Hypermotility Are Traits of Carbapenem-Resistant Acinetobacter baumannii ST3 Strains Causing Fulminant Infection
    Nadya Rakovitsky, Jonathan Lellouche, Debby Ben David, Sammy Frenk, Polet Elmalih, Gabriel Weber, Hadas Kon, David Schwartz, Liat Wolfhart, Elizabeth Temkin, Yehuda Carmeli
    Open Forum Infectious Diseases.2021;[Epub]     CrossRef
  • Effect of multiple, compatible plasmids on the fitness of the bacterial host by inducing transcriptional changes
    Haejeong Lee, Kwan Soo Ko
    Journal of Antimicrobial Chemotherapy.2021; 76(10): 2528.     CrossRef
  • Co-introduction of plasmids harbouring the carbapenemase genes, blaNDM-1 and blaOXA-232, increases fitness and virulence of bacterial host
    Haejeong Lee, Juyoun Shin, Yeun-Jun Chung, Myungseo Park, Kyeong Jin Kang, Jin Yang Baek, Dongwoo Shin, Doo Ryeon Chung, Kyong Ran Peck, Jae-Hoon Song, Kwan Soo Ko
    Journal of Biomedical Science.2020;[Epub]     CrossRef
  • Animal infection models using non‐mammals
    Chikara Kaito, Kanade Murakami, Lina Imai, Kazuyuki Furuta
    Microbiology and Immunology.2020; 64(9): 585.     CrossRef
  • Change of Hypermucoviscosity in the Development of Tigecycline Resistance in Hypervirulent Klebsiella pneumoniae Sequence Type 23 Strains
    Suyeon Park, Haejeong Lee, Dongwoo Shin, Kwan Soo Ko
    Microorganisms.2020; 8(10): 1562.     CrossRef
  • Epidemiology of β-Lactamase-Producing Pathogens
    Karen Bush, Patricia A. Bradford
    Clinical Microbiology Reviews.2020;[Epub]     CrossRef
  • Emergence of NDM-4 and OXA-181 carbapenemase-producing Klebsiella pneumoniae
    Jin Seok Kim, Chae-Kyu Hong, Sang-Hun Park, Young-Hee Jin, Sunghee Han, Hee Soon Kim, Joo-Hyun Park, Byung-Noe Bae, Ju-Young Chung, Tae-Hee Han, Jib-Ho Lee, Sang-Me Lee, Young-Hee Oh
    Journal of Global Antimicrobial Resistance.2020; 20: 332.     CrossRef
  • Evolution of Klebsiella pneumoniae with mucoid and non-mucoid type colonies within a single patient
    Haejeong Lee, Juyoun Shin, Yeun-Jun Chung, Jin Yang Baek, Doo Ryeon Chung, Kyong Ran Peck, Jae-Hoon Song, Kwan Soo Ko
    International Journal of Medical Microbiology.2019; 309(3-4): 194.     CrossRef
[PROTOCOL] Drosophila melanogaster as a polymicrobial infection model for Pseudomonas aeruginosa and Staphylococcus aureus
Young-Joon Lee , Hye-Jeong Jang , In-Young Chung , You-Hee Cho
J. Microbiol. 2018;56(8):534-541.   Published online July 25, 2018
DOI: https://doi.org/10.1007/s12275-018-8331-9
  • 51 View
  • 0 Download
  • 17 Crossref
AbstractAbstract
Non-mammalian infection models have been developed over the last two decades, which is a historic milestone to understand the molecular basis of bacterial pathogenesis. They also provide small-scale research platforms for identification of virulence factors, screening for antibacterial hits, and evaluation of antibacterial efficacy. The fruit fly, Drosophila melanogaster is one of the model hosts for a variety of bacterial pathogens, in that the innate immunity pathways and tissue physiology are highly similar to those in mammals. We here present a relatively simple protocol to assess the key aspects of the polymicrobial interaction in vivo between the human opportunistic pathogens, Pseudomonas aeruginosa and Staphylococcus aureus, which is based on the systemic infection by needle pricking at the dorsal thorax of the flies. After infection, fly survival and bacteremia over time for both P. aeruginosa and S. aureus within the infected flies can be monitored as a measure of polymicrobial virulence potential. The infection takes ~24 h including bacterial cultivation. Fly survival and bacteremia are assessed using the infected flies that are monitored up to ~60 h post-infection. These methods can be used to identify presumable as well as unexpected phenotypes during polymicrobial interaction between P. aeruginosa and S. aureus mutants, regarding bacterial pathogenesis and host immunity.

Citations

Citations to this article as recorded by  
  • Kanamycin promotes biofilm viability of MRSA strains showing extremely high resistance to kanamycin
    Guangchao Yu, Teng Yi Huang, Yu Li
    Microbial Pathogenesis.2024; 196: 106986.     CrossRef
  • Design, synthesis, and evaluation of N1,N3-dialkyldioxonaphthoimidazoliums as antibacterial agents against methicillin-resistant Staphylococcus aureus
    Taewoo Kim, Shin-Yae Choi, Hee-Won Bae, Hyun Su Kim, Hoon Jeon, Haejun Oh, Sung-Hoon Ahn, Jongkook Lee, Young-Ger Suh, You-Hee Cho, Seok-Ho Kim
    European Journal of Medicinal Chemistry.2024; 272: 116454.     CrossRef
  • Autolysis of Pseudomonas aeruginosa Quorum-Sensing Mutant Is Suppressed by Staphylococcus aureus through Iron-Dependent Metabolism
    Shin-Yae Choi, In-Young Chung, Hee-Won Bae, You-Hee Cho
    Journal of Microbiology and Biotechnology.2024; 34(4): 795.     CrossRef
  • Drosophila melanogaster as an organism model for studying cystic fibrosis and its major associated microbial infections
    Hamadoun Touré, Jean-Louis Herrmann, Sébastien Szuplewski, Fabienne Girard-Misguich, Anthony R. Richardson
    Infection and Immunity.2023;[Epub]     CrossRef
  • Drosophila melanogaster Systemic Infection Model to Study Altered Virulence during Polymicrobial Infection by Aeromonas
    Alexandre Robert, Emilie Talagrand-Reboul, Maria-Jose Figueras, Raymond Ruimy, Laurent Boyer, Brigitte Lamy
    Pathogens.2023; 12(3): 405.     CrossRef
  • An iron-chelating sulfonamide identified from Drosophila-based screening for antipathogenic discovery
    Yeon-Ji Yoo, In-Young Chung, Shivakumar S. Jalde, Hyun-Kyung Choi, You-Hee Cho
    Virulence.2022; 13(1): 833.     CrossRef
  • Artemisinin displays bactericidal activity via copper-mediated DNA damage
    In-Young Chung, Hye-Jeong Jang, Yeon-Ji Yoo, Joonseong Hur, Hyo-Young Oh, Seok-Ho Kim, You-Hee Cho
    Virulence.2022; 13(1): 149.     CrossRef
  • Colistin-degrading proteases confer collective resistance to microbial communities during polymicrobial infections
    Do-Hoon Lee, Ju-Hee Cha, Dae-Wi Kim, Kihyun Lee, Yong-Seok Kim, Hyo-Young Oh, You-Hee Cho, Chang-Jun Cha
    Microbiome.2022;[Epub]     CrossRef
  • Drosophila melanogaster as a model to study innate immune memory
    Marta Arch, Maria Vidal, Romina Koiffman, Solomon Tibebu Melkie, Pere-Joan Cardona
    Frontiers in Microbiology.2022;[Epub]     CrossRef
  • An antipathogenic compound that targets the OxyR peroxide sensor in Pseudomonas aeruginosa
    Hyo-Young Oh, Shivakumar S. Jalde, In-Young Chung, Yeon-Ji Yoo, Hye-Jeong Jang, Hyun-Kyung Choi, You-Hee Cho
    Journal of Medical Microbiology .2021;[Epub]     CrossRef
  • Glucose-Binding of Periplasmic Protein GltB Activates GtrS-GltR Two-Component System in Pseudomonas aeruginosa
    Chenchen Xu, Qiao Cao, Lefu Lan
    Microorganisms.2021; 9(2): 447.     CrossRef
  • Silkworm model for Bacillus anthracis infection and virulence determination
    Atmika Paudel, Yoshikazu Furuta, Hideaki Higashi
    Virulence.2021; 12(1): 2285.     CrossRef
  • Friends or enemies? The complicated relationship between Pseudomonas aeruginosa and Staphylococcus aureus
    Deborah Bow Yue Yung, Kathleen Jean Sircombe, Daniel Pletzer
    Molecular Microbiology.2021; 116(1): 1.     CrossRef
  • Genetic and Biochemical Analysis of CodY-Mediated Cell Aggregation in Staphylococcus aureus Reveals an Interaction between Extracellular DNA and Polysaccharide in the Extracellular Matrix
    Kevin D. Mlynek, Logan L. Bulock, Carl J. Stone, Luke J. Curran, Marat R. Sadykov, Kenneth W. Bayles, Shaun R. Brinsmade, Yves V. Brun
    Journal of Bacteriology.2020;[Epub]     CrossRef
  • Challenges with Wound Infection Models in Drug Development
    Sandeep K. Shukla, Ajay K. Sharma, Vanya Gupta, Aman Kalonia, Priyanka Shaw
    Current Drug Targets.2020; 21(13): 1301.     CrossRef
  • Redirecting an Anticancer to an Antibacterial Hit Against Methicillin-Resistant Staphylococcus aureus
    Hye-Jeong Jang, In-Young Chung, Changjin Lim, Sungkyun Chung, Bi-o Kim, Eun Sook Kim, Seok-Ho Kim, You-Hee Cho
    Frontiers in Microbiology.2019;[Epub]     CrossRef
  • Brain and bone cancer targeting by a ferrofluid composed of superparamagnetic iron-oxide/silica/carbon nanoparticles (earthicles)
    Victoria M. Wu, Eric Huynh, Sean Tang, Vuk Uskoković
    Acta Biomaterialia.2019; 88: 422.     CrossRef

Journal of Microbiology : Journal of Microbiology
TOP