Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
1 "ECF sigma factor"
Filter
Filter
Article category
Keywords
Publication year
Research Support, Non-U.S. Gov't
Role of the extracytoplasmic function sigma factor CarQ in oxidative response of Bradyrhizobium japonicum
Anchana Thaweethawakorn , Dylan Parks , Jae-Seong So , Woo-Suk Chang
J. Microbiol. 2015;53(8):526-534.   Published online July 31, 2015
DOI: https://doi.org/10.1007/s12275-015-5308-9
  • 45 View
  • 0 Download
  • 3 Crossref
AbstractAbstract
As a nitrogen-fixing bacterium, Bradyrhizobium japonicum can establish a symbiotic relationship with the soybean plant (Glycine max). To be a successful symbiont, B. japonicum must deal with plant defense responses, such as an oxidative burst. Our previous functional genomics study showed that carQ (bll1028) encoding extracytoplasmic function (ECF) sigma factor was highly expressed (107.8-fold induction) under oxidative stress. Little is known about the underlying mechanisms of how CarQ responds to oxidative stress. In this study, a carQ knock-out mutant was constructed using site-specific mutagenesis to identify the role of carQ in the oxidative response of B. japonicum. The carQ mutant showed a longer generation time than the wild type and exhibited significantly decreased survival at 10 mM H2O2 for 10 min of exposure. Surprisingly, there was no significant difference in expression of oxidative stress-responsive genes such as katG and sod between the wild type and carQ mutant. The mutant also showed a significant increase in susceptibility to H2O2 compared to the wild type in the zone inhibition assay. Nodulation phenotypes of the carQ mutant were distinguishable compared to those of the wild type, including lower numbers of nodules, decreased nodule dry weight, decreased plant dry weight, and a lower nitrogen fixation capability. Moreover, desiccation of mutant cells also resulted in significantly lower percent of survival in both early (after 4 h) and late (after 24 h) desiccation periods. Taken together, this information will provide an insight into the role of the ECF sigma factor in B. japonicum to deal with a plant-derived oxidative burst.

Citations

Citations to this article as recorded by  
  • Implication of the σ E Regulon Members OmpO and σ N in the Δ ompA 299–356 -Mediated Decrease of Oxidative Stress Tolerance in St
    Ren-Hsuan Ku, Li-Hua Li, Yi-Fu Liu, En-Wei Hu, Yi-Tsung Lin, Hsu-Feng Lu, Tsuey-Ching Yang, Silvia T. Cardona
    Microbiology Spectrum.2023;[Epub]     CrossRef
  • Identification and Validation of Reference Genes for Expression Analysis in Nitrogen-Fixing Bacteria under Environmental Stress
    Dylan Parks, Christian Peterson, Woo-Suk Chang
    Life.2022; 12(9): 1379.     CrossRef
  • MostSinorhizobium melilotiExtracytoplasmic Function Sigma Factors Control Accessory Functions
    Claus Lang, Melanie J. Barnett, Robert F. Fisher, Lucinda S. Smith, Michelle E. Diodati, Sharon R. Long, Craig D. Ellermeier, Claude Bruand, Sarah Ades, Hans-Martin Fischer
    mSphere.2018;[Epub]     CrossRef

Journal of Microbiology : Journal of Microbiology
TOP