Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
53 "Escherichia coli"
Filter
Filter
Article category
Keywords
Publication year
Authors
Journal Articles
An Optimized Method for Reconstruction of Transcriptional Regulatory Networks in Bacteria Using ChIP-exo and RNA-seq Datasets
Minchang Jang, Joon Young Park, Gayeon Lee, Donghyuk Kim
J. Microbiol. 2024;62(12):1075-1088.   Published online November 11, 2024
DOI: https://doi.org/10.1007/s12275-024-00181-6
  • 504 View
  • 7 Download
  • 1 Web of Science
  • 1 Crossref
AbstractAbstract PDF
Transcriptional regulatory networks (TRNs) in bacteria are crucial for elucidating the mechanisms that regulate gene expression and cellular responses to environmental stimuli. These networks delineate the interactions between transcription factors (TFs) and their target genes, thereby uncovering the regulatory processes that modulate gene expression under varying environmental conditions. Analyzing TRNs offers valuable insights into bacterial adaptation, stress responses, and metabolic optimization from an evolutionary standpoint. Additionally, understanding TRNs can drive the development of novel antimicrobial therapies and the engineering of microbial strains for biofuel and bioproduct production. This protocol integrates advanced data analysis pipelines, including ChEAP, DEOCSU, and DESeq2, to analyze omics datasets that encompass genome-wide TF binding sites and transcriptome profiles derived from ChIP-exo and RNA-seq experiments. This approach minimizes both the time required and the risk of bias, making it accessible to non-expert users. Key steps in the protocol include preprocessing and peak calling from ChIP-exo data, differential expression analysis of RNA-seq data, and motif and regulon analysis. This method offers a comprehensive and efficient framework for TRN reconstruction across various bacterial strains, enhancing both the accuracy and reliability of the analysis while providing valuable insights for basic and applied research.

Citations

Citations to this article as recorded by  
  • ChIP-mini: a low-input ChIP-exo protocol for elucidating DNA-binding protein dynamics in intracellular pathogens
    Joon Young Park, Minchang Jang, Eunna Choi, Sang-Mok Lee, Ina Bang, Jihoon Woo, Seonggyu Kim, Eun-Jin Lee, Donghyuk Kim
    Nucleic Acids Research.2025;[Epub]     CrossRef
Unexpected Requirement of Small Amino Acids at Position 183 for DNA Binding in the Escherichia coli cAMP Receptor Protein
Marcus Carranza, Amanda Rea, Daisy Pacheco, Christian Montiel, Jin Park, Hwan Youn
J. Microbiol. 2024;62(10):871-882.   Published online September 6, 2024
DOI: https://doi.org/10.1007/s12275-024-00169-2
  • 425 View
  • 9 Download
  • 2 Web of Science
  • 1 Crossref
AbstractAbstract PDF
The Escherichia coli cAMP receptor protein (CRP) relies on the F-helix, the recognition helix of the helix-turn-helix motif, for DNA binding. The importance of the CRP F-helix in DNA binding is well-established, yet there is little information on the roles of its non-base-contacting residues. Here, we show that a CRP F-helix position occupied by a non-base-contacting residue Val183 bears an unexpected importance in DNA binding. Codon randomization and successive in vivo screening selected six amino acids (alanine, cysteine, glycine, serine, threonine, and valine) at CRP position 183 to be compatible with DNA binding. These amino acids are quite different in their amino acid properties (polar, non-polar, hydrophobicity), but one commonality is that they are all relatively small. Larger amino acid substitutions such as histidine, methionine, and tyrosine were made site-directedly and showed to have no detectable DNA binding, further supporting the requirement of small amino acids at CRP position 183. Bioinformatics analysis revealed that small amino acids (92.15% valine and 7.75% alanine) exclusively occupy the position analogous to CRP Val183 in 1,007 core CRP homologs, consistent with our mutant data. However, in extended CRP homologs comprising 3700 proteins, larger amino acids could also occupy the position analogous to CRP Val183 albeit with low occurrence. Another bioinformatics analysis suggested that large amino acids could be tolerated by compensatory small-sized amino acids at their neighboring positions. A full understanding of the unexpected requirement of small amino acids at CRP position 183 for DNA binding entails the verification of the hypothesized compensatory change(s) in CRP.

Citations

Citations to this article as recorded by  
  • SPD_0410 negatively regulates capsule polysaccharide synthesis and virulence in Streptococcus pneumoniae D39
    Ye Tao, Li Lei, Shuhui Wang, Xuemei Zhang, Yibing Yin, Yuqiang Zheng
    Frontiers in Microbiology.2025;[Epub]     CrossRef
Mycobacterium tuberculosis PE_PGRS45 (Rv2615c) Promotes Recombinant Mycobacteria Intracellular Survival via Regulation of Innate Immunity, and Inhibition of Cell Apoptosis
Tao Xu , Chutong Wang , Minying Li , Jing Wei , Zixuan He , Zhongqing Qian , Xiaojing Wang , Hongtao Wang
J. Microbiol. 2024;62(1):49-62.   Published online February 9, 2024
DOI: https://doi.org/10.1007/s12275-023-00101-0
  • 434 View
  • 21 Download
  • 4 Web of Science
  • 4 Crossref
AbstractAbstract PDF
Tuberculosis (TB), a bacterial infectious disease caused by Mycobacterium tuberculosis (M. tuberculosis), is a significant global public health problem. Mycobacterium tuberculosis expresses a unique family of PE_PGRS proteins that have been implicated in pathogenesis. Despite numerous studies, the functions of most PE_PGRS proteins in the pathogenesis of mycobacterium infections remain unclear. PE_PGRS45 (Rv2615c) is only found in pathogenic mycobacteria. In this study, we successfully constructed a recombinant Mycobacterium smegmatis (M. smegmatis) strain which heterologously expresses the PE_PGRS45 protein. We found that overexpression of this cell wall-associated protein enhanced bacterial viability under stress in vitro and cell survival in macrophages. MS_PE_PGRS45 decreased the secretion of pro-inflammatory cytokines such as IL-1β, IL-6, IL-12p40, and TNF-α. We also found that MS_PE_PGRS45 increased the expression of the anti-inflammatory cytokine IL-10 and altered macrophage-mediated immune responses. Furthermore, PE_PGRS45 enhanced the survival rate of M. smegmatis in macrophages by inhibiting cell apoptosis. Collectively, our findings show that PE_PGRS45 is a virulent factor actively involved in the interaction with the host macrophage.

Citations

Citations to this article as recorded by  
  • Evolution of the PE_PGRS Proteins of Mycobacteria: Are All Equal or Are Some More Equal than Others?
    Bei Chen, Belmin Bajramović, Bastienne Vriesendorp, Herman Pieter Spaink
    Biology.2025; 14(3): 247.     CrossRef
  • Recent advances in research on Mycobacterium tuberculosis virulence factors and their role in pathogenesis
    Ming-Rui Sun, Jia-Yin Xing, Xiao-Tian Li, Ren Fang, Yang Zhang, Zhao-Li Li, Ning-Ning Song
    Journal of Microbiology, Immunology and Infection.2025; 58(5): 497.     CrossRef
  • Rv2741 Promotes Mycobacterium Survival by Modulating Macrophage Function via the IL-1α-MAPK Axis
    Xintong He, Yonglin He, Xichuan Deng, Nan Lu, Anlong Li, Sijia Gao, Shiyan He, Yuran Wang, Nanzhe Fu, Zijie Wang, Yuxin Nie, Lei Xu
    ACS Infectious Diseases.2025; 11(3): 676.     CrossRef
  • The PE/PPE family proteins of Mycobacterium tuberculosis: evolution, function, and prospects for tuberculosis control
    Zhijing Zhang, Le Dong, Xin Li, Taibing Deng, Qinglan Wang
    Frontiers in Immunology.2025;[Epub]     CrossRef
[Protocol] Use of Cas9 Targeting and Red Recombination for Designer Phage Engineering
Shin-Yae Choi , Danitza Xiomara Romero-Calle , Han-Gyu Cho , Hee-Won Bae , You-Hee Cho
J. Microbiol. 2024;62(1):1-10.   Published online February 1, 2024
DOI: https://doi.org/10.1007/s12275-024-00107-2
  • 565 View
  • 21 Download
  • 2 Web of Science
  • 4 Crossref
AbstractAbstract PDF
Bacteriophages (phages) are natural antibiotics and biological nanoparticles, whose application is significantly boosted by recent advances of synthetic biology tools. Designer phages are synthetic phages created by genome engineering in a way to increase the benefits or decrease the drawbacks of natural phages. Here we report the development of a straightforward genome engineering method to efficiently obtain engineered phages in a model bacterial pathogen, Pseudomonas aeruginosa. This was achieved by eliminating the wild type phages based on the Streptococcus pyogenes Cas9 (SpCas9) and facilitating the recombinant generation based on the Red recombination system of the coliphage λ (λRed). The producer (PD) cells of P. aeruginosa strain PAO1 was created by miniTn7-based chromosomal integration of the genes for SpCas9 and λRed under an inducible promoter. To validate the efficiency of the recombinant generation, we created the fluorescent phages from a temperate phage MP29. A plasmid bearing the single guide RNA (sgRNA) gene for selectively targeting the wild type gp35 gene and the editing template for tagging the Gp35 with superfolder green fluorescent protein (sfGFP) was introduced into the PD cells by electroporation. We found that the targeting efficiency was affected by the position and number of sgRNA. The fluorescent phage particles were efficiently recovered from the culture of the PD cells expressing dual sgRNA molecules. This protocol can be used to create designer phages in P. aeruginosa for both application and research purposes.

Citations

Citations to this article as recorded by  
  • Pilin regions that select for the small RNA phages in Pseudomonas aeruginosa type IV pilus
    Hee-Won Bae, Hyeong-Jun Ki, Shin-Yae Choi, You-Hee Cho, Kristin N. Parent
    Journal of Virology.2025;[Epub]     CrossRef
  • Synthetic and Functional Engineering of Bacteriophages: Approaches for Tailored Bactericidal, Diagnostic, and Delivery Platforms
    Ola Alessa, Yoshifumi Aiba, Mahmoud Arbaah, Yuya Hidaka, Shinya Watanabe, Kazuhiko Miyanaga, Dhammika Leshan Wannigama, Longzhu Cui
    Molecules.2025; 30(15): 3132.     CrossRef
  • Characteristics of bioaerosols under high-ozone periods, haze episodes, dust storms, and normal days in Xi’an, China
    Yiming Yang, Liu Yang, Xiaoyan Hu, Zhenxing Shen
    Particuology.2024; 90: 140.     CrossRef
  • Airborne desert dust and aeromicrobiology over the Turkish Mediterranean coastline
    Dale W. Griffin, Nilgün Kubilay, Mustafa Koçak, Mike A. Gray, Timothy C. Borden, Eugene A. Shinn
    Atmospheric Environment.2007; 41(19): 4050.     CrossRef
Review
Bacterial Crosstalk via Antimicrobial Peptides on the Human Skin: Therapeutics from a Sustainable Perspective
Seon Mi Lee , Hye Lim Keum , Woo Jun Sul
J. Microbiol. 2023;61(1):1-11.   Published online January 31, 2023
DOI: https://doi.org/10.1007/s12275-022-00002-8
  • 375 View
  • 3 Download
  • 3 Web of Science
  • 7 Crossref
AbstractAbstract PDF
The skin’s epidermis is an essential barrier as the first guard against invading pathogens, and physical protector from external injury. The skin microbiome, which consists of numerous bacteria, fungi, viruses, and archaea on the epidermis, play a key role in skin homeostasis. Antibiotics are a fast-acting and effective treatment method, however, antibiotic use is a nuisance that can disrupt skin homeostasis by eradicating beneficial bacteria along with the intended pathogens and cause antibioticresistant bacteria spread. Increased numbers of antimicrobial peptides (AMPs) derived from humans and bacteria have been reported, and their roles have been well defined. Recently, modulation of the skin microbiome with AMPs rather than artificially synthesized antibiotics has attracted the attention of researchers as many antibiotic-resistant strains make treatment mediation difficult in the context of ecological problems. Herein, we discuss the overall insights into the skin microbiome, including its regulation by different AMPs, as well as their composition and role in health and disease.

Citations

Citations to this article as recorded by  
  • The epidermal lipid-microbiome loop and immunity: Important players in atopic dermatitis
    Junchao Wu, Lisha Li, Tingrui Zhang, Jiaye Lu, Zongguang Tai, Quangang Zhu, Zhongjian Chen
    Journal of Advanced Research.2025; 68: 359.     CrossRef
  • Marine algal polysaccharides: Multifunctional bioactive ingredients for cosmetic formulations
    Si-Yuan Lu, Tao Zhou, Iqra Shabbir, Jaehwan Choi, Young Heui Kim, Myeongsam Park, Jude Juventus Aweya, Karsoon Tan, Saiyi Zhong, Kit-Leong Cheong
    Carbohydrate Polymers.2025; 353: 123276.     CrossRef
  • The interaction between the skin microbiome and antimicrobial peptides within the epidermal immune microenvironment: Bridging insights into atopic dermatitis
    Shan Wang, Ge Peng, Alafate Abudouwanli, Mengyao Yang, Quan Sun, Wanchen Zhao, Arisa Ikeda, Yi Tan, Lin Ma, Hideoki Ogawa, Ko Okumura, François Niyonsaba
    Allergology International.2025;[Epub]     CrossRef
  • The dual role of skin microbiome modulation in precision care for atopic dermatitis: A review
    Xue Chen
    Health Sciences Review.2025; 17: 100245.     CrossRef
  • A review on pathogenicity of Aeromonas hydrophila and their mitigation through medicinal herbs in aquaculture
    Anurag Semwal, Avdhesh Kumar, Neelesh Kumar
    Heliyon.2023; 9(3): e14088.     CrossRef
  • Fırtına Deresindeki Gökkuşağı Alabalık Çiftliklerinde İzole Edilen Aeromonas spp. İzolatlarının Antimikrobiyel Hassasiyetin Belirlenmesi
    Fikri BALTA
    Journal of Anatolian Environmental and Animal Sciences.2020; 5(3): 397.     CrossRef
  • Monitoring microbial community structure and succession of an A/O SBR during start-up period using PCR-DGGE
    Xiuheng WANG, Kun ZHANG, Nanqi REN, Nan LI, Lijiao REN
    Journal of Environmental Sciences.2009; 21(2): 223.     CrossRef
Journal Articles
Assessing the microcystins concentration through optimized protein phosphatase inhibition assay in environmental samples
Kyoung-Hee Oh , Kung-Min Beak , Yuna Shin , Young-Cheol Cho
J. Microbiol. 2022;60(6):602-609.   Published online April 30, 2022
DOI: https://doi.org/10.1007/s12275-022-2020-4
  • 360 View
  • 0 Download
  • 3 Web of Science
  • 3 Crossref
AbstractAbstract PDF
Protein phosphatase (PPase) inhibition assay (PPIA) is widely used to analyze the concentration of microcystins (MCs) because it is comparatively less expensive and faster than other assays. This study aimed to optimize the PPIA by determining a suitable reaction terminator and an optimal methanol concentration in the sample. The most suitable reaction time was 90 min, with the corresponding methanol concentration in the sample being 15% or less. When p-nitrophenyl phosphate (pNPP) was used as a substrate, copper chloride solution was suitably used as a reaction terminator, and when 4- methylumbelliferyl phosphate (MUP) was used, a glycine buffer not only increased the measurement sensitivity of the reaction product but also terminated the enzymatic reaction. When PPase 1 and MUP were used as an enzyme and a substrate, respectively, the limit of quantitation for MC-leucine/ arginine (LR) was 0.02 μg/L, whereas it was 0.1 μg/L when pNPP was used as a substrate. The proposed method facilitated the measurement of MC-LR concentration without additional pretreatments, such as concentration or purification; therefore, this method was suitable and feasible for the continuous monitoring of MCs in drinking water.

Citations

Citations to this article as recorded by  
  • Acid phosphatase detection using a colorimetric probe based on azo compound toward forensic applications for seminal fluid identification
    Jéssica Raimundo da Rocha, Marcone Gomes dos Santos Alcântara, Verônica Diniz da Silva, Dimas José da Paz Lima, Josué Carinhanha Caldas Santos
    Dyes and Pigments.2025; 239: 112806.     CrossRef
  • Analyzing MC-LR distribution characteristics in natural lakes by a novel fluorescence technology
    Xiangyu Hu, Zhaomin Wang, Xiao Ye, Ping Xie, Yong Liu
    Environmental Pollution.2024; 342: 123123.     CrossRef
  • Magnetic solid phase extraction coupled with high-performance liquid chromatography-diode array detection based on assembled magnetic covalent organic frameworks for selective extraction and detection of microcystins in aquatic foods
    Tianliang Wang, Hongzhen Xie, Yuting Cao, Qing Xu, Ning Gan
    Journal of Chromatography A.2022; 1685: 463614.     CrossRef
[PROTOCOL] Flow cytometric monitoring of the bacterial phenotypic diversity in aquatic ecosystems
Jin-Kyung Hong , Soo Bin Kim , Seok Hyun Ahn , Yongjoo Choi , Tae Kwon Lee
J. Microbiol. 2021;59(10):879-885.   Published online September 23, 2021
DOI: https://doi.org/10.1007/s12275-021-1443-7
  • 391 View
  • 1 Download
  • 3 Web of Science
  • 3 Crossref
AbstractAbstract PDF
Flow cytometry is a promising tool used to identify the phenotypic features of bacterial communities in aquatic ecosystems by measuring the physical and chemical properties of cells based on their light scattering behavior and fluorescence. Compared to molecular or culture-based approaches, flow cytometry is suitable for the online monitoring of microbial water quality because of its relatively simple sample preparation process, rapid analysis time, and high-resolution phenotypic data. Advanced statistical techniques (e.g., denoising and binning) can be utilized to successfully calculate phenotypic diversity by processing the scatter data obtained from flow cytometry. These phenotypic diversities were well correlated with taxonomic-based diversity computed using nextgeneration 16S RNA gene sequencing. The protocol provided in this paper should be a useful guide for a fast and reliable flow cytometric monitoring of bacterial phenotypic diversity in aquatic ecosystems.

Citations

Citations to this article as recorded by  
  • Enhancing Bacterial Phenotype Classification Through the Integration of Autogating and Automated Machine Learning in Flow Cytometric Analysis
    In Jae Jeong, Jin‐Kyung Hong, Young Jun Bae, Tea Kwon Lee
    Cytometry Part A.2025; 107(3): 203.     CrossRef
  • Assessing long-term ecological impacts of PCE contamination in groundwater using a flow cytometric fingerprint approach
    Jin-Kyung Hong, Soo Bin Kim, Gui Nam Wee, Bo Ram Kang, Jee Hyun No, Susmita Das Nishu, Joonhong Park, Tae Kwon Lee
    Science of The Total Environment.2024; 931: 172698.     CrossRef
  • Phenotypic shifts induced by environmental pre-stressors modify antibiotic resistance in Staphylococcus aureus
    Gui Nam Wee, Eun Sun Lyou, Susmita Das Nishu, Tae Kwon Lee
    Frontiers in Microbiology.2023;[Epub]     CrossRef
Raman spectroscopy reveals alteration of spore compositions under different nutritional conditions in Lysinibacillus boronitolerans YS11
Youngung Ryu , Minyoung Hong , Soo Bin Kim , Tae Kwon Lee , Woojun Park
J. Microbiol. 2021;59(5):491-499.   Published online March 29, 2021
DOI: https://doi.org/10.1007/s12275-021-0679-6
  • 387 View
  • 0 Download
  • 7 Web of Science
  • 7 Crossref
AbstractAbstract PDF
Little is known about final spores components when bacteria undergo sporulation under different nutrient conditions. Different degrees of resistance and germination rates were observed in the three types of spores of Lysinibacillus boronitolerans YS11 (SD, Spores formed in Difco sporulation mediumTM; SC and SF, Spores formed in an agricultural byproduct medium with 10 mM CaCl2 and with 10 mM FeSO4, respectively). Stronger UV resistance was recorded for SF with 1.8–2.3-fold greater survival than SC and SD under UV treatment. The three spore types showed similar heat resistances at 80°C, but survival rates of SC and SD were much higher (~1,000 times) than those of SF at 90°C. However, germination capacity of SF was 20% higher than those of SD and SC on Luria-Bertani agar plates for 24 h. SF germinated more rapidly in a liquid medium with high NaCl concentrations than SC and SD, but became slower under alkaline conditions. Raman spectroscopy was used to analyze the heterogeneities in the three types of vegetative cells and their spores under different nutritional conditions. Exponentially grown-each vegetative cells had different overall Raman peak values. Raman peaks of SC, SD, and SF also showed differences in adenine and amide III compositions and nucleic acid contents. Our data along with Raman spectroscopy provided the evidence that spores formed under under different growth conditions possess very different cellular components, which affected their survival and germination rates.

Citations

Citations to this article as recorded by  
  • Characterization of the Bacillus cereus spore killed by plasma-activated water (PAW)
    Xiao Hu, Pengfei Ge, Xiaomeng Wang, Xinyu Liao, Jinsong Feng, Ruiling Lv, Tian Ding
    Food Research International.2024; 196: 115058.     CrossRef
  • Alleviation of H2O2 toxicity by extracellular catalases in the phycosphere of Microcystis aeruginosa
    Yerim Park, Wonjae Kim, Yeji Cha, Minkyung Kim, Woojun Park
    Harmful Algae.2024; 137: 102680.     CrossRef
  • Effects of sporulation conditions on the growth, germination, and resistance of Clostridium perfringens spores
    Dong Liang, Xiaoshuang Cui, Miaoyun Li, Yaodi Zhu, Lijun Zhao, Shijie Liu, Gaiming Zhao, Na Wang, Yangyang Ma, Lina Xu
    International Journal of Food Microbiology.2023; 396: 110200.     CrossRef
  • Lysinibacilli: A Biological Factories Intended for Bio-Insecticidal, Bio-Control, and Bioremediation Activities
    Qazi Mohammad Sajid Jamal, Varish Ahmad
    Journal of Fungi.2022; 8(12): 1288.     CrossRef
  • Discrimination of Stressed and Non-Stressed Food-Related Bacteria Using Raman-Microspectroscopy
    Daniel Klein, René Breuch, Jessica Reinmüller, Carsten Engelhard, Peter Kaul
    Foods.2022; 11(10): 1506.     CrossRef
  • Detection of low numbers of bacterial cells in a pharmaceutical drug product using Raman spectroscopy and PLS-DA multivariate analysis
    R. A. Grosso, A. R. Walther, E. Brunbech, A. Sørensen, B. Schebye, K. E. Olsen, H. Qu, M. A. B. Hedegaard, E. C. Arnspang
    The Analyst.2022; 147(15): 3593.     CrossRef
  • Linkage between bacterial community-mediated hydrogen peroxide detoxification and the growth of Microcystis aeruginosa
    Minkyung Kim, Wonjae Kim, Yunho Lee, Woojun Park
    Water Research.2021; 207: 117784.     CrossRef
Patterns and drivers of Vibrio isolates phylogenetic diversity in the Beibu Gulf, China
Xing Chen , Hong Du , Si Chen , Xiaoli Li , Huaxian Zhao , Qiangsheng Xu , Jinli Tang , Gonglingxia Jiang , Shuqi Zou , Ke Dong , Jonathan M. Adams , Nan Li , Chengjian Jiang
J. Microbiol. 2020;58(12):998-1009.   Published online October 23, 2020
DOI: https://doi.org/10.1007/s12275-020-0293-z
  • 379 View
  • 0 Download
  • 4 Web of Science
  • 3 Crossref
AbstractAbstract PDF
Members of the genus Vibrio are ubiquitous in aquatic environments and can be found either in a culturable or a viable but nonculturable (VBNC) state. Despite widespread concerns as to how to define the occurrence and dynamics of Vibrio populations by culture-independent approaches, further physiological research and relevant biotechnological developments will require the isolation and cultivation of the microbes from various environments. The present work provides data and perspectives on our understanding of culturable Vibrio community structure and diversity in the Beibu Gulf. Finally, we isolated 1,037 strains of Vibrio from 45 samples and identified 18 different species. Vibrio alginolyticus, V. cyclitrophicus, V. tasmaniensis, V. brasiliensis, and V. splendidus were the dominant species that had regional distribution characteristics. The correlation between the quantitative distribution and community structure of culturable Vibrio and environmental factors varied with the Vibrio species and geographical locations. Among them, salinity, nitrogen, and phosphorus were the main factors affecting the diversity of culturable Vibrio. These results help to fill a knowledge gap on Vibrio diversity and provide data for predicting and controlling pathogenic Vibrio outbreaks in the Beibu Gulf.

Citations

Citations to this article as recorded by  
  • Environmental factors that regulate Vibrio spp. abundance and community structure in tropical waters
    Yi You Wong, Choon Weng Lee, Chui Wei Bong, Joon Hai Lim, Ching Ching Ng, Kumaran Narayanan, Edmund Ui Hang Sim, Ai-jun Wang
    Anthropocene Coasts.2024;[Epub]     CrossRef
  • Co-occurrence of chromophytic phytoplankton and the Vibrio community during Phaeocystis globosa blooms in the Beibu Gulf
    Qiangsheng Xu, Pengbin Wang, Jinghua Huangleng, Huiqi Su, Panyan Chen, Xing Chen, Huaxian Zhao, Zhenjun Kang, Jinli Tang, Gonglingxia Jiang, Zhuoting Li, Shuqi Zou, Ke Dong, Yuqing Huang, Nan Li
    Science of The Total Environment.2022; 805: 150303.     CrossRef
  • Virulence mechanisms of vibrios belonging to the Splendidus clade as aquaculture pathogens, from case studies and genome data
    Weiwei Zhang, Chenghua Li
    Reviews in Aquaculture.2021; 13(4): 2004.     CrossRef
Phenotypic characterization of a conserved inner membrane protein YhcB in Escherichia coli
Chul Gi Sung , Umji Choi , Chang-Ro Lee
J. Microbiol. 2020;58(7):598-605.   Published online April 22, 2020
DOI: https://doi.org/10.1007/s12275-020-0078-4
  • 359 View
  • 0 Download
  • 6 Web of Science
  • 6 Crossref
AbstractAbstract PDF
Although bacteria have diverse membrane proteins, the function of many of them remains unknown or uncertain even in Escherichia coli. In this study, to investigate the function of hypothetical membrane proteins, genome-wide analysis of phenotypes of hypothetical membrane proteins was performed under various envelope stresses. Several genes responsible for adaptation to envelope stresses were identified. Among them, deletion of YhcB, a conserved inner membrane protein of unknown function, caused high sensitivities to various envelope stresses and increased membrane permeability, and caused growth defect under normal growth conditions. Furthermore, yhcB deletion resulted in morphological aberration, such as branched shape, and cell division defects, such as filamentous growth and the generation of chromosome- less cells. The analysis of antibiotic susceptibility showed that the yhcB mutant was highly susceptible to various anti-folate antibiotics. Notably, all phenotypes of the yhcB mutant were completely or significantly restored by YhcB without the transmembrane domain, indicating that the localization of YhcB on the inner membrane is dispensable for its function. Taken together, our results demonstrate that YhcB is involved in cell morphology and cell division in a membrane localization-independent manner.

Citations

Citations to this article as recorded by  
  • Inhibition of cardiolipin biosynthesis partially suppresses the sensitivity of an Escherichia coli mutant lacking OmpC to envelope stress
    Dae-Beom Ryu, Umji Choi, Gyubin Han, Chang-Ro Lee
    Journal of Microbiology.2025; 63(11): e2507004.     CrossRef
  • Co-ordinated assembly of the multilayered cell envelope of Gram-negative bacteria
    Elayne M Fivenson, Laurent Dubois, Thomas G Bernhardt
    Current Opinion in Microbiology.2024; 79: 102479.     CrossRef
  • Loss of YhcB results in overactive fatty acid biosynthesis
    Hannah M. Stanley, M. Stephen Trent, K. Heran Darwin
    mBio.2024;[Epub]     CrossRef
  • A New Factor LapD Is Required for the Regulation of LpxC Amounts and Lipopolysaccharide Trafficking
    Alicja Wieczorek, Anna Sendobra, Akshey Maniyeri, Magdalena Sugalska, Gracjana Klein, Satish Raina
    International Journal of Molecular Sciences.2022; 23(17): 9706.     CrossRef
  • Loss of YhcB results in dysregulation of coordinated peptidoglycan, LPS and phospholipid synthesis during Escherichia coli cell growth
    Emily C. A. Goodall, Georgia L. Isom, Jessica L. Rooke, Karthik Pullela, Christopher Icke, Zihao Yang, Gabriela Boelter, Alun Jones, Isabel Warner, Rochelle Da Costa, Bing Zhang, James Rae, Wee Boon Tan, Matthias Winkle, Antoine Delhaye, Eva Heinz, Jean-F
    PLOS Genetics.2021; 17(12): e1009586.     CrossRef
  • The inner membrane protein LapB is required for adaptation to cold stress in an LpxC-independent manner
    Han Byeol Lee, Si Hyoung Park, Chang-Ro Lee
    Journal of Microbiology.2021; 59(7): 666.     CrossRef
Soft sweep development of resistance in Escherichia coli under fluoroquinolone stress
Xianxing Xie , Ruichen Lv , Chao Yang , Yajun Song , Yanfeng Yan , Yujun Cui , Ruifu Yang
J. Microbiol. 2019;57(12):1056-1064.   Published online September 25, 2019
DOI: https://doi.org/10.1007/s12275-019-9177-5
  • 339 View
  • 0 Download
  • 2 Web of Science
  • 1 Crossref
AbstractAbstract PDF
We employed a stepwise selection model for investigating the dynamics of antibiotic-resistant variants in Escherichia coli K-12 treated with increasing concentrations of ciprofloxacin (CIP). Firstly, we used Sanger sequencing to screen the variations in the fluoquinolone target genes, then, employed Illumina NGS sequencing for amplicons targeted regions with variations. The results demonstrated that variations G81C in gyrA and K276N and K277L in parC are standing resistance variations (SRVs), while S83A and S83L in gyrA and G78C in parC were emerging resistance variations (ERVs). The variants containing SRVs and/or ERVs were selected successively based on their sensitivities to CIP. Variant strain 1, containing substitution G81C in gyrA, was immediately selected following ciprofloxacin exposure, with obvious increases in the parC SRV, and parC and gyrA ERV allele frequencies. Variant strain 2, containing the SRVs, then dominated the population following a 20× increase in ciprofloxacin concentration, with other associated allele frequencies also elevated. Variant strains 3 and 4, containing ERVs in gyrA and parC, respectively, were then selected at 40× and 160× antibiotic concentrations. Two variants, strains 5 and 6, generated in the selection procedure, were lost because of higher fitness costs or a lower level of resistance compared with variants 3 and 4. For the second induction, all variations/indels were already present as SRVs and selected out step by step at different passages. Whatever the first induction or second induction, our results confirmed the soft selective sweep hypothesis and provided critical information for guiding clinical treatment of pathogens containing SRVs.

Citations

Citations to this article as recorded by  
  • Could traces of fluoroquinolones in food induce ciprofloxacin resistance in Escherichia coli and Klebsiella pneumoniae ? An in vivo study in Galleria mellonel
    Zina Gestels, Yuliia Baranchyk, Dorien Van den Bossche, Jolein Laumen, Said Abdellati, Basil Britto Xavier, Sheeba Santhini Manoharan-Basil, Chris Kenyon, Sadjia Bekal, Mustafa Sadek
    Microbiology Spectrum.2024;[Epub]     CrossRef
Transcriptome analysis to understand the effects of the toxoflavin and tropolone produced by phytopathogenic Burkholderia on Escherichia coli
Jungwook Park , Hyun-Hee Lee , Hyejung Jung , Young-Su Seo
J. Microbiol. 2019;57(9):781-794.   Published online August 27, 2019
DOI: https://doi.org/10.1007/s12275-019-9330-1
  • 319 View
  • 0 Download
  • 9 Web of Science
  • 8 Crossref
AbstractAbstract PDF
The phytopathogenic Burkholderia species B. glumae and B. plantarii are the causal agents of bacterial wilt, grain rot, and seedling blight, which threaten the rice industry globally. Toxoflavin and tropolone are produced by these phytopathogens and are considered the most hostile biohazards with a broad spectrum of target organisms. However, despite their nonspecific toxicity, the effects of toxoflavin and tropolone on bacteria remain unknown. RNA-seq based transcriptome analysis was employed to determine the genome-wide expression patterns under phytotoxin treatment. Expression of 2327 and 830 genes was differentially changed by toxoflavin and tropolone, respectively. Enriched biological pathways reflected the down-regulation of oxidative phosphorylation and ribosome function, beginning with the inhibition of membrane biosynthesis and nitrogen metabolism under oxidative stress or iron starvation. Conversely, several systems such as bacterial chemotaxis, flagellar assembly, biofilm formation, and sulfur/taurine transporters were highly expressed as countermeasures against the phytotoxins. In addition, our findings revealed that three hub genes commonly induced by both phytotoxins function as the siderophore enterobactin, an ironchelator. Our study provides new insights into the effects of phytotoxins on bacteria for better understanding of the interactions between phytopathogens and other microorganisms. These data will also be applied as a valuable source in subsequent applications against phytotoxins, the major virulence factor.

Citations

Citations to this article as recorded by  
  • AHL-Based Quorum Sensing Regulates the Biosynthesis of a Variety of Bioactive Molecules in Bacteria
    Mélanie Gonzales, Pauline Jacquet, Floriane Gaucher, Éric Chabrière, Laure Plener, David Daudé
    Journal of Natural Products.2024; 87(4): 1268.     CrossRef
  • Determination of bacterial toxin toxoflavin and fervenulin in food and identification of their degradation products
    Hui Wang, Lili Hu, Xiaotu Chang, Yuge Hu, Yan Zhang, Peng Zhou, Xiaojiao Cui
    Food Chemistry.2023; 399: 134010.     CrossRef
  • Antimicrobial peptides in combination with citronellal efficiently kills multidrug resistance bacteria
    Zhanyi Yang, Shiqi He, Yingxin Wei, Xuefeng Li, Anshan Shan, Jiajun Wang
    Phytomedicine.2023; 120: 155070.     CrossRef
  • A membrane protein of the rice pathogen Burkholderia glumae required for oxalic acid secretion and quorum sensing
    Asif Iqbal, George Nwokocha, Vijay Tiwari, Inderjit K. Barphagha, Anne Grove, Jong Hyun Ham, William T. Doerrler
    Molecular Plant Pathology.2023; 24(11): 1400.     CrossRef
  • Characterisation of Pythium aristosporum Oomycete—A Novel Pathogen Causing Rice Seedling Blight in China
    Jinxin Liu, Ruisi Zhang, Chuzhen Xu, Chunlai Liu, Yanyan Zheng, Xue Zhang, Shasha Liu, Yonggang Li
    Journal of Fungi.2022; 8(9): 890.     CrossRef
  • Toxoflavin secreted by Pseudomonas alcaliphila inhibits the growth of Legionella pneumophila and Vermamoeba vermiformis
    Sebastien P. Faucher, Sara Matthews, Arvin Nickzad, Passoret Vounba, Deeksha Shetty, Émilie Bédard, Michele Prévost, Eric Déziel, Kiran Paranjape
    Water Research.2022; 216: 118328.     CrossRef
  • Chemical or Genetic Alteration of Proton Motive Force Results in Loss of Virulence of Burkholderia glumae, the Cause of Rice Bacterial Panicle Blight
    Asif Iqbal, Pradip R. Panta, John Ontoy, Jobelle Bruno, Jong Hyun Ham, William T. Doerrler, Gladys Alexandre
    Applied and Environmental Microbiology.2021;[Epub]     CrossRef
  • Multiple endogenous seed-born bacteria recovered rice growth disruption caused by Burkholderia glumae
    Chiharu Akimoto-Tomiyama
    Scientific Reports.2021;[Epub]     CrossRef
Reviews
MINIREVIEW] EAST1 toxin: An enigmatic molecule associated with sporadic episodes of diarrhea in humans and animals
J. Daniel Dubreuil
J. Microbiol. 2019;57(7):541-549.   Published online June 27, 2019
DOI: https://doi.org/10.1007/s12275-019-8651-4
  • 393 View
  • 0 Download
  • 25 Web of Science
  • 23 Crossref
AbstractAbstract PDF
EAST1 is produced by a subset of enteroaggregative Escherichia coli strains. This toxin is a 38-amino acid peptide of 4100 Da. It shares 50% homology with the enterotoxic domain of STa and interacts with the same receptor. The mechanism of action of EAST1is proposed to be identical to that of STa eliciting a cGMP increase. EAST1 is associated with diarrheal disease in Man and various animal species including cattle and swine. Nevertheless, as EAST1-positive strains as well as culture supernatants did not provoke unequivocally diarrhea either in animal models or in human volunteers, the role of this toxin in disease is today still debated. This review intent is to examine the role of EAST1 toxin in diarrheal illnesses.

Citations

Citations to this article as recorded by  
  • Population Structure, Genomic Features, and Antibiotic Resistance of Avian Pathogenic Escherichia coli in Shandong Province and Adjacent Regions, China (2008–2023)
    Shikai Song, Yao Wang, Zhihai Liu, Rongling Zhang, Kaiyuan Li, Bin Yin, Zunxiang Yan, Shifa Yang, Shuqian Lin, Yunpeng Yi
    Microorganisms.2025; 13(7): 1655.     CrossRef
  • Genomic characterization of multidrug-resistant Escherichia albertii of fish origin—first isolation and insights into a potential food safety threat
    Kandhan Srinivas, Sandeep Ghatak, Arockiasamy Arun Prince Milton, Samir Das, Kekungu-u Puro, Daniel Aibor Pyngrope, Madesh Angappan, Mosuri Chendu Bharat Prasad, Dadimi Bhargavi, Nur Abdul Kader, Vanita Lyngdoh, Heiborkie Shilla, John Pynhun Lamare
    Frontiers in Microbiology.2025;[Epub]     CrossRef
  • Enteroaggregative Escherichia coli (EAEC)
    Viktoria Van Nederveen, Angela R. Melton-Celsa, Shannon D. Manning
    EcoSal Plus.2025;[Epub]     CrossRef
  • Targeting Enterotoxins: Advancing Vaccine Development for Enterotoxigenic Escherichia coli ETEC
    Josune Salvador-Erro, Yadira Pastor, Carlos Gamazo
    Toxins.2025; 17(2): 71.     CrossRef
  • Virulence and Antimicrobial Resistance Profiles of Shiga Toxin-Producing Escherichia coli from River Water and Farm Animal Feces near an Agricultural Region in Northwestern Mexico
    Bianca A. Amézquita-López, Marcela Soto-Beltrán, Bertram G. Lee, Edgar F. Bon-Haro, Ofelia Y. Lugo-Melchor, Beatriz Quiñones
    Microbiology Research.2024; 15(1): 385.     CrossRef
  • Survey in ruminants from Rwanda revealed high diversity and prevalence of extended-spectrum cephalosporin-resistant Enterobacterales
    Emmanuel Irimaso, Helga Keinprecht, Michael P. Szostak, Adriana Cabal Rosel, Beatrix Stessl, Amelie Desvars-Larrive, Christophe Ntakirutimana, Otto W. Fischer, Thomas Wittek, Elke Müller, Andrea T. Feßler, Sascha D. Braun, Stefan Schwarz, Stefan Monecke,
    BMC Veterinary Research.2024;[Epub]     CrossRef
  • The genetic potential of toxigenic Escherichia coli isolated from calves and piglets
    Aleksandr Tischenko, Andrey Koschaev, Aleksandr Valerievich Milovanov, Anastasiya Vasil'evna Elisyutikova, Vladimir Ivanovich Terehov, Tat'yana Vyacheslavovna Malysheva
    Agrarian Bulletin of the.2024; 24(08): 1071.     CrossRef
  • Characterisation of ESBL/AmpC-Producing Enterobacteriaceae isolated from poultry farms in Peninsular Malaysia
    Hui-Shee Tan, Pan Yan, Hollysia Alda Agustie, Hwei-San Loh, Nabin Rayamajhi, Chee-Mun Fang
    Letters in Applied Microbiology.2023;[Epub]     CrossRef
  • Genomic traits of multidrug resistant enterotoxigenic Escherichia coli isolates from diarrheic pigs
    Jiameng Hu, Junlin Li, Xiaobo Huang, Jing Xia, Min Cui, Yong Huang, Yiping Wen, Yue Xie, Qin Zhao, Sanjie Cao, Likou Zou, Xinfeng Han
    Frontiers in Microbiology.2023;[Epub]     CrossRef
  • An exploration of alginate oligosaccharides modulating intestinal inflammatory networks via gut microbiota
    Zhikai Zhang, Xuejiang Wang, Feng Li
    Frontiers in Microbiology.2023;[Epub]     CrossRef
  • Characteristics, Whole-Genome Sequencing and Pathogenicity Analysis of Escherichia coli from a White Feather Broiler Farm
    Shaopeng Wu, Lulu Cui, Yu Han, Fang Lin, Jiaqi Huang, Mengze Song, Zouran Lan, Shuhong Sun
    Microorganisms.2023; 11(12): 2939.     CrossRef
  • Genome-Based Assessment of Antimicrobial Resistance and Virulence Potential of Isolates of Non-Pullorum/Gallinarum Salmonella Serovars Recovered from Dead Poultry in China
    Yan Li, Xiamei Kang, Abdelaziz Ed-Dra, Xiao Zhou, Chenghao Jia, Anja Müller, Yuqing Liu, Corinna Kehrenberg, Min Yue, Sandeep Tamber
    Microbiology Spectrum.2022;[Epub]     CrossRef
  • Virulence Characteristics, Antibiotic Resistance Patterns and Molecular Typing of Enteropathogenic Producing Escherichia coli (EPEC) Isolates in Eastern Province of Saudi Arabia: 2013–2014
    Lamya Zohair Yamani, Nasreldin Elhadi
    Infection and Drug Resistance.2022; Volume 15: 6763.     CrossRef
  • Genomic Analysis of a Highly Virulent NDM-1-Producing Escherichia coli ST162 Infecting a Pygmy Sperm Whale (Kogia breviceps) in South America
    Fábio P. Sellera, Brenda Cardoso, Danny Fuentes-Castillo, Fernanda Esposito, Elder Sano, Herrison Fontana, Bruna Fuga, Daphne W. Goldberg, Lourdes A. V. Seabra, Marzia Antonelli, Sandro Sandri, Cristiane K. M. Kolesnikovas, Nilton Lincopan
    Frontiers in Microbiology.2022;[Epub]     CrossRef
  • Identification and Genomic Characterization of Escherichia albertii in Migratory Birds from Poyang Lake, China
    Qian Liu, Xiangning Bai, Xi Yang, Guoyin Fan, Kui Wu, Wentao Song, Hui Sun, Shengen Chen, Haiying Chen, Yanwen Xiong
    Pathogens.2022; 12(1): 9.     CrossRef
  • Prevalence of virulence genes among Escherichia coli strains isolated from food and carcass swabs of different animal origins in Croatia
    Dora Stojević, Andrea Humski, Marina Mikulić, Vesna Dobranić, Irena Reil, Sanja Duvnjak, Miroslav Benić, Relja Beck, Željko Cvetnić
    Journal of Veterinary Research.2022; 66(3): 395.     CrossRef
  • Characterization of virulence determinants and phylogenetic background of multiple and extensively drug resistant Escherichia coli isolated from different clinical sources in Egypt
    Rana El-baz, Heba Shehta Said, Eman Salama Abdelmegeed, Rasha Barwa
    Applied Microbiology and Biotechnology.2022; 106(3): 1279.     CrossRef
  • Prevalence and Characterization of Quinolone-Resistance Determinants in Escherichia coli Isolated from Food-Producing Animals and Animal-Derived Food in the Philippines
    Lawrence Belotindos, Marvin Villanueva, Joel Miguel, Precious Bwalya, Tetsuya Harada, Ryuji Kawahara, Chie Nakajima, Claro Mingala, Yasuhiko Suzuki
    Antibiotics.2021; 10(4): 413.     CrossRef
  • Potential Zoonotic Pathovars of Diarrheagenic Escherichia coli Detected in Lambs for Human Consumption from Tierra del Fuego, Argentina
    Ximena Blanco Crivelli, María Paz Bonino, Mariana Soledad Sanin, Juan Facundo Petrina, Vilma Noelia Disalvo, Rosana Massa, Elizabeth Miliwebsky, Armando Navarro, Isabel Chinen, Adriana Bentancor
    Microorganisms.2021; 9(8): 1710.     CrossRef
  • Post-weaning diarrhea in pigs weaned without medicinal zinc: risk factors, pathogen dynamics, and association to growth rate
    Esben Østergaard Eriksen, Egle Kudirkiene, Anja Ejlersgård Christensen, Marianne Viuf Agerlin, Nicolai Rosager Weber, Ane Nødtvedt, Jens Peter Nielsen, Katrine Top Hartmann, Lotte Skade, Lars Erik Larsen, Karen Pankoke, John Elmerdahl Olsen, Henrik Elvang
    Porcine Health Management.2021;[Epub]     CrossRef
  • Pig vaccination strategies based on enterotoxigenic Escherichia coli toxins
    J. Daniel Dubreuil
    Brazilian Journal of Microbiology.2021; 52(4): 2499.     CrossRef
  • Characterization of E. coli Isolates Producing Extended Spectrum Beta-Lactamase SHV-Variants from the Food Chain in Germany
    Alexandra Irrgang, Ge Zhao, Katharina Juraschek, Annemarie Kaesbohrer, Jens A. Hammerl
    Microorganisms.2021; 9(9): 1926.     CrossRef
  • Genomic data reveal international lineages of critical priority Escherichia coli harbouring wide resistome in Andean condors (Vultur gryphus Linnaeus, 1758)
    Danny Fuentes‐Castillo, Fernanda Esposito, Brenda Cardoso, Gislaine Dalazen, Quézia Moura, Bruna Fuga, Herrison Fontana, Louise Cerdeira, Milena Dropa, Jürgen Rottmann, Daniel González‐Acuña, José L. Catão‐Dias, Nilton Lincopan
    Molecular Ecology.2020; 29(10): 1919.     CrossRef
REVIEW] Antibiotic-resistant clones in Gram-negative pathogens: presence of global clones in Korea
Kwan Soo Ko
J. Microbiol. 2019;57(3):195-202.   Published online October 2, 2018
DOI: https://doi.org/10.1007/s12275-019-8491-2
  • 348 View
  • 0 Download
  • 7 Web of Science
  • 9 Crossref
AbstractAbstract PDF
Antibiotic resistance is a global concern in public health. Antibiotic-resistant clones can spread nationally, internationally, and globally. This review considers representative antibiotic-resistant Gram-negative bacterial clones–CTX-M- 15-producing ST131 in Escherichia coli, extended-spectrum β-lactamase-producing ST11 and KPC-producing ST258 in Klebsiella pneumoniae, IMP-6-producing, carbapenem-resistant ST235 in Pseudomonas aeruginosa, and OXA-23- producing global clone 2 in Acinetobacter baumannii–that have disseminated worldwide, including in Korea. The findings highlight the urgency for systematic monitoring and international cooperation to suppress the emergence and propagation of antibiotic resistance.

Citations

Citations to this article as recorded by  
  • Molecular epidemiology of carbapenem-resistant gram-negative bacilli in Ecuador
    Claudia Soria-Segarra, Carmen Soria-Segarra, Marcos Molina-Matute, Ivanna Agreda-Orellana, Tamara Núñez-Quezada, Kerly Cevallos-Apolo, Marcela Miranda-Ayala, Grace Salazar-Tamayo, Margarita Galarza-Herrera, Victor Vega-Hall, José E. Villacis, José Gutiérr
    BMC Infectious Diseases.2024;[Epub]     CrossRef
  • Epidemiological and Molecular Characteristics of blaNDM-1 and blaKPC-2 Co-Occurrence Carbapenem-Resistant Klebsiella pneumoniae
    Fang Rong, Ziyi Liu, Pengbin Yang, Feng Wu, Yu Sun, Xuewei Sun, Jun Zhou
    Infection and Drug Resistance.2023; Volume 16: 2247.     CrossRef
  • Gold nanoparticle-DNA aptamer-assisted delivery of antimicrobial peptide effectively inhibits Acinetobacter baumannii infection in mice
    Jaeyeong Park, Eunkyoung Shin, Ji-Hyun Yeom, Younkyung Choi, Minju Joo, Minho Lee, Je Hyeong Kim, Jeehyeon Bae, Kangseok Lee
    Journal of Microbiology.2022; 60(1): 128.     CrossRef
  • Molecular Characterization of Carbapenem-resistant, Colistin-resistant Klebsiella pneumoniae Isolates from a Tertiary Hospital in Jeonbuk, Korea
    Tae Hee Lee, Minhyeon Cho, Jaehyeon Lee, Joo-Hee Hwang, Chang-Seop Lee, Kyung Min Chung
    Journal of Bacteriology and Virology.2021; 51(3): 120.     CrossRef
  • Transmission Dynamics of Carbapenem-Resistant Klebsiella pneumoniae Sequence Type 11 Strains Carrying Capsular Loci KL64 and rmpA/rmpA2 Genes
    Yingying Kong, Qingyang Sun, Hangfei Chen, Mohamed S. Draz, Xinyou Xie, Jun Zhang, Zhi Ruan
    Frontiers in Microbiology.2021;[Epub]     CrossRef
  • Microbiota of the lower respiratory tract in community-acquired pneumonia, including cases associated with SARS-CoV-2
    L. V. Kataeva, A. A. Vakarina, T. F. Stepanova, K. B. Stepanova
    Journal of microbiology, epidemiology and immunobiology.2021; 98(5): 528.     CrossRef
  • Global Evolution of Pathogenic Bacteria With Extensive Use of Fluoroquinolone Agents
    Miklos Fuzi, Jesus Rodriguez Baño, Akos Toth
    Frontiers in Microbiology.2020;[Epub]     CrossRef
  • Emergence, molecular mechanisms and global spread of carbapenem-resistant Acinetobacter baumannii
    Mohammad Hamidian, Steven J. Nigro
    Microbial Genomics .2019;[Epub]     CrossRef
  • Perspectives towards antibiotic resistance: from molecules to population
    Joon-Hee Lee
    Journal of Microbiology.2019; 57(3): 181.     CrossRef
Journal Articles
Hydrogen sulfide inhibits the growth of Escherichia coli through oxidative damage
Liu-Hui Fu , Zeng-Zheng Wei , Kang-Di Hu , Lan-Ying Hu , Yan-Hong Li , Xiao-Yan Chen , Zhuo Han , Gai-Fang Yao , Hua Zhang
J. Microbiol. 2018;56(4):238-245.   Published online February 28, 2018
DOI: https://doi.org/10.1007/s12275-018-7537-1
  • 455 View
  • 0 Download
  • 62 Crossref
AbstractAbstract PDF
Many studies have shown that hydrogen sulfide (H2S) is both detrimental and beneficial to animals and plants, whereas its effect on bacteria is not fully understood. Here, we report that H2S, released by sodium hydrosulfide (NaHS), significantly inhibits the growth of Escherichia coli in a dose-dependent manner. Further studies have shown that H2S treatment stimulates the production of reactive oxygen species (ROS) and decreases glutathione (GSH) levels in E. coli, resulting in lipid peroxidation and DNA damage. H2S also inhibits the antioxidative enzyme activities of superoxide dismutase (SOD), catalase (CAT) and glutathione reductase (GR) and induces the response of the SoxRS and OxyR regulons in E. coli. Moreover, pretreatment with the antioxidant ascorbic acid (AsA) could effectively prevent H2S-induced toxicity in E. coli. Taken together, our results indicate that H2S exhibits an antibacterial effect on E. coli through oxidative damage and suggest a possible application for H2S in water and food processing.

Citations

Citations to this article as recorded by  
  • Resensitization of Multi Drug-Resistant Aeromonas caviae with Exogenous Hydrogen Sulfide Potentiated Antibiotics
    Sahithya Selvakumar, Shubhi Singh, Priya Swaminathan
    Current Microbiology.2025;[Epub]     CrossRef
  • Metagenomics and metatranscriptomics insights into microbial enhancement of H2S removal and CO2 assimilation
    Junjie Wang, Zhuowei Cheng, Yunfei Su, Jiade Wang, Dongzhi Chen, Jianmeng Chen, Xiaoming Wu, Aobo Chen, Zhenyu Gu
    Journal of Environmental Management.2025; 373: 123714.     CrossRef
  • Transcriptional memories mediate the plasticity of sulfide stress responses to enable acclimation in Urechis unicinctus
    Wenqing Zhang, Danwen Liu, Heran Yang, Tianya Yang, Zhifeng Zhang, Yubin Ma
    Ecotoxicology and Environmental Safety.2025; 293: 118020.     CrossRef
  • Harnessing high-level hydrogen sulfide stress for enhanced biogas utilization: Adaptive resilience of a mixed-culture system
    Baorui Zhang, Jianbo Liu, Chen Cai, Yan Zhou
    Chemical Engineering Journal.2025; 506: 160300.     CrossRef
  • Deep-sea in situ and laboratory multi-omics provide insights into the sulfur assimilation of a deep-sea Chloroflexota bacterium
    Rikuan Zheng, Chong Wang, Chaomin Sun, Christa M. Schleper
    mBio.2024;[Epub]     CrossRef
  • Detection and evaluation of susceptibility to antibiotics in non-hydrogen sulfide-producing antibiotic-resistant soil microbe: Pseudomonas guariconensis
    Sahithya Selvakumar, Shubhi Singh, Priya Swaminathan
    International Microbiology.2024; 28(S1): 111.     CrossRef
  • Nanomaterials‐Induced Redox Imbalance: Challenged and Opportunities for Nanomaterials in Cancer Therapy
    Xumeng Wu, Ziqi Zhou, Kai Li, Shaoqin Liu
    Advanced Science.2024;[Epub]     CrossRef
  • pH-Responsive nanoplatform synergistic gas/photothermal therapy to eliminate biofilms in poly(l-lactic acid) scaffolds
    Guowen Qian, Yuqian Mao, Huihui Zhao, Lemin Zhang, Long Xiong, Zhisheng Long
    Journal of Materials Chemistry B.2024; 12(5): 1379.     CrossRef
  • Enhancing cancer treatment via “Zn2+ interference” with Zn-based nanomaterials
    Yandong Wang, Fucheng Gao, Li Zhao, Yanqiu Wu, Can Li, Hui Li, Yanyan Jiang
    Coordination Chemistry Reviews.2024; 500: 215535.     CrossRef
  • Effect of H2S and cysteine homeostasis disturbance on ciprofloxacin sensitivity of Escherichia coli in cystine-free and cystine-fed minimal medium
    Galina Smirnova, Aleksey Tyulenev, Lyubov Sutormina, Tatyana Kalashnikova, Zoya Samoilova, Nadezda Muzyka, Vadim Ushakov, Oleg Oktyabrsky
    Archives of Microbiology.2024;[Epub]     CrossRef
  • Identification of the organic peroxide scavenging system of Yersinia pseudotuberculosis and its regulation by OxyR
    Junfeng Fan, Xiaofen Mo, Hui Zhang, Linna Xu, Jianhua Yin, Fen Wan, Nicole R. Buan
    Applied and Environmental Microbiology.2024;[Epub]     CrossRef
  • Microenvironment Responsive Biomineralization Nanofirework Employing H2S-Assisted Photothermal Therapy to Prompt Bacterial Wound Healing
    Xianan Li, Hairui Deng, Lingfeng Pan, Ziyue Xu, Mengcheng Tang, Zhimin He, Yachen Xu, Hao Fu, Ruibo Zhao, Shibo Wang, Xiangdong Kong
    ACS Applied Nano Materials.2024; 7(17): 20678.     CrossRef
  • H2S scavenger as a broad-spectrum strategy to deplete bacteria-derived H2S for antibacterial sensitization
    Jiekai Sun, Xu Wang, Ye Gao, Shuangyu Li, Ziwei Hu, Yan Huang, Baoqiang Fan, Xia Wang, Miao Liu, Chunhua Qiao, Wei Zhang, Yipeng Wang, Xingyue Ji
    Nature Communications.2024;[Epub]     CrossRef
  • Fabricating a PDA-NOate@CuS coated NIR-activatable titanium implant to realize simultaneous antiinfection and osseointegration
    Jiahuan Liu, Xiaowan Li, Shangyu Xie, Ruirui Ma, Hongfei Wang, Shurong Ban, Chengwu Zhang, Lixia Guo
    New Journal of Chemistry.2024; 48(25): 11465.     CrossRef
  • Unraveling the potential of hydrogen sulfide as a signaling molecule for plant development and environmental stress responses: A state-of-the-art review
    Siloni Singh Bhadwal, Shagun Verma, Shahnawaz Hassan, Satwinderjeet Kaur
    Plant Physiology and Biochemistry.2024; 212: 108730.     CrossRef
  • Gas Therapy: Generating, Delivery, and Biomedical Applications
    Pejman Ghaffari‐Bohlouli, Hafez Jafari, Oseweuba Valentine Okoro, Houman Alimoradi, Lei Nie, Guohua Jiang, Ashok Kakkar, Amin Shavandi
    Small Methods.2024;[Epub]     CrossRef
  • Methylosinus trichosporium OB3b drives composition-independent application of biogas in poly(3-hydroxybutyrate) synthesis
    Sunho Park, Shinhyeong Choe, Hyejeong Lee, Jaewook Myung
    Fuel.2024; 378: 132730.     CrossRef
  • Ahp deficiency-induced redox imbalance leads to metabolic alterations in E. coli
    Feng Liu, Penggang Han, Nuomin Li, Yongqian Zhang
    Redox Biology.2023; 67: 102888.     CrossRef
  • Effect of sulfamethazine on the horizontal transfer of plasmid-mediated antibiotic resistance genes and its mechanism of action
    Xiaojing Yan, Wenwen Liu, Shengfang Wen, Lanjun Wang, Lusheng Zhu, Jun Wang, Young Mo Kim, Jinhua Wang
    Journal of Environmental Sciences.2023; 127: 399.     CrossRef
  • D-cysteine desulfhydrase DCD1 participates in tomato resistance against Botrytis cinerea by modulating ROS homeostasis
    Yuqi Zhao, Kangdi Hu, Gaifang Yao, Siyue Wang, Xiangjun Peng, Conghe Zhang, Dexin Zeng, Kai Zong, Yaning Lyu, Hua Zhang
    Vegetable Research.2023;[Epub]     CrossRef
  • Bacteria‐Targeted Combined with Photothermal/NO Nanoparticles for the Treatment and Diagnosis of MRSA Infection In Vivo
    Kai Lv, Guowei Li, Xiangjun Pan, Luxuan Liu, Ziheng Chen, Yu Zhang, Hao Xu, Dong Ma
    Advanced Healthcare Materials.2023;[Epub]     CrossRef
  • Antibiotic Resistance: Challenges and Strategies in Combating Infections
    Jay Chavada, Komal N Muneshwar, Yash Ghulaxe, Mohit Wani, Prayas P Sarda, Shreyash Huse
    Cureus.2023;[Epub]     CrossRef
  • Enhancement of bio-S0 recovery and revealing the inhibitory effect on microorganisms under high sulfide loading
    Junjie Wang, Zhuowei Cheng, Jiade Wang, Dongzhi Chen, Jianmeng Chen, Jianming Yu, Songkai Qiu, Dionysios D. Dionysiou
    Environmental Research.2023; 238: 117214.     CrossRef
  • Enzyme‐Triggered Chemodynamic Therapy via a Peptide‐H2S Donor Conjugate with Complexed Fe2+
    Yumeng Zhu, William R. Archer, Katlyn F. Morales, Michael D. Schulz, Yin Wang, John B. Matson
    Angewandte Chemie.2023;[Epub]     CrossRef
  • Antibacterial gas therapy: Strategies, advances, and prospects
    Tian-Yu Wang, Xiao-Yu Zhu, Fu-Gen Wu
    Bioactive Materials.2023; 23: 129.     CrossRef
  • Reactive oxygen species-upregulating nanomedicines towards enhanced cancer therapy
    Yuanyuan Ding, Qingqing Pan, Wenxia Gao, Yuji Pu, Kui Luo, Bin He
    Biomaterials Science.2023; 11(4): 1182.     CrossRef
  • Chameleon-like Anammox Bacteria for Surface Color Change after Suffering Starvation
    Jingqi Sun, Yiming Feng, Ru Zheng, Lingrui Kong, Xiaogang Wu, Kuo Zhang, Jianhang Zhou, Sitong Liu
    Environmental Science & Technology.2023; 57(40): 15087.     CrossRef
  • The Triple Crown: NO, CO, and H2S in cancer cell biology
    Palak P. Oza, Khosrow Kashfi
    Pharmacology & Therapeutics.2023; 249: 108502.     CrossRef
  • Stability and biomineralization of cadmium sulfide nanoparticles biosynthesized by the bacterium Rhodopseudomonas palustris under light
    Su-Fang Xing, Hui-Fang Tian, Zhen Yan, Chao Song, Shu-Guang Wang
    Journal of Hazardous Materials.2023; 458: 131937.     CrossRef
  • Intelligent polymeric hydrogen sulfide delivery systems for therapeutic applications
    Fan Rong, Tengjiao Wang, Qian Zhou, Haowei Peng, Jingtian Yang, Quli Fan, Peng Li
    Bioactive Materials.2023; 19: 198.     CrossRef
  • Nanoplatform-based cellular reactive oxygen species regulation for enhanced oncotherapy and tumor resistance alleviation
    Meifang Wang, Ping'an Ma, Jun Lin
    Chinese Chemical Letters.2023; 34(9): 108300.     CrossRef
  • In situ formation of ferrous sulfide in glycyrrhizic acid hydrogels to promote healing of multi-drug resistant Staphylococcus aureus-infected diabetic wounds
    Zhuobin Xu, Ze Xu, Jiake Gu, Juan Zhou, Gengyu Sha, Ying Huang, Tong Wang, Lei Fan, Yanfeng Zhang, Juqun Xi
    Journal of Colloid and Interface Science.2023; 650: 1918.     CrossRef
  • The Conditions Matter: The Toxicity of Titanium Trisulfide Nanoribbons to Bacteria E. coli Changes Dramatically Depending on the Chemical Environment and the Storage Time
    Olga V. Zakharova, Valeria V. Belova, Peter A. Baranchikov, Anna A. Kostyakova, Dmitry S. Muratov, Gregory V. Grigoriev, Svetlana P. Chebotaryova, Denis V. Kuznetsov, Alexander A. Gusev
    International Journal of Molecular Sciences.2023; 24(9): 8299.     CrossRef
  • Community ecological study on the reduction of soil antimony bioavailability by SRB-based remediation technologies
    Min Zhang, Jing Xiong, Lei Zhou, Jingjing Li, Jianqiang Fan, Xing Li, Teng Zhang, Zhuzhong Yin, Huaqun Yin, Xueduan Liu, Delong Meng
    Journal of Hazardous Materials.2023; 459: 132256.     CrossRef
  • Enzyme‐Triggered Chemodynamic Therapy via a Peptide‐H2S Donor Conjugate with Complexed Fe2+
    Yumeng Zhu, William R. Archer, Katlyn F. Morales, Michael D. Schulz, Yin Wang, John B. Matson
    Angewandte Chemie International Edition.2023;[Epub]     CrossRef
  • Enhancement of dissimilatory nitrate/nitrite reduction to ammonium of Escherichia coli sp. SZQ1 by ascorbic acid: Mechanism and performance
    Zhiqiang Su, Yu Zhang, Ruizhi Zhao, Jiti Zhou
    Science of The Total Environment.2022; 853: 158423.     CrossRef
  • Mitochondria-targeting Type I AIE photosensitizer combined with H2S therapy: Uninterrupted hydroxyl radical generation for enhancing tumor therapy
    Tianfu Zhang, Zeming Liu, Wenxue Tang, Daoming Zhu, Meng Lyu, Jacky Wing Yip Lam, Qinqin Huang, Ben Zhong Tang
    Nano Today.2022; 46: 101620.     CrossRef
  • Generation and Physiology of Hydrogen Sulfide and Reactive Sulfur Species in Bacteria
    Sirui Han, Yingxi Li, Haichun Gao
    Antioxidants.2022; 11(12): 2487.     CrossRef
  • Metal sulfide precipitation mediated by an elemental sulfur-reducing thermoacidophilic microbial culture from a full-scale anaerobic reactor
    Adrian Hidalgo-Ulloa, Cees Buisman, Jan Weijma
    Hydrometallurgy.2022; 213: 105950.     CrossRef
  • Oxidative stress response system in Escherichia coli arising from diphenyl ditelluride (PhTe)2 exposure
    F.C. Pinheiro, V.C. Bortolotto, S.M. Araujo, S.F. Couto, M.M.M. Dahleh, M. Cancela, J. Neto, G. Zeni, A. Zaha, M. Prigol
    Toxicology in Vitro.2022; 83: 105404.     CrossRef
  • On-demand therapeutic delivery of hydrogen sulfide aided by biomolecules
    Yuxuan Ge, Fan Rong, Wei Li, Yin Wang
    Journal of Controlled Release.2022; 352: 586.     CrossRef
  • Antibiotic resistance: The challenges and some emerging strategies for tackling a global menace
    David Chinemerem Nwobodo, Malachy Chigozie Ugwu, Clement Oliseloke Anie, Mushtak T. S. Al‐Ouqaili, Joseph Chinedu Ikem, Uchenna Victor Chigozie, Morteza Saki
    Journal of Clinical Laboratory Analysis.2022;[Epub]     CrossRef
  • Vitamin C Maintenance against Cell Growth Arrest and Reactive Oxygen Species Accumulation in the Presence of Redox Molecular Chaperone hslO Gene
    Akihiro Kaidow, Noriko Ishii, Shingo Suzuki, Takashi Shiina, Hirokazu Kasahara
    International Journal of Molecular Sciences.2022; 23(21): 12786.     CrossRef
  • Cysteine Biosynthesis in Campylobacter jejuni: Substrate Specificity of CysM and the Dualism of Sulfide
    Noah Hitchcock, David J. Kelly, Andrew Hitchcock, Aidan J. Taylor
    Biomolecules.2022; 13(1): 86.     CrossRef
  • Transcriptomic analysis of chloride tolerance in Leptospirillum ferriphilum DSM 14647 adapted to NaCl
    Javier Rivera-Araya, Thomas Heine, Renato Chávez, Michael Schlömann, Gloria Levicán, Benjamin J. Koestler
    PLOS ONE.2022; 17(4): e0267316.     CrossRef
  • Acute stress of the typical disinfectant glutaraldehyde-didecyldimethylammonium bromide (GD) on sludge microecology in livestock wastewater treatment plants: Effect and its mechanisms
    Yuxin Li, Jiayin Ling, Jinghao Xue, Junwei Huang, Xiao Zhou, Fei Wang, Waner Hou, Jianbin Zhao, Yanbin Xu
    Water Research.2022; 227: 119342.     CrossRef
  • Sulfide Treatment Alters Antioxidant Response and Related Genes Expressions in Rice Field Eel (Monopterus albus)
    Liqiao Zhong, Fan Yao, He Zhang, Huaxiao Xie, Huijun Ru, Nian Wei, Zhaohui Ni, Zhong Li, Yunfeng Li
    Water.2022; 14(20): 3230.     CrossRef
  • Development of Polycaprolactone–Zeolite Nanoporous Composite Films for Topical Therapeutic Release of Different Gasotransmitters
    Rosana V. Pinto, Sílvia Carvalho, Fernando Antunes, João Pires, Moisés L. Pinto
    ACS Applied Nano Materials.2022; 5(7): 9230.     CrossRef
  • Near-infrared laser-controlled nitric oxide-releasing gold nanostar/hollow polydopamine Janus nanoparticles for synergistic elimination of methicillin-resistant Staphylococcus aureus and wound healing
    Zhuoying Liang, Wenkang Liu, Ziqiang Wang, Peilian Zheng, Wei Liu, Jianfu Zhao, Yunlong Zhong, Yan Zhang, Jing Lin, Wei Xue, Siming Yu
    Acta Biomaterialia.2022; 143: 428.     CrossRef
  • Cysteine supplementation enhanced inhibitor tolerance of Zymomonas mobilis for economic lignocellulosic bioethanol production
    Xiongying Yan, Xia Wang, Yongfu Yang, Zhen Wang, Haoyu Zhang, Yang Li, Qiaoning He, Mian Li, Shihui Yang
    Bioresource Technology.2022; 349: 126878.     CrossRef
  • Natural inactivation of MS2, poliovirus type 1 and Cryptosporidium parvum in an anaerobic and reduced aquifer
    John T. Lisle, George Lukasik
    Journal of Applied Microbiology.2022; 132(3): 2464.     CrossRef
  • Hydrogen sulfide in longevity and pathologies: Inconsistency is malodorous
    Alexander S. Sokolov, Pavel V. Nekrasov, Mikhail V. Shaposhnikov, Alexey A. Moskalev
    Ageing Research Reviews.2021; 67: 101262.     CrossRef
  • Hydrogen Sulfide and Carbon Monoxide Tolerance in Bacteria
    Sofia S. Mendes, Vanessa Miranda, Lígia M. Saraiva
    Antioxidants.2021; 10(5): 729.     CrossRef
  • CBS-derived H2S facilitates host colonization of Vibrio cholerae by promoting the iron-dependent catalase activity of KatB
    Yao Ma, Xiaoman Yang, Hongou Wang, Zixin Qin, Chunrong Yi, Changping Shi, Mei Luo, Guozhong Chen, Jin Yan, Xiaoyun Liu, Zhi Liu, William Navarre
    PLOS Pathogens.2021; 17(7): e1009763.     CrossRef
  • Hydrogen sulfide (H2S) signaling in plant development and stress responses
    Hai Liu, Jicheng Wang, Jianhao Liu, Tong Liu, Shaowu Xue
    aBIOTECH.2021; 2(1): 32.     CrossRef
  • Hydrogen sulfide: An endogenous regulator of the immune system
    Nahzli Dilek, Andreas Papapetropoulos, Tracy Toliver-Kinsky, Csaba Szabo
    Pharmacological Research.2020; 161: 105119.     CrossRef
  • Protective Role of Bacterial Alkanesulfonate Monooxygenase under Oxidative Stress
    Chulwoo Park, Bora Shin, Woojun Park, Maia Kivisaar
    Applied and Environmental Microbiology.2020;[Epub]     CrossRef
  • Hydrogen Sulfide Sensitizes Acinetobacter baumannii to Killing by Antibiotics
    Say Yong Ng, Kai Xun Ong, Smitha Thamarath Surendran, Ameya Sinha, Joey Jia Hui Lai, Jacqueline Chen, Jiaqi Liang, Leona Kwan Sing Tay, Liang Cui, Hooi Linn Loo, Peiying Ho, Jongyoon Han, Wilfried Moreira
    Frontiers in Microbiology.2020;[Epub]     CrossRef
  • FeS@BSA Nanoclusters to Enable H2S‐Amplified ROS‐Based Therapy with MRI Guidance
    Congkun Xie, Dong Cen, Zhaohui Ren, Yifan Wang, Yongjun Wu, Xiang Li, Gaorong Han, Xiujun Cai
    Advanced Science.2020;[Epub]     CrossRef
  • Hydrogen sulfide and environmental stresses
    John T. Hancock
    Environmental and Experimental Botany.2019; 161: 50.     CrossRef
  • The H2S Donor GYY4137 Stimulates Reactive Oxygen Species Generation in BV2 Cells While Suppressing the Secretion of TNF and Nitric Oxide
    Milica Lazarević, Emanuela Mazzon, Miljana Momčilović, Maria Sofia Basile, Giuseppe Colletti, Maria Cristina Petralia, Placido Bramanti, Ferdinando Nicoletti, Đorđe Miljković
    Molecules.2018; 23(11): 2966.     CrossRef
  • Do nitric oxide, carbon monoxide and hydrogen sulfide really qualify as ‘gasotransmitters’ in bacteria?
    Lauren K. Wareham, Hannah M. Southam, Robert K. Poole
    Biochemical Society Transactions.2018; 46(5): 1107.     CrossRef
Gly184 of the Escherichia coli cAMP receptor protein provides optimal context for both DNA binding and RNA polymerase interaction
Matt N. Hicks , Sanjiva Gunasekara , Jose Serate , Jin Park , Pegah Mosharaf , Yue Zhou , Jin-Won Lee , Hwan Youn
J. Microbiol. 2017;55(10):816-822.   Published online September 28, 2017
DOI: https://doi.org/10.1007/s12275-017-7266-x
  • 357 View
  • 0 Download
  • 3 Crossref
AbstractAbstract PDF
The Escherichia coli cAMP receptor protein (CRP) utilizes the helix-turn-helix motif for DNA binding. The CRP’s recognition helix, termed F-helix, includes a stretch of six amino acids (Arg180, Glu181, Thr182, Val183, Gly184, and Arg185) for direct DNA contacts. Arg180, Glu181 and Arg185 are known as important residues for DNA binding and specificity, but little has been studied for the other residues. Here we show that Gly184 is another F-helix residue critical for the transcriptional activation function of CRP. First, glycine was repeatedly selected at CRP position 184 for its unique ability to provide wild type-level transcriptional activation activity. To dissect the glycine requirement, wild type CRP and mutants G184A, G184F, G184S, and G184Y were purified and their in vitro DNA-binding activity was measured. G184A and G184F displayed reduced DNA binding, which may explain their low transcriptional activation activity. However, G184S and G184Y displayed apparently normal DNA affinity. Therefore, an additional factor is needed to account for the diminished transcriptional activation function in G184S and G184Y, and the best explanation is perturbations in their interaction with RNA polymerase. The fact that glycine is the smallest amino acid could not fully warrant its suitability, as shown in this study. We hypothesize that Gly184 fulfills the dual functions of DNA binding and RNA polymerase interaction by conferring conformational flexibility to the F-helix.

Citations

Citations to this article as recorded by  
  • cAMP-independent DNA binding of the CRP family protein DdrI from Deinococcus radiodurans
    Yudong Wang, Jing Hu, Xufan Gao, Yuchen Cao, Shumai Ye, Cheng Chen, Liangyan Wang, Hong Xu, Miao Guo, Dong Zhang, Ruhong Zhou, Yuejin Hua, Ye Zhao, Paul Babitzke
    mBio.2024;[Epub]     CrossRef
  • Unexpected Requirement of Small Amino Acids at Position 183 for DNA Binding in the Escherichia coli cAMP Receptor Protein
    Marcus Carranza, Amanda Rea, Daisy Pacheco, Christian Montiel, Jin Park, Hwan Youn
    Journal of Microbiology.2024; 62(10): 871.     CrossRef
  • cAMP Activation of the cAMP Receptor Protein, a Model Bacterial Transcription Factor
    Hwan Youn, Marcus Carranza
    Journal of Microbiology.2023; 61(3): 277.     CrossRef
Candida krusei isolated from fruit juices ultrafiltration membranes promotes colonization of Escherichia coli O157:H7 and Salmonella enterica on stainless steel surfaces
María Clara Tarifa , Jorge Enrique Lozano , Lorena Inés Brugnoni
J. Microbiol. 2017;55(2):96-103.   Published online January 26, 2017
DOI: https://doi.org/10.1007/s12275-017-6300-3
  • 377 View
  • 0 Download
  • 11 Crossref
AbstractAbstract PDF
To clarify the interactions between a common food spoilage yeast and two pathogenic bacteria involved in outbreaks associated with fruit juices, the present paper studies the effect of the interplay of Candida krusei, collected from UF membranes, with Escherichia coli O157:H7 and Salmonella enterica in the overall process of adhesion and colonization of abiotic surfaces. Two different cases were tested: a) co-adhesion by pathogenic bacteria and yeasts, and b) incorporation of bacteria to pre-adhered C. krusei cells. Cultures were made on stainless steel at 25°C using apple juice as culture medium. After 24 h of co-adhesion with C. krusei, both E. coli O157:H7 and S. enterica increased their counts 1.05 and 1.11 log CFU cm2, respectively. Similar increases were obtained when incorporating bacteria to pre-adhered cells of Candida. Nevertheless C. krusei counts decreased in both experimental conditions, in a) 0.40 log CFU cm2 and 0.55 log CFU cm2 when exposed to E. coli O157:H7 and S. enterica and in b) 0.18 and 0.68 log CFU cm2, respectively. This suggests that C. krusei, E. coli O157:H7, and S. enterica have a complex relationship involving physical and chemical interactions on food contact surfaces. This study supports the possibility that pathogen interactions with members of spoilage microbiota, such as C. krusei, might play an important role for the survival and dissemination of E. coli O157:H7 and Salmonella enterica in food-processing environments. Based on the data obtained from the present study, much more attention should be given to prevent the contamination of these pathogens in acidic drinks.

Citations

Citations to this article as recorded by  
  • What We Still Don’t Know About Biofilms—Current Overview and Key Research Information
    Tsvetozara Damyanova, Tsvetelina Paunova-Krasteva
    Microbiology Research.2025; 16(2): 46.     CrossRef
  • Efficacy of natamycin to reduce adhesion and biofilm formation of multispecies yeast biofilms on variable flow conditions
    María del Rosario Agustín, Diego Bautista Genovese, Manuel Alejandro Palencia Díaz, Lorena Inés Brugnoni
    Biofouling.2025; 41(6): 573.     CrossRef
  • Effectiveness of sodium hypochlorite and benzalkonium chloride in reducing spoilage yeast biofilms on food contact surfaces
    Manuel Alejandro Palencia Díaz, María Clara Tarifa, Patricia Liliana Marucci, Diego Bautista Genovese, Lorena Inés Brugnoni
    Biofouling.2024; 40(10): 964.     CrossRef
  • Application of natamycin and farnesol as bioprotection agents to inhibit biofilm formation of yeasts and foodborne bacterial pathogens in apple juice processing lines
    María del Rosario Agustín, María Clara Tarifa, María Soledad Vela-Gurovic, Lorena Inés Brugnoni
    Food Microbiology.2023; 109: 104123.     CrossRef
  • Candida krusei is the major contaminant of ultrafiltration and reverse osmosis membranes used for cranberry juice production
    Sherazade Fikri, Marie-Hélène Lessard, Véronique Perreault, Alain Doyen, Steve Labrie
    Food Microbiology.2023; 109: 104146.     CrossRef
  • Application of Natamycin and Farnesol as Biocontrol Agents of Multi-Species Biofilms on Industrial Surfaces in Apple Juice
    María del Rosario Agustín, Maria Clara Tarifa, Maria Soledad Vela-Gurovic, Lorena Ines Brugnoni
    SSRN Electronic Journal .2022;[Epub]     CrossRef
  • Enhanced microbial inactivation by carbon dioxide through mechanical effects
    Ratka Hoferick, Angelos Ntovas, Qasim Alhusaini, Mareike Müller, Stéphan Barbe, Holger Schönherr
    The Journal of Supercritical Fluids.2021; 175: 105273.     CrossRef
  • Yeast biofilm in food realms: occurrence and control
    Giacomo Zara, Marilena Budroni, Ilaria Mannazzu, Francesco Fancello, Severino Zara
    World Journal of Microbiology and Biotechnology.2020;[Epub]     CrossRef
  • Disinfection efficacy over yeast biofilms of juice processing industries
    María C. Tarifa, Jorge E. Lozano, Lorena I. Brugnoni
    Food Research International.2018; 105: 473.     CrossRef
  • Identification des espèces de levures isolées de l’attiéké commercialisé sur les marchés à Abidjan (Côte d’Ivoire) : étude préliminaire
    C.G. Kouadio-Yapo, G.S.P. Dou, N.A.D. Aka, K.D. Zika, K.D. Adoubryn, M. Dosso
    Journal de Mycologie Médicale.2018; 28(2): 305.     CrossRef
  • Multispecies biofilms between Listeria monocytogenes and Listeria innocua with resident microbiota isolated from apple juice processing equipment
    María del Rosario Agustín, Lorena Brugnoni
    Journal of Food Safety.2018;[Epub]     CrossRef
Potential for colonization of O111:H25 atypical enteropathogenic E. coli
Marta O. Domingos , Keyde C.M. Melo , Irys Viana Neves , Cristiane M. Mota , Rita C. Ruiz , Bruna S. Melo , Raphael C. Lima , Denise S.P.Q. Horton , Monamaris M. Borges , Marcia R. Franzolin
J. Microbiol. 2016;54(11):745-752.   Published online October 29, 2016
DOI: https://doi.org/10.1007/s12275-016-6015-x
  • 330 View
  • 0 Download
  • 5 Crossref
AbstractAbstract PDF
Using clonal phylogenetic methods, it has been demonstrated that O111:H25 atypical enteropathogenic E. coli (aEPEC) strains belong to distinct clones, suggesting the possibility that their ability to interact with different hosts and abiotic surfaces can vary from one clone to another. Accordingly, the ability of O111:H25 aEPEC strains derived from human, cat and dogs to adhere to epithelial cells has been investigated, along with their ability to interact with macrophages and to form biofilms on polystyrene, a polymer used to make biomedical devices. The results demonstrated that all the strains analyzed were able to adhere to, and to form pedestals on, epithelial cells, mechanisms used by E. coli to become strongly attached to the host. The strains also show a Localized-Adherence- Like (LAL) pattern of adhesion on HEp-2 cells, a behavior associated with acute infantile diarrhea. In addition, the O111:H25 aEPEC strains derived either from human or domestic animals were able to form long filaments, a phenomenon used by some bacteria to avoid phagocytosis. O111:H25 aEPEC strains were also encountered inside vacuoles, a characteristic described for several bacterial strains as a way of protecting themselves against the environment. They were also able to induce TNF-α release via two routes, one dependent on TLR-4 and the other dependent on binding of Type I fimbriae. These O111:H25 strains were also able to form biofilms on polystyrene. In summary the results suggest that, regardless of their source (i.e. linked to human origin or otherwise), O111:H25 aEPEC strains carry the potential to cause human disease.

Citations

Citations to this article as recorded by  
  • Differences of Escherichia coli isolated from different organs of the individual sheep: molecular typing, antibiotics resistance, and biofilm formation
    Zihao Wu, Haoming Chi, Tingting Han, Guangxi Li, Jixue Wang, Wei Chen
    Folia Microbiologica.2024; 69(3): 567.     CrossRef
  • Hidden carbapenem resistance in the community- and hospital-associated OXA-48 gene-carrying uropathogenic Escherichia coli
    Maryam Talebi, Shahin Najar-Peerayeh, Bita Bakhshi
    Gene Reports.2020; 21: 100897.     CrossRef
  • Genetic relation and virulence factors of carbapenemase-producing Uropathogenic Escherichia coli from urinary tract infections in Iraq
    Amal Talib Al-Sa'ady, Ghaidaa Jihadi Mohammad, Bashdar Mahmud Hussen
    Gene Reports.2020; 21: 100911.     CrossRef
  • Host characteristics and virulence typing of Escherichia coli isolated from diabetic patients
    Najar Peerayeh Shahin, Eslami Majid, Talebi Bezmin Abadi Amin, Bakhshi Bita
    Gene Reports.2019; 15: 100371.     CrossRef
  • Characterization of uropathogenic E. coli O25b‐B2‐ST131, O15:K52:H1, and CGA: Neutrophils apoptosis, serum bactericidal assay, biofilm formation, and virulence typing
    Seyyed Khalil Shokouhi Mostafavi, Shahin Najar‐Peerayeh, Ashraf Mohabbati Mobarez, Mehdi Kardoust Parizi
    Journal of Cellular Physiology.2019; 234(10): 18272.     CrossRef
Research Support, Non-U.S. Gov'ts
Surface Display Expression of Bacillus licheniformis Lipase in Escherichia coli Using Lpp’OmpA Chimera
Jae-Hyung Jo , Chan-Wook Han , Seung-Hwan Kim , Hyuk-Jin Kwon , Hyune-Hwan Lee
J. Microbiol. 2014;52(10):856-862.   Published online August 27, 2014
DOI: https://doi.org/10.1007/s12275-014-4217-7
  • 447 View
  • 1 Download
  • 15 Crossref
AbstractAbstract PDF
The lipase from Bacillus licheniformis ATCC14580 was displayed on the cell surface of Escherichia coli using Lpp’OmpA as the anchoring protein. The expressed Lpp’OmpA-lipase fusion protein has a molecular weight of approximately 35 kDa, which was confirmed by SDS-PAGE and western blot analysis. The Lpp’OmpA-lipase fusion protein was located on the cell surface, as determined by immunofluorescence confocal microscopy and flow cytometry. The enzyme activity of the surface-displayed lipase showed clear halo around the colony. The cell surface-displayed lipase showed the highest activity of 248.12 ± 9.42 U/g (lyophilized cell) at the optimal temperature of 37°C and pH 8.0. The enzyme exhibited the highest activity toward the substrate p-nitrophenyl caprylate (C8). These results suggest that E. coli, which displayed the lipase on its surface, could be used as a whole cell biocatalyst.

Citations

Citations to this article as recorded by  
  • Recent advances in bioinspired multienzyme engineering for food applications
    Xianhan Chen, Yujin Chen, Dandan Tang, Mengyu Li, Yuting Lu, Yi Cao, Quanyu Zhao, Shuai Jiang, Wei Liu, Ling Jiang
    Trends in Food Science & Technology.2025; 156: 104840.     CrossRef
  • Surface Engineering of Escherichia coli to Display Its Phytase (AppA) and Functional Analysis of Enzyme Activities
    Patricia L. A. Muñoz-Muñoz, Celina Terán-Ramírez, Rosa E. Mares-Alejandre, Ariana B. Márquez-González, Pablo A. Madero-Ayala, Samuel G. Meléndez-López, Marco A. Ramos-Ibarra
    Current Issues in Molecular Biology.2024; 46(4): 3424.     CrossRef
  • Characterization of a novel subfamily 1.4 lipase from Bacillus licheniformis IBRL-CHS2: Cloning and expression optimization
    Ammar Khazaal Kadhim Almansoori, Nidyaletchmy Subba Reddy, Mustafa Abdulfattah, Sarah Solehah Ismail, Rashidah Abdul Rahim, Estibaliz Sansinenea
    PLOS ONE.2024; 19(12): e0314556.     CrossRef
  • Surface Display of Multiple Metal-Binding Domains in Deinococcus radiodurans Alleviates Cadmium and Lead Toxicity in Rice
    Liangyan Wang, Yudong Wang, Shang Dai, Binqiang Wang
    International Journal of Molecular Sciences.2024; 25(23): 12570.     CrossRef
  • A bacterial outer membrane vesicle-based click vaccine elicits potent immune response against Staphylococcus aureus in mice
    Jingjing Sun, Xuansheng Lin, Yige He, Baozhong Zhang, Nan Zhou, Jian-dong Huang
    Frontiers in Immunology.2023;[Epub]     CrossRef
  • Establishment of a soluble expression and rapid purification system for self-assembling protein nanoparticle and characterization of its physiochemical properties
    Dan Wang, Linwei Duan, Min Wei, Baizhu Chen, Zhipeng Li, Qingyou Liu
    Biochemical Engineering Journal.2022; 186: 108580.     CrossRef
  • A Modular System for the Rapid Comparison of Different Membrane Anchors for Surface Display on Escherichia coli
    Sabrina Gallus, Esther Mittmann, Kersten S. Rabe
    ChemBioChem.2022;[Epub]     CrossRef
  • Decorating the surface of Escherichia coli with bacterial lipoproteins: a comparative analysis of different display systems
    Sonia Nicchi, Maria Giuliani, Fabiola Giusti, Laura Pancotto, Domenico Maione, Isabel Delany, Cesira L. Galeotti, Cecilia Brettoni
    Microbial Cell Factories.2021;[Epub]     CrossRef
  • Recombinant expression and surface display of a zearalenone lactonohydrolase from Trichoderma aggressivum in Escherichia coli
    Shurong Chen, Li Pan, Siying Liu, Lijie Pan, Xuejie Li, Bin Wang
    Protein Expression and Purification.2021; 187: 105933.     CrossRef
  • Bacterial Cell Display as a Robust and Versatile Platform for Engineering Low‐Affinity Ligands and Enzymes
    Eszter Csibra, Marleen Renders, Vitor B. Pinheiro
    ChemBioChem.2020; 21(19): 2844.     CrossRef
  • Surface Display of Complex Enzymes by in Situ SpyCatcher‐SpyTag Interaction
    Sabrina Gallus, Theo Peschke, Malte Paulsen, Teresa Burgahn, Christof M. Niemeyer, Kersten S. Rabe
    ChemBioChem.2020; 21(15): 2126.     CrossRef
  • Shaking Rate during Production Affects the Activity of Escherichia coli Surface-Displayed Candida antarctica Lipase A
    Chen-Fu Chung, Shih-Che Lin, Tzong-Yuan Juang, Yung-Chuan Liu
    Catalysts.2020; 10(4): 382.     CrossRef
  • Functional Display of an Amoebic Chitinase in Escherichia coli Expressing the Catalytic Domain of EhCHT1 on the Bacterial Cell Surface
    Ricardo Torres-Bañaga, Rosa E. Mares-Alejandre, Celina Terán-Ramírez, Ana L. Estrada-González, Patricia L.A. Muñoz-Muñoz, Samuel G. Meléndez-López, Ignacio A. Rivero, Marco A. Ramos-Ibarra
    Applied Biochemistry and Biotechnology.2020; 192(4): 1255.     CrossRef
  • Heterologous expression of antigenic peptides in Bacillus subtilis biofilms
    Cédric M. Vogt, Elisabeth M. Schraner, Claudio Aguilar, Catherine Eichwald
    Microbial Cell Factories.2016;[Epub]     CrossRef
  • Display of Fungi Xylanase on Escherichia coli Cell Surface and Use of the Enzyme in Xylan Biodegradation
    Wei Qu, Yuanxia Xue, Qiang Ding
    Current Microbiology.2015; 70(6): 779.     CrossRef
Antimicrobial Resistance, Virulence Genes and PFGE-profiling of Escherichia coli Isolates from South Korean Cattle Farms
Seung Won Shin , Jae-Won Byun , Myounghwan Jung , Min-Kyoung Shin , Han Sang Yoo
J. Microbiol. 2014;52(9):785-793.   Published online July 30, 2014
DOI: https://doi.org/10.1007/s12275-014-4166-1
  • 365 View
  • 0 Download
  • 10 Crossref
AbstractAbstract PDF
To estimate the prevalence of Escherichia coli with potential pathogenicity in cattle farm in South Korea, a total of 290 E. coli isolates were isolated from cattle farms over a period of 2 years in South Korea. These were examined for phenotypic and genotypic characteristics including antimicrobial susceptibility, serotype, and gene profiles of virulence and antimicrobial resistance. The most dominant virulence gene was f17 (26.2%), followed by stx2 (15.9%), ehxA (11.0%), stx1 (8.3%), eae (5.2%), and sta (4.1%). Some shiga-toxin producing E. coli isolates possessed eae (15.9%). All isolates except for one showed resistance to one or more antimicrobials, with 152 isolates exhibiting multidrug-resistance. The most prevalent resistance phenotype detected was streptomycin (63.1%), followed by tetracycline (54.5%), neomycin (40.3%), cephalothin (32.8%), amoxicillin (30.0%), ampicillin (29.7%), and sulphamethoxazole/trimethoprim (16.6%). The associated resistance determinants detected were strAstrB (39.0%), tet(E) (80.0%), tet(A) (27.6%), aac(3)-IV (33.1%), aphA1 (21.4%), blaTEM (23.8%), and sul2 (22.1%). When investigated by O serotyping and PFGE molecular subtyping, the high degree of diversity was exhibited in E. coli isolates. These results suggest that E. coli isolates from South Korean cattle farms are significantly diverse in terms of virulence and antimicrobial resistance. In conclusion, the gastroinstestinal flora of cattle could be a significant reservoir of diverse virulence and antimicrobial resistance determinants, which is potentially hazardous to public health.

Citations

Citations to this article as recorded by  
  • Underrepresented high diversity of class 1 integrons in the environment uncovered by PacBio sequencing using a new primer
    Yu Yang, An-Ni Zhang, You Che, Lei Liu, Yu Deng, Tong Zhang
    Science of The Total Environment.2021; 787: 147611.     CrossRef
  • The prevalence of causative agents of calf diarrhea in Korean native calves
    Jeong-Byoung Chae, Hyeon-Cheol Kim, Jun-Gu Kang, Kyoung-Seong Choi, Joon-Seok Chae, Do-Hyeon Yu, Bae-Keun Park, Yeon-su Oh, Hak-Jong Choi, Jinho Park
    Journal of Animal Science and Technology.2021; 63(4): 864.     CrossRef
  • O-serogroups, virulence genes, antimicrobial susceptibility, and MLST genotypes of Shiga toxin-producing Escherichia coli from swine and cattle in Central China
    Zhong Peng, Wan Liang, Zizhe Hu, Xiaosong Li, Rui Guo, Lin Hua, Xibiao Tang, Chen Tan, Huanchun Chen, Xiangru Wang, Bin Wu
    BMC Veterinary Research.2019;[Epub]     CrossRef
  • Detection and molecular characterization of sorbitol fermenting non-O157 Escherichia coli from goats
    Shivasharanappa Nayakvadi, Charlotte Alison Alemao, H.B. Chethan Kumar, R.S. Rajkumar, Susitha Rajkumar, Eaknath B. Chakurkar, Shivaramu Keelara
    Small Ruminant Research.2018; 161: 7.     CrossRef
  • Antimicrobial Resistance inEscherichia coli
    Laurent Poirel, Jean-Yves Madec, Agnese Lupo, Anne-Kathrin Schink, Nicolas Kieffer, Patrice Nordmann, Stefan Schwarz, Frank Møller Aarestrup, Stefan Schwarz, Jianzhong Shen, Lina Cavaco
    Microbiology Spectrum.2018;[Epub]     CrossRef
  • The genetic background of antibiotic resistance among clinical uropathogenic Escherichia coli strains
    Wioletta Adamus-Białek, Anna Baraniak, Monika Wawszczak, Stanisław Głuszek, Beata Gad, Klaudia Wróbel, Paulina Bator, Marta Majchrzak, Paweł Parniewski
    Molecular Biology Reports.2018; 45(5): 1055.     CrossRef
  • Interrelationship between tetracycline resistance determinants, phylogenetic group affiliation and carriage of class 1 integrons in commensal Escherichia coli isolates from cattle farms
    Kuastros Mekonnen Belaynehe, Seung Won Shin, Han Sang Yoo
    BMC Veterinary Research.2018;[Epub]     CrossRef
  • Occurrence of aminoglycoside-modifying enzymes among isolates of Escherichia coli exhibiting high levels of aminoglycoside resistance isolated from Korean cattle farms
    Kuastros Mekonnen Belaynehe, Seung Won Shin, Park Hong-Tae, Han Sang Yoo
    FEMS Microbiology Letters.2017;[Epub]     CrossRef
  • Prevalence of Antimicrobial Resistance and Transfer of Tetracycline Resistance Genes in Escherichia coli Isolates from Beef Cattle
    Seung Won Shin, Min Kyoung Shin, Myunghwan Jung, Kuastros Mekonnen Belaynehe, Han Sang Yoo, M. W. Griffiths
    Applied and Environmental Microbiology.2015; 81(16): 5560.     CrossRef
  • Profiling of antimicrobial resistance and plasmid replicon types in β-lactamase producingEscherichia coliisolated from Korean beef cattle
    Seung Won Shin, Myunghwan Jung, Min-Kyung Shin, Han Sang Yoo
    Journal of Veterinary Science.2015; 16(4): 483.     CrossRef
Expression and Purification of Lacticin Q by Small Ubiquitin-Related Modifier Fusion in Escherichia coli
Qingshan Ma , Zhanqiao Yu , Bing Han , Qing Wang , Rijun Zhang
J. Microbiol. 2012;50(2):326-331.   Published online April 27, 2012
DOI: https://doi.org/10.1007/s12275-012-1425-x
  • 190 View
  • 0 Download
  • 13 Scopus
AbstractAbstract PDF
Lacticin Q is a broad-spectrum class II bacteriocin with potential as an alternative to conventional antibiotics. The objective of this study was to produce recombinant lacticin Q using a small ubiquitin-related modifier (SUMO) fusion protein expression system. The 168-bp lacticin Q gene was cloned into the expression vector pET SUMO and transformed into Escherichia coli BL21(DE3). The soluble fusion protein was recovered with a Ni-NTA Sepharose column (95% purity); 130 mg protein was obtained per liter of fermentation culture. The SUMO tag was then proteolytically cleaved from the protein, which was re-applied to the column. Finally, about 32 mg lacticin Q (≥96% purity) was obtained. The recombinant protein exhibited antimicrobial properties similar to that of the native protein, demonstrating that lacticin Q had been successfully expressed by the SUMO fusion system.
Comparative Genomic Analysis of Bacteriophage EP23 Infecting Shigella sonnei and Escherichia coli
Ho-Won Chang , Kyoung-Ho Kim
J. Microbiol. 2011;49(6):927-934.   Published online December 28, 2011
DOI: https://doi.org/10.1007/s12275-011-1577-0
  • 189 View
  • 0 Download
  • 19 Scopus
AbstractAbstract PDF
Bacteriophage EP23 that infects Escherichia coli and Shigella sonnei was isolated and characterized. The bacteriophage morphology was similar to members of the family Siphoviridae. The 44,077 bp genome was fully sequenced using 454 pyrosequencing. Comparative genomic and phylogenetic analyses showed that EP23 was most closely related to phage SO-1, which infects Sodalis glossinidius and phage SSL-2009a, which infects engineered E. coli. Genomic comparison indicated that EP23 and SO-1 were very similar with each other in terms of gene order and amino acid similarity, even though their hosts were separated in the level of genus. EP23 and SSL-2009a displayed high amino acid similarity between their genes, but there was evidence of several recombination events in SSL-2009a. The results of the comparative genomic analyses further the understanding of the evolution and relationship between EP23 and its bacteriophage relatives.
Genetic Diversity and Population Structure of Escherichia coli from Neighboring Small-Scale Dairy Farms
Jesús Andrei Rosales-Castillo , Ma. Soledad Vázquez-Garcidueñas , Hugo Álvarez-Hernández , Omar Chassin-Noria , Alba Irene Varela-Murillo , María Guadalupe Zavala-Páramo , Horacio Cano-Camacho , Gerardo Vázquez-Marrufo
J. Microbiol. 2011;49(5):693-702.   Published online November 9, 2011
DOI: https://doi.org/10.1007/s12275-011-0461-2
  • 224 View
  • 0 Download
  • 9 Scopus
AbstractAbstract PDF
The genetic diversity and population structure of Escherichia coli isolates from small-scale dairy farms were used to assess the ability of E. coli to spread within the farm environment and between neighboring farms. A total of 164 E. coli isolates were obtained from bovine feces, bedding, cow teats and milk from 6 small-scale dairy farms. Ward’s clustering grouped the isolates into 54 different random amplified polymorphic DNA (RAPD) types at 95% similarity, regardless of either the sample type or the farm of isolation. This suggests that RAPD types are shared between bovine feces, bedding, cow teats, and milk. In addition, transmission of RAPD types between the studied farms was suggested by the Ward grouping pattern of the isolates, Nei’s and AMOVA population analyses, and genetic landscape shape analysis. For the first time, the latter analytical tool was used to assess the ability of E. coli to disseminate between small-scale dairy farms within the same producing region. Although a number of dispersal mechanisms could exist between farms, the genetic landscape shape analysis associated the flow of E. coli RAPD types with the movement of forage and milking staff between farms. This study will aid in planning disease prevention strategies and optimizing husbandry practices.
Journal Article
NOTE] Identification of PhoB Binding Sites of the yibD and ytfK Promoter Regions in Escherichia coli
Yusuke Yoshida , Shinichiro Sugiyama , Tomoya Oyamada , Katsushi Yokoyama , Soo-Ki Kim , Kozo Makino
J. Microbiol. 2011;49(2):285-289.   Published online May 3, 2011
DOI: https://doi.org/10.1007/s12275-011-0360-6
  • 184 View
  • 0 Download
  • 10 Scopus
AbstractAbstract PDF
By using a lacZ operon fusion genomic library of the Escherichia coli O157:H7 Sakai, we identified phosphatestarvation-inducible (psi) promoters located upstream of the yibD and ytfK genes. They have been previously proposed to belong to the phosphate regulon (pho regulon) by Beak and Lee (2006), based on the DNA array and in vivo transcriptional experiments. However, the direct interaction of these promoters with the activator protein of the pho regulon, PhoB, has not been determined. We determined the binding regions of PhoB in these promoter regions by DNase I footprinting. Both regions contained two pho boxes similar to the consensus sequence for PhoB binding.
Research Support, Non-U.S. Gov't
Stable Expression and Secretion of Polyhydroxybutyrate Depolymerase of Paucimonas lemoignei in Escherichia coli
Se Whan Park , Moon Gyu Chung , Hwa Young Lee , Jeong Yoon Kim , Young Ha Rhee
J. Microbiol. 2008;46(6):662-669.   Published online December 24, 2008
DOI: https://doi.org/10.1007/s12275-008-0283-z
  • 228 View
  • 0 Download
  • 1 Scopus
AbstractAbstract PDF
An efficient strategy for the expression and secretion of extracellular polyhydroxybutyrate depolymerase (PhaZ1) of Paucimonas lemoignei in Escherichia coli was developed by employing the signal peptide of PhaZ1 and a truncated ice nucleation protein anchoring motif (INPNC). Directly synthesized mature form of PhaZ1 was present in the cytoplasm of host cells as inclusion bodies, while a construct containing PhaZ1 and its own N-terminal signal peptide (PrePhaZ1) enabled the secretion of active PhaZ1 into the extracellular medium. However, the PrePhaZ1 construct was harmful to the host cell and resulted in atypical growth and instability of the plasmid during the cultivation. In contrast, INPNC-PhaZ1 and INPNCPrePhaZ1 fusion constructs did not affect growth of host cells. INPNC-PhaZ1 was successfully displayed on the cell surface with its fusion form, but did not retain PhaZ1 activity. In the case of INPNC-PrePhaZ1, the initially synthesized fusion form was separated by precise cleavage of the signal peptide, and active PhaZ1 was consequently released into the culture medium. The amount of PhaZ1 derived from E. coli (INPNC-PrePhaZ1) was almost twice as great as that directly expressed from E. coli (PrePhaZ1), and was predominantly (approximately 85%) located in the periplasm when cultivated at 22°C but was efficiently secreted into the extracellular medium when cultivated at 37°C.
Journal Article
Biologically Active and C-Amidated HinnavinII-38-Asn Produced from a Trx Fusion Construct in Escherichia coli
Chang Soo Kang , Seung-Yeol Son , In Seok Bang
J. Microbiol. 2008;46(6):656-661.   Published online December 24, 2008
DOI: https://doi.org/10.1007/s12275-008-0214-z
  • 200 View
  • 0 Download
  • 9 Scopus
AbstractAbstract PDF
The cabbage butterfly (Artogeia rapae) antimicrobial peptide hinnavinII as a member of cecropin family is synthesized as 37 residues in size with an amidated lysine at C-terminus and shows the humoral immune response to a bacterial invasion. In this work, a synthetic gene for hinnavinII-38-Asn (HIN) with an additional amino acid asparagine residue containing amide group at C-terminus was cloned into pET-32a(+) vector to allow expression of HIN as a Trx fusion protein in Escherichia coli strain BL21 (DE3) pLysS. The resulting expression level of the fusion protein Trx-HIN could reach 15~20% of the total cell proteins and more than 70% of the target proteins were in soluble form. The fusion protein could be purified successfully by HiTrap Chelating HP column and a high yield of 15 mg purified fusion protein was obtained from 80 ml E. coli culture. Recombinant HIN was readily obtained by enterokinase cleavage of the fusion protein followed by FPLC chromatography, and 3.18 mg pure active recombinant HIN was obtained from 80 ml culture. The molecular mass of recombinant HIN determined by MALDI-TOF mass spectrometer is 4252.084 Da which matches the theoretical mass (4252.0 Da) of HIN. Comparing the antimicrobial activities of the recombinant hinnavinII with C-amidated terminus to that without an amidated C-terminus, we found that the amide of asparagine at C-terminus of hinnavinII improved its potency on certain microorganism such as E. coli, Enterobacter cloacae, Bacillus megaterium, and Staphylococcus aureus.
Research Support, Non-U.S. Gov't
Inactivation of Barotolerant Strains of Listeria monocytogenes and Escherichia coli O157:H7 by Ultra High Pressure and tert-Butylhydroquinone Combination
Yoon-Kyung Chung , Ahmed E. Yousef
J. Microbiol. 2008;46(3):289-294.   Published online July 5, 2008
DOI: https://doi.org/10.1007/s12275-008-0090-6
  • 290 View
  • 0 Download
  • 6 Crossref
AbstractAbstract PDF
Antimicrobial efficacy of ultra-high-pressure (UHP) can be enhanced by application of additional hurdles. The objective of this study was to systematically assess the enhancement in pressure lethality by TBHQ treatment, against barotolerant strains of Escherichia coli O157:H7 and Listeria monocytogenes. Two L. monocytogenes Scott A and the barotolerant OSY-328 strain, and two E. coli O157:H7 strains, EDL-933 and its barotolerant mutant, OSY-ASM, were tested. Cell suspensions containing TBHQ (50 ppm, dissolved in dimethyl sulfoxide) were pressurized at 200 to 500 MPa (23±2°C) for 1 min, plated on tryptose agar and enumerated the survivors. The TBHQ-UHP combination resulted in synergistic inactivation of both pathogens, with different degrees of lethality among strains. The pressure lethality threshold, for the combination treatment, was lower for E. coli O157:H7 (≥ 200 MPa) than for L. monocytogenes (> 300 MPa). E. coli O157:H7 strains were extremely sensitive to the TBHQ-UHP treatment, compared to Listeria strains. Interestingly, a control treatment involving DMSO-UHP combination consistently resulted in higher inactivation than that achieved by UHP alone, against all strains tested. However, sensitization of the pathogens to UHP by the additives (TBHQ in DMSO) was prominently greater for UHP than DMSO. Differences in sensitivities to the treatment between these two pathogens may be attributed to discrepancies in cellular structure or physiological functions.

Citations

Citations to this article as recorded by  
  • Recent Progress in the Synergistic Bactericidal Effect of High Pressure and Temperature Processing in Fruits and Vegetables and Related Kinetics
    Sinan Zhang, Maninder Meenu, Lihui Hu, Junde Ren, Hosahalli S. Ramaswamy, Yong Yu
    Foods.2022; 11(22): 3698.     CrossRef
  • Bacterial inactivation mechanism of SC-CD and TEO combinations in watermelon and melon juices
    Osman ERKMEN
    Food Science and Technology.2022;[Epub]     CrossRef
  • Thermal Losses of Tertiary Butylhydroquinone (TBHQ) and Its Effect on the Qualities of Palm Oil
    Cuifang Liu, Jun Li, Yanlan Bi, Xuede Wang, Shangde Sun, Guolong Yang
    Journal of Oleo Science.2016; 65(9): 739.     CrossRef
  • Hurdle Approach to Increase the Microbial Inactivation by High Pressure Processing: Effect of Essential Oils
    Elisa Gayán, J. Antonio Torres, Daniel Paredes-Sabja
    Food Engineering Reviews.2012; 4(3): 141.     CrossRef
  • Inactivation of Bacterial Spores by High Pressure and Food Additive Combination
    Yoon-Kyung Chung
    Journal of Life Science.2011; 21(8): 1094.     CrossRef
  • Contemporary strategies in combating microbial contamination in food chain
    Andreja Rajkovic, Nada Smigic, Frank Devlieghere
    International Journal of Food Microbiology.2010; 141: S29.     CrossRef
Journal Article
Characterization of the Bacillus subtilis WL-3 Mannanase from a Recombinant Escherichia coli
Ki-Hong Yoon , Seesub Chung , Byung-Lak Lim
J. Microbiol. 2008;46(3):344-349.   Published online July 5, 2008
DOI: https://doi.org/10.1007/s12275-008-0045-y
  • 215 View
  • 0 Download
  • 25 Crossref
AbstractAbstract PDF
A mannanase was purified from a cell-free extract of the recombinant Escherichia coli carrying a Bacillus subtilis WL-3 mannanase gene. The molecular mass of the purified mannanase was 38 kDa as estimated by SDS-PAGE. Optimal conditions for the purified enzyme occurred at pH 6.0 and 60°C. The specific activity of the purified mannanase was 5,900 U/mg on locust bean gum (LBG) galactomannan at pH 6.0 and 50°C. The activity of the enzyme was slightly inhibited by Mg2+, Ca2+, EDTA and SDS, and noticeably enhanced by Fe2+. When the enzyme was incubated at 4°C for one day in the presence of 3 mM Fe2+, no residual activity of the mannanase was observed. The enzyme showed higher activity on LBG and konjac glucomannan than on guar gum galactomannan. Furthermore, it could hydrolyze xylans such as arabinoxylan, birchwood xylan and oat spelt xylan, while it did not exhibit any activities towards carboxymethylcellulose and para-nitrophenyl-β-mannopyranoside. The predominant products resulting from the mannanase hydrolysis were mannose, mannobiose and mannotriose for LBG or mannooligosaccharides including mannotriose, mannotetraose, mannopentaose and mannohexaose. The enzyme could hydrolyze mannooligosaccharides larger than mannobiose.

Citations

Citations to this article as recorded by  
  • Impact of mannanase on broiler performance, intestinal health, and energy utilization with varying soybean meal levels
    Xiaodan Zhang, Bin Wang, Zhibin Ban, Mi Wang, Yuan Wang, Xinzhi Wang, Yuming Guo
    Animal Advances.2025;[Epub]     CrossRef
  • Effect of Supplementing Exogenous Glucanase or/and Mannanase to Diets Containing Torula Yeast on Growth Performance, Biochemical Indices, Liver and Intestinal Morphology, and Intestinal Microbiota and Metabolism of Largemouth Bass (Micropterus salmoides)
    Xiao Yan Wang, Zhi Li Ding, You Xing Xu, Dao Zhi Yang, Shun Yang, Hui Fei
    Probiotics and Antimicrobial Proteins.2025;[Epub]     CrossRef
  • Isolation of a Novel Low-Temperature-Active and Organic-Solvent-Stable Mannanase from the Intestinal Metagenome of Hermetia illucens
    Dong-Gwan Kim, Chang-Muk Lee, Young-Seok Lee, Sang-Hong Yoon, Su-Yeon Kim
    International Journal of Molecular Sciences.2024; 26(1): 216.     CrossRef
  • Separation and analysis of Bacillus subtilis respiratory chain complexes
    Gerardo Ignacio Picón Garrido, Ana Paula García García, Luis González de la Vara, Alicia Chagolla-López, Carlos Gómez-Lojero, Emma Berta Gutiérrez-Cirlos
    Journal of Bioenergetics and Biomembranes.2022; 54(5-6): 251.     CrossRef
  • Expression, Characterization and Structure Analysis of a New GH26 Endo-β-1, 4-Mannanase (Man26E) from Enterobacter aerogenes B19
    Huijing Liu, Jie Liu, Tangbing Cui
    Applied Sciences.2020; 10(21): 7584.     CrossRef
  • Cloning and expression of a β-mannanase gene from Bacillus sp. MK-2 and its directed evolution by random mutagenesis
    Wen Zhang, Zhemin Liu, Sijia Zhou, Haijin Mou, Ruifu Zhang
    Enzyme and Microbial Technology.2019; 124: 70.     CrossRef
  • Characterization of mannanase from Bacillus sp., a novel Codium fragile cell wall-degrading bacterium
    Suae Kim, Mi-Hwa Lee, Eun-Sook Lee, Young-Do Nam, Dong-Ho Seo
    Food Science and Biotechnology.2018; 27(1): 115.     CrossRef
  • Production, properties, and applications of endo-β-mannanases
    Praveen Kumar Srivastava, Mukesh Kapoor
    Biotechnology Advances.2017; 35(1): 1.     CrossRef
  • Production of Extracellular β-mannanase by Bacillus amyloliquefaciens on a Coconut Waste Substrate
    Zurmiati ., Wizna ., M. Hafil Abbas, Maria Endo Mahata
    Pakistan Journal of Nutrition.2017; 16(9): 700.     CrossRef
  • Mannoside recognition and degradation by bacteria
    Simon Ladevèze, Elisabeth Laville, Jordane Despres, Pascale Mosoni, Gabrielle Potocki‐Véronèse
    Biological Reviews.2017; 92(4): 1969.     CrossRef
  • Purification, characterization, and overexpression of an endo-1,4-β-mannanase from thermotolerant Bacillus sp. SWU60
    Weeranuch Seesom, Polphet Thongket, Tomohiro Yamamoto, Shigeo Takenaka, Tatsuji Sakamoto, Wasana Sukhumsirichart
    World Journal of Microbiology and Biotechnology.2017;[Epub]     CrossRef
  • A Recombinant Highly Thermostable β-Mannanase (ReTMan26) from Thermophilic Bacillus subtilis (TBS2) Expressed in Pichia pastoris and Its pH and Temperature Stability
    Zhangcai Luo, Jing Miao, Guoying Li, Yao Du, Xiaobin Yu
    Applied Biochemistry and Biotechnology.2017; 182(4): 1259.     CrossRef
  • Isolation of Mannanase-producing Bacteria, Bacillus subtilis WL-6 and WL-11, and Cloning and Characterization of Mannanase
    Ki-Hong Yoon
    Journal of Life Science.2016; 26(10): 1113.     CrossRef
  • A novel surfactant-, NaCl-, and protease-tolerant β-mannanase from Bacillus sp. HJ14
    Rui Zhang, Zhifeng Song, Qian Wu, Junpei Zhou, Junjun Li, Yuelin Mu, Xianghua Tang, Bo Xu, Junmei Ding, Shucan Deng, Zunxi Huang
    Folia Microbiologica.2016; 61(3): 233.     CrossRef
  • A novel thermostable GH5_7 β-mannanase from Bacillus pumilus GBSW19 and its application in manno-oligosaccharides (MOS) production
    Haoyu Zang, Shanshan Xie, Huijun Wu, Weiduo Wang, Xiankun Shao, Liming Wu, Faheem Uddin Rajer, Xuewen Gao
    Enzyme and Microbial Technology.2015; 78: 1.     CrossRef
  • Characterization of α-D-manosidase activity from Bacillus safensis MA-01
    Bo Mi Lee, Joo Won Kim, Jae Kweon Park
    Journal of Marine Bioscience and Biotechnology.2015; 7(1): 11.     CrossRef
  • β-Mannanase (Man26A) and α-galactosidase (Aga27A) synergism – A key factor for the hydrolysis of galactomannan substrates
    Samkelo Malgas, Susan J. van Dyk, Brett I. Pletschke
    Enzyme and Microbial Technology.2015; 70: 1.     CrossRef
  • Production and Properties of Mannanase by a Bacillus amyloliquefaciens Isolate
    Ki-Hong Yoon
    The Korean Journal of Microbiology.2014; 50(2): 158.     CrossRef
  • Overexpression of a Fungal β-Mannanase from Bispora sp. MEY-1 in Maize Seeds and Enzyme Characterization
    Xiaolu Xu, Yuhong Zhang, Qingchang Meng, Kun Meng, Wei Zhang, Xiaojin Zhou, Huiying Luo, Rumei Chen, Peilong Yang, Bin Yao, Yi Li
    PLoS ONE.2013; 8(2): e56146.     CrossRef
  • Fractional purification and bioconversion of hemicelluloses
    Feng Peng, Pai Peng, Feng Xu, Run-Cang Sun
    Biotechnology Advances.2012; 30(4): 879.     CrossRef
  • Characterization, gene cloning, and heterologous expression of β-mannanase from a thermophilic Bacillus subtilis
    Pijug Summpunn, Suttidarak Chaijan, Duangnate Isarangkul, Suthep Wiyakrutta, Vithaya Meevootisom
    The Journal of Microbiology.2011; 49(1): 86.     CrossRef
  • Efficient recombinant expression and secretion of a thermostable GH26 mannan endo-1,4-β-mannosidase from Bacillus licheniformis in Escherichia coli
    Chomphunuch Songsiriritthigul, Bancha Buranabanyat, Dietmar Haltrich, Montarop Yamabhai
    Microbial Cell Factories.2010;[Epub]     CrossRef
  • Characterization of the Bacillus licheniformis WL-12 Mannanase from a Recombinant Escherichia coli
    Ki-Hong Yoon
    Journal of Applied Biological Chemistry.2010; 53(2): 71.     CrossRef
  • Transcriptional Regulation and Molecular Characterization of the manA Gene Encoding the Biofilm Dispersing Enzyme Mannan endo-1,4-β-Mannosidase in Xanthomonas campestris
    Yi-Min Hsiao, Yu-Fan Liu, Mei-Chiung Fang, Yi-Hsiung Tseng
    Journal of Agricultural and Food Chemistry.2010; 58(3): 1653.     CrossRef
  • Sugar production from raw seaweed using the enzyme method
    DuBok Choi, Heung Sun Sim, Yu Lan Piao, Wu Ying, Hoon Cho
    Journal of Industrial and Engineering Chemistry.2009; 15(1): 12.     CrossRef
Research Support, Non-U.S. Gov'ts
Molecular Characterization of Antibiotic Resistant Escherichia coli Strains Isolated from Tap and Spring Waters in a Coastal Region in Turkey
Osman Birol Ozgumus , Elif Celik-Sevim , Sengul Alpay-Karaoglu , Cemal Sandalli , Ali Sevim
J. Microbiol. 2007;45(5):379-387.
DOI: https://doi.org/2600 [pii]
  • 217 View
  • 0 Download
AbstractAbstract PDF
A hundred and seventeen antibiotic-resistant Escherichia coli strains were isolated from public tap and spring waters which were polluted by fecal coliforms. There were no significant differences between two water sources as to the coliform pollution level (p> 0.05). All E. coli isolates were detected to be resistant to one or more antibiotics tested. Nearly 42% of the isolates showed multiresistant phenotype. Three (2.5%) of these isolates contained class 1 integron. Sequencing analysis of variable regions of the class 1 integrons showed two gene cassette arrays, dfr1-aadA1 and dhfrA17-aadA5. Resistance to ampicillin, tetracycline or trimethoprim-sulfamethoxazole was transferable according to the results of conjugation experiments. The rate of tetracycline resistance was 15%. tet(A)-mediated tetracycline resistance was widespread among tetracycline-resistant E. coli isolates. Genotyping by BOX-polymerase chain reaction (BOX-PCR) showed that some of the strains were epidemiologically related. This is the first report on the prevalence and characterization of class 1 integron-containing E. coli isolates of environmental origin in Turkey.
Genetic Characterization of the Escherichia coli O66 Antigen and Functional Identification of its wzy Gene
Jiansong Cheng , Bin Liu , David A. Bastin , Weiqing Han , Lei Wang , Lu Feng
J. Microbiol. 2007;45(1):69-74.
DOI: https://doi.org/2488 [pii]
  • 215 View
  • 0 Download
AbstractAbstract PDF
Escherichia coli is a clonal species, and occurs as both commensal and pathogenic strains, which are normally classified on the basis of their O, H, and K antigens. The O-antigen (O-specific polysaccharide), which consists of a series of oligosaccharide (O-unit) repeats, contributes major antigenic variability to the cell surface. The O-antigen gene cluster of E. coli O66 was sequenced in this study. The genes putatively responsible for the biosynthesis of dTDP-6-deoxy-L-talose and GDP-mannose, as well as those responsible for the transfer of sugars and for O-unit processing were identified based on their homology. The function of the wzy gene was confirmed by the results of a mutation test. Genes specific for E. coli O66 were identified via PCR screening against representatives of 186 E. coli and Shigella O type strains. The comparison of intergenic sequences located between galF and the O-antigen gene cluster in a range of E. coli and Shigella showed that this region may perform an important function in the homologous recombination of the O-antigen gene clusters.
Isolation of Quinolone-Resistant Escherichia coli Found in Major Rivers in Korea
Dahye Jung , Min Young Lee , Jung Min Kim , Je Chul Lee , Dong Taek Cho , Yeonhee Lee
J. Microbiol. 2006;44(6):680-684.
DOI: https://doi.org/2456 [pii]
  • 221 View
  • 0 Download
AbstractAbstract PDF
Twenty isolates resistant to seven quinolones were isolated from major rivers in Korea. All isolates had three mutations, Ser83→Leu and Asp87→Asn in GyrA and Ser80→Ile or Ser80→Arg in ParC and three isolates had an additional mutation Glu84→Gly or Glu84→Val in ParC. In addition, a clonal spread was not found in these isolates.
Isolation and Characterization of the Smallest Bacteriophage P4 Derivatives Packaged into P4-Size Head in Bacteriophage P2-P4 System
Kyoung-Jin Kim , Jaeho Song
J. Microbiol. 2006;44(5):530-536.
DOI: https://doi.org/2444 [pii]
  • 212 View
  • 0 Download
AbstractAbstract PDF
Bacteriophage P4, a satellite phage of coliphage P2, is a very useful experimental tool for the study of viral capsid assembly and cos-cleavage. For an in vitro cos-cleavage reaction study of the P2-P4 system, new shortened and selectable markers containing P4 derivative plasmids were designed as a substrate molecules. They were constructed by swapping the non-essential segment of P4 DNA for either the kanamycin resistance (kmr) gene or the ampicillin resistance (apr) gene. The size of the genomes of the resulting markers were 82% (P4 ash8 delRI:: kmr) and 79% (P4 ash8 delRI:: apr) of the wild type P4 genome. To determine the lower limit of genome size that could be packaged into the small P4-size head, these shortened P4 plasmids were converted to phage particles with infection of the helper phage P2. The conversion of plasmid P4 derivatives to bacteriophage particles was verified by the heat stability test and the burst size determination experiment. CsCl buoyant equilibrium density gradient experiments confirmed not only the genome size of the viable phage form of shortened P4 derivatives, but also their packaging into the small P4-size head. P4 ash8 delRI:: apr turned out to be the smallest P4 genome that can be packaged into P4-sized head.
Journal Article
Protective Immune Response of Bacterially-Derived Recombinant FaeG in Piglets
Huang Yahong , Wanqi Liang , Aihu Pan , Zhiai Zhou , Qiang Wang , Cheng Huang , Jianxiu Chen , Dabing Zhang
J. Microbiol. 2006;44(5):548-555.
DOI: https://doi.org/2442 [pii]
  • 192 View
  • 0 Download
AbstractAbstract PDF
FaeG is the key factor in the infection process of K88ad enterotoxigenic Escherichia coli(ETEC) fimbrial adhesin. In an attempt to determine the possibility of expressing recombinant FaeG with immunogenicity for a new safe and high-production vaccine in E. coli, we constructed the recombinant strain, BL21 (DE3+K88), which harbors an expression vector with a DNA fragment of faeG, without a signal peptide. Results of 15% SDS-polyacrylamide slab gel analysis showed that FaeG can be stably over-expressed in BL21 (DE3+K88) as inclusion bodies without FaeE. Immunoglobulin G (IgG) and M (IgM) responses in pregnant pigs, with boost injections of the purified recombinant FaeG, were detected 4 weeks later in the sera and colostrum. An in vitro villius-adhesion assay verified that the elicited antibodies in the sera of vaccinated pigs were capable of preventing the adhesion of K88ad ETEC to porcine intestinal receptors. The protective effect on the mortality rates of suckling piglets born to vaccinated mothers was also observed one week after oral challenge with the virulent ETEC strain, C83907 (K88ad, CT+, ST+). The results of this study proved that the adhesin of proteinaceous bacterial fimbriae or pili could be overexpressed in engineered E. coli strains, with protective immune responses to the pathogen.
Research Support, Non-U.S. Gov'ts
Effect of Titanium Ion and Resistance Encoding Plasmid of Pseudomonas aeruginosa ATCC 10145
Sung Min Park , Hyun Soo Kim , Tae Shick Yu
J. Microbiol. 2006;44(3):255-262.
DOI: https://doi.org/2388 [pii]
  • 198 View
  • 0 Download
AbstractAbstract PDF
Titanium and its alloys are technically superior and cost-effective materials, with a wide variety of aerospace, industrial, marine, and commercial applications. In this study, the effects of titanium ions on bacterial growth were evaluated. Six strains of bacteria known to be resistant to both metal ions and antibiotics were used in this study. Two strains, Escherichia coli ATCC 15489, and Pseudomonas aeruginosa ATCC 10145, proved to be resistant to titanium ions. Plasmid-cured P. aeruginosa resulted in the loss of one or more resistance markers, indicating plasmid-encoded resistance. The plasmid profile of P. aeruginosa revealed the presence of a 23-kb plasmid. The plasmid was isolated and transformed into DH5α. Interestingly, the untransformed DH5α did not grow in 300 mg/l titanium ions, but the transformed DH5α grew quite well under such conditions. The survival rate of the transformed DH5α also increased more than 3-fold compared to that of untransformed DH5α.
Sterilization of Bacteria, Yeast, and Bacterial Endospores by Atmospheric-Pressure Cold Plasma using Helium and Oxygen
Kyenam Lee , Kwang-hyun Paek , Won-Tae Ju , Yoenhee Lee
J. Microbiol. 2006;44(3):269-275.
DOI: https://doi.org/2386 [pii]
  • 214 View
  • 1 Download
AbstractAbstract PDF
Atmospheric-pressure cold plasma (APCP) using helium/oxygen was developed and tested as a suitable sterilization method in a clinical environment. The sterilizing effect of this method is not due to UV light, which is known to be the major sterilization factor of APCP, but instead results from the action of reactive oxygen radicals. Escherichia coli, Staphylococcus aureus, and Saccharomyces cerevisiae deposited on a nitrocellulose filter membrane or Bacillus subtilis spores deposited on polypropylene plates were exposed to helium/oxygen plasma generated with AC input power at 10 kHz, 6 kV. After plasma treatment, nitrocellulose filter membranes were overlaid on fresh solid media and CFUs were counted after incubation overnight. D-values were 18 sec for E. coli, 19 sec for S. aureus, 1 min 55 sec for S. cerevisiae, and 14 min for B. subtilis spores. D-values of bacteria and yeast were dependent on the initial inoculation concentration, while the D-value of B. subtilis spores showed no correlation. When treated cells were observed with a scanning electron microscope, E. coli was more heavily damaged than S. aureus, S. cerevisiae exhibited peeling, and B. subtilis spores exhibited shrunken morphology. Results showed that APCP using helium/oxygen has many advantages as a sterilization method, especially in a clinical environment with conditions such as stable temperature, unlimited sample size, and no harmful gas production.
Review
Rho-dependent Transcription Termination: More Questions than Answers
Sharmistha Banerjee , Jisha Chalissery , Irfan Bandey , Ranjan Sen
J. Microbiol. 2006;44(1):11-22.
DOI: https://doi.org/2342 [pii]
  • 220 View
  • 0 Download
AbstractAbstract PDF
Escherichia coli protein Rho is required for the factor-dependent transcription termination by an RNA polymerase and is essential for the viability of the cell. It is a homohexameric protein that recognizes and binds preferably to C-rich sites in the transcribed RNA. Once bound to RNA, it utilizes RNA-dependent ATPase activity and subsequently ATPase-dependent helicase activity to unwind RNA-DNA hybrids and release RNA from a transcribing elongation complex. Studies over the past few decades have highlighted Rho as a molecule and have revealed much of its mechanistic properties. The recently solved crystal structure could explain many of its physiological functions in terms of its structure. Despite all these efforts, many of the fundamental questions pertaining to Rho recognition sites, differential ATPase activity in response to different RNAs, translocation of Rho along the nascent transcript, interactions with elongation complex and finally unwinding and release of RNA remain obscure. In the present review we have attempted to summarize ‘the knowns’ and ‘the unknowns’ of the Rho protein revealed by the recent developments in this field. An attempt has also been made to understand the physiology of Rho in the light of its phylogeny.
Journal Article
Expression of Escherichia coli Heat-labile Enterotoxin B Subunit (LTB) in Saccharomyces cerevisiae
Mohammad Ahangarzadeh Rezaee , Abbas Rezaee , Seyed Mohammad Moazzeni , Ali Hatef Salmanian , Yoko Yasuda , Kunio Tochikubo , Shahin Najar Pirayeh , Mohsen Arzanlou
J. Microbiol. 2005;43(4):354-360.
DOI: https://doi.org/2254 [pii]
  • 231 View
  • 0 Download
AbstractAbstract PDF
Heat-labile enterotoxin B subunit (LTB) of enterotoxigenic Escherichia coli (ETEC) is both a strong mucosal adjuvant and immunogen. It is a subunit vaccine candidate to be used against ETEC-induced diarrhea. It has already been expressed in several bacterial and plant systems. In order to construct yeast expressing vector for the LTB protein, the eltB gene encoding LTB was amplified from a human origin enterotoxigenic E. coli DNA by PCR. The expression plasmid pLTB83 was constructed by inserting the eltB gene into the pYES2 shuttle vector immediately downstream of the GAL1 promoter. The recombinant vector was transformed into S. cerevisiae and was then induced by galactose. The LTB protein was detected in the total soluble protein of the yeast by SDS-PAGE analysis. Quantitative ELISA showed that the maximum amount of LTB protein expressed in the yeast was approximately 1.9% of the total soluble protein. Immunoblotting analysis showed the yeast-derived LTB protein was antigenically indistinguishable from bacterial LTB protein. Since the whole-recombinant yeast has been introduced as a new vaccine formulation the expression of LTB in S. cerevisiae can offer an inexpensive yet effective strategy to protect against ETEC, especially in developing countries where it is needed most.
Research Support, Non-U.S. Gov'ts
Comparative Evaluation of Three Purification Methods for the Nucleocapsid Protein of Newcastle Disease Virus from Escherichia coli Homogenates
Yan Peng Tan , Tau Chuan Ling , Khatijah Yusoff , Wen Siang Tan , Beng Ti Tey
J. Microbiol. 2005;43(3):295-300.
DOI: https://doi.org/2210 [pii]
  • 196 View
  • 0 Download
AbstractAbstract PDF
In the present study, the performances of conventional purification methods, packed bed adsorption (PBA), and expanded bed adsorption (EBA) for the purification of the nucleocapsid protein (NP) of Newcastle disease virus (NDV) from Escherichia coli homogenates were evaluated. The conventional methods for the recovery of NP proteins involved multiple steps, such as centrifugation, precipitation, dialysis, and sucrose gradient ultracentrifugation. For the PBA, clarified feedstock was used for column loading, while in EBA, unclarified feedstock was used. Streamline chelating immobilized with Ni^2^+ ion was used as an affinity ligand for both PBA and EBA. The final protein yield obtained in conventional and PBA methods was 1.26% and 5.56%, respectively. It was demonstrated that EBA achieved the highest final protein yield of 9.6% with a purification factor of 7. Additionally, the total processing time of the EBA process has been shortened by 8 times compared to that of the conventional method.
Purification and Characterization of NADPH-Dependent Cr(VI) Reductase from Escherichia coli ATCC 33456
Woo-Chul Bae , Han-Ki Lee , Young-Chool Choe , Deok-Jin Jahng , Sang-Hee Lee , Sang-Jin Kim , Jung-Hyun Lee , Byeong-Chul Jeong
J. Microbiol. 2005;43(1):21-27.
DOI: https://doi.org/2143 [pii]
  • 173 View
  • 0 Download
AbstractAbstract PDF
A soluble Cr(VI) reductase was purified from the cytoplasm of Escherichia coli ATCC 33456. The molecular mass was estimated to be 84 and 42 kDa by gel filtration and SDS-polyacrylamide gel electrophoresis, respectively, indicating a dimeric structure. The pI was 4.66, and optimal enzyme activity was obtained at pH 6.5 and 37^oC. The most stable condition existed at pH 7.0. The purified enzyme used both NADPH and NADH as electron donors for Cr(VI) reduction, while NADPH was the better, conferring 61% higher activity than NADH. The K_m values for NADPH and NADH were determined to be 47.5 and 17.2 umol, and the V_max values 322.2 and 130.7 umol Cr(VI) min^-1mg^-1 protein, respectively. The activity was strongly inhibited by N-ethylmalemide, Ag^2+, Cd^2+, Hg^2+, and Zn^2+. The antibody against the enzyme showed no immunological cross reaction with those of other Cr(VI) reducing strains.
A Proteomic Approach to Study msDNA Function in Escherichia coli
Mi-Ae Jeong , Dongbin Lim
J. Microbiol. 2004;42(3):200-204.
DOI: https://doi.org/2089 [pii]
  • 213 View
  • 0 Download
AbstractAbstract PDF
Retron is a prokaryotic genetic element that produces multicopy single-stranded DNA covalently linked to RNA (msDNA) by a reverse transcriptase. It was found that cells producing a large amount of msDNA, rather than those that did not, showed a higher rate of mutation. In order to understand the molecular mechanism connecting msDNA production to the high mutation rate the protein patterns were compared by two dimensional gel electrophoresis. Ten proteins were found to be differentially expressed at levels more than three fold greater in cells with than without msDNA, nine of which were identified by MALDI TOF MS. Eight of the nine identified proteins were repressed in msDNA-producing cells and, surprisingly, most were proteins functioning in the dissimilation of various carbon sources. One protein was induced four fold greater in the msDNA producing cells and was identified as a 30S ribosomal protein S2 involved in the regulation of translation. The molecular mechanism underlying the elevated mutation in msDNA-producing cell still remains elusive.
Regulation of fpr Gene encoding NADPH :Ferredoxin oxidoreductase by the soxRS locus in escherichia coli
Koh, Young Sang , Chouh, Jenny , Roe, Jung Hye
J. Microbiol. 1996;34(2):137-143.
  • 3,173 View
  • 0 Download
AbstractAbstract PDF
We isolated a promoter inducible by paraquat, a superoxide-generating agent, from Escherichia coli using a promoter-probing plasmid pRS415. From sequence analysis we found out the promoter is for fpr ENCODING nadph : ferredoxin oxidoreductase. We constructed on operon fusion of lacZ gene with fpr promoter to monitor the expression of the gene in the single-copy state. LacZ expression generators, menadione and plumbagin, also induced the expression of β-galactosidase in the fusion strain. On the other hand, no significant induction was observed by treatment with hydrogen peroxide, ethanol, and heat shock. Induction of β-galactosidase was significantly reduced by introducing a Δsox 8 :: cat of soxS3 :: Tn10 mutation into the fusion strain, indicating that fpr gene is a member of the soxRS regulon. The transcriptional start site was determined by primer extension analysis. Possible roles of fpr induction in superoxide stress were discussed.
Isolation and Characterization of Paraquat-inducible Promoters from Escherichia coli
Lee, Joon Hee , Roe, Jung Hye
J. Microbiol. 1997;35(4):277-283.
  • 194 View
  • 0 Download
AbstractAbstract PDF
Promoters inducible by paraquat, a superocide-generating agent, were isolated from Escherichia coli using a promoter-probing plasmid pRS415 with promoterless lacA gene. Twenty one promoters induced by paraquat were selected and further characterized. From sequence analysis, thirteen of the promoters were mapped to their specific loci on the Escherichia coli chromosome. Several promoters were mapped to the upstream of known genes such as usgl, katG, and mglB, whose relationships with superoxide response have not been previously reported. Other promoters were mapped to the upstream region of unknown open reading frames. Downstream of HC 96 promoter are uncharacterized ORFs whose sequences are homologous to ABC-transporter subunits. Downstream of HC84 promoter is an ORF encoding a transcriptional regulator-like protein, which contains a LysR family-specific HTH (helix-turn-helix) DNA bindign motif. We investigated whether these promoters belong to the soxRS regulon. All promoters except HC96 were found to belong to the soxRS regulon. The HC96 promoter was significantly induced by paraquat in the soxRS deletion mutant strain. The basal transcription level of three promoters (HE43, HC71, HD94) significantly increased at the stationary phase, implying that they are regulated by RpoS. However, paraquat inducibility of all promoters disappeared in the stationary phase, suggesting that SoxRS regulatory system is active only in rapidly growing cells.
Synthesis and Requirement of Escherichia coli Heat Shock Proteins GroEL and DnaK for Survival under Phenol Stress Conditions
Jeon, Taeck Joong , Lee, Kil Jae
J. Microbiol. 1998;36(1):26-33.
  • 209 View
  • 0 Download
AbstractAbstract PDF
Exposure of Escherichia coli strain MC4100 to various concentrations of phenol at temperatures higher than 20℃ led to induction of stress proteins such as GroEL and DnaK, as analyzed by SDS-PAGE and Western blotting methods. The optimum range of phenol concentration for the induction of GroEL and DnaK was slightly different at each temperature of bacterial growth and phenol treatment. The level of GroEL increased as the temperatures of growth and phenol treatment were increased from 30℃ to 40℃. The level of induced FroEL was maximal in the wild type cells which had been grown and treated by 2000㎍/㎖ phenol at 40℃. In contrast to GroEL, the level of DnaK decreased as the temperatures of growth and phenol treatment were increased from 25℃ to 40℃. Dnak was maximally induced in the cells grown and exposed to 1000㎍/㎖ phenol at 25℃. In rpoH mutant cells KY1601, GroEL was not additionally induced by phenol treatment and DnaK was not even detectable under normal and phenol stress conditions. Viability of cells under the same conditions of phenol treatment showed that the phenol resistance in much more induced in wild type cells than rpoH mutant cells. These results suggest that the induction of GroEL and DnaK is required for the enhanced viability of cells under conditions of phenol stress.
Laboratory Developed fluoroquinolone Resistant Escherichia coli Has a new Missense Mutation in QRDR of PartC
Lee, Soon Deuk , Lee, Yeon Hee
J. Microbiol. 1998;36(2):106-110.
  • 197 View
  • 0 Download
AbstractAbstract PDF
The fluoroquinolone resistance mechanism of four laboratory developed fluorquinolone resistant strains of Escherichia coli was studied. Fluoroquinolone concentrations inside the resistant cells were similar to the concentrations in the susceptible cells. DNA sequencing of the quinolone resistance determining regions (QRDR) in gyrA and parC revealed the presence of Ser 83Leu and Asp87Gly mutations in GyrA, and Gly78Cys and Ser80Arh mutations in ParC of the ofloxacin, norfloxacin, and HK3140 resistant strains, while the ciprofloxacin resistant strain had Ser83Leu and Aasp87Tyr mutations in GyrA, and Gly78Cys and Ser80Ile mutations in ParC. A Gly78Cys substitution in ParC was newly detected in this work and seemed to be responsible for the extremely high MICs to fluroquinolones.
Cloning and Nucleotide Sequence Analysis of Verotoxin Gene from Escherichia coli O157 KNIH317 Isolated in Korea
Park, Yong-Chjun , Shin, Hee Jung , Kim, Young Chang
J. Microbiol. 1999;37(3):168-173.
  • 205 View
  • 1 Download
AbstractAbstract PDF
Escherichia coli O157 is an important pathogenic organism which causes diarrhea, haemorrhagic colitis, and haemolytic ureamic syndrome (HUS) in human. E. coli O157 KNIH317 was isolated form patients suffering with HUS in Korea. We designed a primer set for cloning shiga-like toxin (slt) gene. The amplified PCR product was used to Southern and colony hybridization as a probe. As a result, we cloned 4.5-kb KpnI fragment containing the slt gene encoding shiga-like toxin from chromosomal DNA of E. coli O157 KNIH317. This recombinant plasmid was named pOVT45. E. coli XL1-Blue harboring pOVT45 showed cytotoxicity in Vero cells. We sequenced the slt gene of this strain. The A-subunit gene of the slt was composed of 960 base pairs with ATG initiation codon and TAA terminationcodon. The B-subunit was composed of 270 base paris with ATG initiation codon and TGA termination codon. Nucleotide sequence comparison of the slt gene exhibited 100%, 98.4%, 93.7%, and 93.7% identity with that of shiga-like toxin type II (sltII) of E. coli bacteriophage 933W, variant slt of E. coli, slt of E. coli, and variant sltII of E. coli, respectively. From these results, it was concluded that the cloned slt gene belongs to SltII family and that the strain used in this study may be a lysogeny of E. coli bacteriphage 933W.
Reduction of Hexavalent Chromium by Escherichia coli ATCC 33456 in Batch and Continuous Cultures
Woo Chul Bae , Tae Gu Kang , In Kyong Kang , You Jung Won , Byeong Chul Jeong
J. Microbiol. 2000;38(1):36-39.
  • 190 View
  • 0 Download
AbstractAbstract PDF
Toxic hexavalent chromium, Cr(VI), was reduced to a less toxic trivalent chromium form by E. coli ATCC 33456. The suitable electron donor for Cr(VI) reduction was glucose. E. coli ATCC 33456 was more resistant to metal cations than other reported Cr(VI) reducing microorganisms. Cell growth was inhibited by the presence of Cr(VI) in a liquid medium and Cr(VI) reduction accompanied cell growth. With a hydraulic retention time of 20 h, Cr(VI) reducing efficiency was 100% to 84% when Cr(VI) concentration in the influent was in the range of 10 to 40 mg L^-1. Specific rate of Cr(VI) concentration in the influent was 2.41 mg Cr(VI) g DCW^-1 h^-1 when 40 mg :^-1 of Cr(VI) influent was used. This result suggested the potential application of E. coli ATCC 33456 for the detoxification of Cr(VI) in Cr(VI) contaminated wastewater.
Continuous Synthesis of Escherichia coli GroEL at a High Temperature
Young Hak Kwak , Kyong Sun Lee , Ji Yeon Kim , Dong Seok Lee , Han Bok Kim
J. Microbiol. 2000;38(3):145-149.
  • 193 View
  • 0 Download
AbstractAbstract PDF
GroEL is a typical molecular chaperone. GroEL synthesis patterns at various culture temperatures in Escherichia coli were investigated in this study. No significant differences in the amount of GroEL produced from the chromosome were found at 30 and 37 C. However, GroEL production increased 3.4-fold at 42 C. GroEL synthesis was not transient but continuous at 42 C, although most heat shock gene expression is known to be transient. To understand the role of the groEL structural gene, a groE promoter-lacZ fusion was constructed. Interestingly, while transcriptional fusion is not thermally inducible, it is inducible by ethanol, suggesting that the secondary structure of the groEL transcript is involved in thermal regulation of the groEL gene. Secondary structures of groE mRNA at 37 and 42 C were compared using the computer program RNAdraw. Distinct structures at the two temperatures were found, and these structures may be related to a high level of GroEL expression at 42 C.
Regulation of Glycogen Concentration by the Histidine-Containing Phosphocarrier Protein HPr in Escherichia coli
Byoung-Mo Koo , Yeong-Jae Seok
J. Microbiol. 2001;39(1):24-30.
  • 213 View
  • 0 Download
AbstractAbstract PDF
In addition to effecting the catalysis of sugar uptake, the bacterial phosphoenolpyruvate:sugar phosphotransferase system regulates a variety of physiological processes. In a previous paper [Seok et al., (1997) J. Biol. Chem. 272, 26511-26521], we reported the interaction with and allosteric regulation of Escherichia coli glycogen phosphorylase activity by the histidine-containing phosphocarrier protein HPr in vitro. Here, we show that the specific interaction between HPr and glycogen phosphorylase occurs in vivo. To address the physiological role of the HPr-glycogen phosphorylase complex, intracellular glycogen levels were measured in E. coli strains transformed with various plasmids. While glycogen accumulated during the transition between exponential and stationary growth phases in wildtype cells, it did not accumulate in cells overproducing HPr or its inactive mutant regardless of the growth stage. From these results, we conclude that HPr mediates crosstalk between sugar uptake through the phosphoenolpyruvate:sugar phosphotransferase system and glycogen breakdown. The evolutionary significance of the HPr-glycogen phosphorylase complex is suggested.
Isolation of Norfloxacin Resistant Escherichia coli from the Han River and Characterization of Resistance Mechanism
Yoosun Jung , Hyunjin Hong , Hyeran Nam , Yeonhee Lee
J. Microbiol. 2002;40(1):63-69.
  • 214 View
  • 0 Download
AbstractAbstract PDF
A total of twenty-five norfloxacin resistant Escherichia coli were isolated from Joongrang-chun stream, a branch of the Han River in Seoul, Korea from May to July in 2000 and their norfloxacin resistance mechanism was characterized for target site mutation, permeability, and efflux pump. Fourteen isolates contained the same three mutations, Ser83->Leu and Asp87->Asn in GyrA and Ser90->Ile in ParC. Six isolates had Ser83->Leu and Asp87->Tyr in GyrA and Ser80->Ile in ParC while one isolate had Ser83->Leu and Val103->Ala in GyrA and Ser80->Ile in ParC. Two isolates had mutation(s) in GyrA without any mutation in ParC. Two isolates had Ser80->Arg in ParC instead of the commonly found Ser80->Ile. Every norfloxacin resistant isolate had an efflux system but the correlation between the efflux activity and MIC was not observed. The amount of OmpF for norfloxacin permeability decreased in resistant isolates compared to the susceptible strains. When amplified polymorphic DNA (RAPD) and pulse field gel electrophoresis (PFGE) were performed, these isolates showed no similarity to each other or clinical isolates.
Histological Alterations and Immune Response Induced by Pet Toxin During Colonization with Enteroaggregative Escherichia coli (EAEC) in a Mouse Model
Teresita Sainz , Julia Perez , Ma. Cristina Fresan , Veronica Flores , Luis Jimenez , Ulises Hernandez , Ismael Herrera , Carlos Eslava
J. Microbiol. 2002;40(2):91-97.
  • 214 View
  • 0 Download
AbstractAbstract PDF
Enteroaggregative E. coli (EAEC) is an important aethiological causal agent of diarrhea in people of developed and undeveloped countries. Different in vitro and in vivo models have been proposed to study the pathogenic and immune mechanisms of EAEC infection. The aim of this study was to analyze whether BALB/c mice could be used as an animal model to study EAEC pathogenesis. Six-week-old BALB/c mice were inoculated with EAEC strain 042 (O44:H18) nalidixic acid resistant, and re-inoculated ten days after. Mice feces were monitored for the presence of the EAEC strain over a period of 20 days. Bacteria were enumerated on MacConkey agar containing 100 ug of nalidixic acid per ml. Results showed that 35% of the animals were colonized for 3 days, 15% for 5 and 10% for more than 7 days. After re-inoculation only 16% of the animals remained colonized for more than 3 days. During the necropsy, the intestinal fluid of some of the infected animals presented mucus and blood. Six of these fluids showed the presence of IgA antibodies against Pet toxin and IgG antibodies raised against the toxin were also detected in the animal serum. Histopathologic evidence confirms the stimulation of mucus hypersecretion, an increased amount of goblet cells and the presence of bacterial aggregates in the apical surfaces of intestinal epithelial cells. Edema was present in the submucosa. These results suggest that BALB/c mice could be used as an animal model for the in vivo study of EAEC infection.

Journal of Microbiology : Journal of Microbiology
TOP