Atopic dermatitis (AD) is a widespread inflammatory skin condition that affects the population worldwide. Given the implication of microbiota in AD pathogenesis, we investigated whether human-derived Lactobacillus strains could modulate AD. In this study, we identified Lactobacillus crispatus KBL693 as a probiotic candidate for AD treatment. In vitro, KBL693 suppressed mast cell degranulation and IL-4 production by T cells, suggesting its ability to attenuate key type 2 immune responses. Consistent outcomes were observed in a murine AD model, where oral administration of KBL693 alleviated disease symptoms and reduced hallmark type 2 immune markers, including plasma IgE as well as IL-4, IL-5, and IL-13 levels in skin lesions. In addition to downregulating these AD-associated immune responses, KBL693 promoted regulatory T cell (Treg) expansion in mesenteric lymph nodes, indicating its potential to restore immune balance. Collectively, these findings highlight the therapeutic potential of KBL693 for AD through enhancement of Tregs and suppression of type 2 immune responses.