Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
2 "Flavihumibacter"
Filter
Filter
Article category
Keywords
Publication year
Journal Articles
Extracellular vesicles derived from Lactobacillus plantarum restore chemosensitivity through the PDK2-mediated glucose metabolic pathway in 5-FU-resistant colorectal cancer cells
JaeJin An , Eun-Mi Ha
J. Microbiol. 2022;60(7):735-745.   Published online July 4, 2022
DOI: https://doi.org/10.1007/s12275-022-2201-1
  • 21 View
  • 0 Download
  • 11 Citations
AbstractAbstract
Metabolic abnormalities are one of the main hallmarks of cancer and are associated with chemoresistance. Therefore, targeting the metabolic reprogramming of cancer cells has the potential to overcome chemoresistance. Probiotic-derived extracellular vesicles (EVs) play important roles in biological function and intracellular communication. However, the inhibitory effect of Lactobacillus plantarum-derived EVs (LpEVs) on colorectal cancer (CRC) cells has not yet been elucidated. This study clearly revealed that increased glycolysis in 5-fluorouracil (5-FU)-resistant CRC cells (CRC/5FUR) is directly related to chemoresistance and that the metabolic shift reversed by LpEVs inhibits cancer cell proliferation and eventually leads to apoptosis. Pyruvate dehydrogenase kinase 2 (PDK2), one of the crucial enzymes for enhancing glycolysis, was upregulated in CRC/5FUR cells. In our study, LpEVs sensitized CRC/5FUR cells to 5-FU by attenuating PDK2 expression in p53-p21-dependent metabolic signaling, thereby circumventing 5-FU resistance. We demonstrated the effect of cellular responses to 5-FU by modifying the PDK2 expression level in both 5-FU-sensitive parental CRC and 5- FU resistant CRC cell lines. Finally, we revealed that the PDK2 signaling pathway can potentially be targeted using LpEVs treatment to overcome chemoresistant CRC, thereby providing a potential strategy for CRC treatment by intervening in tumor metabolism.
Geographic diversity in Helicobacter pylori oipA genotype between Korean and United States isolates
Aeryun Kim , Jing Lai , D. Scott Merrell , Ji-Hye Kim , Hanfu Su , Jeong-Heon Cha
J. Microbiol. 2021;59(12):1125-1132.   Published online October 31, 2021
DOI: https://doi.org/10.1007/s12275-021-1450-8
  • 20 View
  • 0 Download
  • 3 Citations
AbstractAbstract
Helicobacter pylori outer membrane inflammatory protein A (OipA) was originally named for its role in inducing inflammation in the host, as evidenced by high mucosal IL-8 levels. Expression of OipA is regulated by phase variation of a CT dinucleotide-repeat located in the 5􍿁􀁇region of the gene. However, little is known about OipA geographic diversity across isolates. To address this gap, we conducted a large-scale molecular epidemiologic analysis using H. pylori clinical isolates obtained from two geographically distinct populations: Korea and the United States (US). Most Korean isolates (98.7%) possessed two copies of oipA located at two specific loci (A and B) while all US isolates contained only one copy of oipA at locus A. Furthermore, most Korean oipA (94.8%) possessed three or less CT repeats while most US oipA (96.6%) contained five or more CT repeats. Among the two copies, all Korean H. pylori possessed at least one oipA ‘on’ phase variant while the single copy of oipA in US isolates showed 56.2% ‘on’ and 43.8% ‘off.’ Thus, host differences seem to have driven geographic diversification of H. pylori across these populations such that OipA expression in US isolates is still regulated by phase variation with 5 or more CT repeats, while Korean isolates always express OipA; duplication of the oipA combined with a reduction of CT repeats to three or less ensures continued expression. En masse, these findings suggest that diversity in the oipA gene copy number, CT repeats, and phase variation among H. pylori from different populations may confer a benefit in adaptation to particular host populations.

Journal of Microbiology : Journal of Microbiology
TOP