To date, all species in the genus Salicibibacter have been isolated
in Korean commercial kimchi. We aimed to describe
the taxonomic characteristics of two strains, NKC5-3T and
NKC21-4T, isolated from commercial kimchi collected from
various regions in the Republic of Korea. Cells of these strains
were rod-shaped, Gram-positive, aerobic, oxidase- and catalase-
positive, non-motile, halophilic, and alkalitolerant. Both
strains, unlike other species of the genus Salicibibacter, could
not grow without NaCl. Strains NKC5-3T and NKC21-4T
could tolerate up to 25.0% (w/v) NaCl (optimum 10%) and
grow at pH 7.0–10.0 (optimum 8.5) and 8.0–9.0 (optimum
8.5), respectively; they showed 97.1% 16S rRNA gene sequence
similarity to each other and were most closely related
to S. kimchii NKC1-1T (97.0% and 96.8% similarity, respectively).
The genome of strain NKC5-3T was nearly 4.6 Mb in
size, with 4,456 protein-coding sequences (CDSs), whereas
NKC21-4T genome was nearly 3.9 Mb in size, with 3,717 CDSs.
OrthoANI values between the novel strains and S. kimchii
NKC1-1T were far lower than the species demarcation threshold.
NKC5-3T and NKC21-4T clustered together to form
branches that were distinct from the other Salicibibacter species.
The major fatty acids in these strains were anteiso-C15:0
and anteiso-C17:0, and the predominant menaquinone was
menaquinone-7. The polar lipids of NKC5-3T included diphosphatidylglycerol
(DPG), phosphatidylglycerol (PG), and
five unidentified phospholipids (PL), and those of NKC21-4T
included DPG, PG, seven unidentified PLs, and an unidentified
lipid. Both isolates had DPG, which is the first case in
the genus Salicibibacter. The genomic G + C content of strains
NKC5-3T and NKC21-4T was 44.7 and 44.9 mol%, respectively.
Based on phenotypic, genomic, phylogenetic, and chemotaxonomic
analyses, strains NKC5-3T (= KACC 22040T
= DSM 111417T) and NKC21-4T (= KACC 22041T = DSM
111418T) represent two novel species of the genus Salicibibacter,
for which the names Salicibibacter cibarius sp. nov.
and Salicibibacter cibi sp. nov. are proposed.
Citations
Citations to this article as recorded by
Valid publication of new names and new combinations effectively published outside the IJSEM Aharon Oren, George M. Garrity
International Journal of Systematic and Evolutionary Microbiology
.2021;[Epub] CrossRef
A novel bacterial strain, designated NA-09T, was isolated
from a freshwater sample collected from the Cheonho reservoir,
Republic of Korea. Colonies were creamy-white pigmented,
translucent, and circular with convex shape. The
isolate was Gram-staining negative, strictly aerobic, motile,
and rod-shaped. The 16S rRNA gene sequence analysis revealed
that strain NA-09T belonged to the genus Arenimonas
and showed the highest sequence similarities with Arenimonas
malthae CC-JY-1T (95.4%), A. oryziterrae YC6267T
(94.9%), A. composti P2-12-1T (94.8%), and A. donghaensis
H03-R19T (94.1%). The major fatty acids were iso-C16:0
(20.8%), iso-C15:0 (16.9%), summed feature 1 (13.2%), and
iso-C16:1ω7c alcohol (10.2%). The major isoprenoid quinone
of the isolate was ubiquionone-8. On the basis of the data
from the polyphasic characterization, the strain NA-09T
represents a novel species, for which the name Arenimonas
aquaticum sp. nov. is proposed (type strain NA-09T =KACC
14663T =NBRC 106550T).
A gram-negative, motile, coccoid- and amorphous-shaped, non-pigmented chemoheterotrophic bacterium, designated strain PZ-5T, was isolated from sea water of Sagami Bay in Japan and subjected to a polyphasic taxonomic study. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the novel isolate could be affiliated with the class Gammaproteobacteria. Strain PZ-5T showed below 93.9% similarity with validly published bacteria and demonstrated the highest sequence similarity to Dasania marina KOPRI 20902T (93.9%). Strain PZ-5T formed a monophyletic group with D. marina KOPRI 20902T. The DNA G+C content of strain PZ-5T was 49.8 mol%. The major isoprenoid quinone was Q-8 and redominant cellular fatty acids were C15:0 ISO 2OH (19%), C16:1 ω7c (17.4%), C17:1 ω8c (16.2%), C11:0 3OH (7.5%), and C15:1 ω8c (6.5%). Based on evidence from a polyphasic taxonomical study, it was concluded that the strain should be classified as representing a new genus and species of the class Gammaproteobacteria, for which the name Oceanicoccus sagamiensis gen. nov., sp. nov., (type strain PZ-5T =NBRC 107125T =KCTC 23278T) is proposed.