Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
63 "Gut"
Filter
Filter
Article category
Keywords
Publication year
Authors
Funded articles
Research Article
Synbiotic combination of fructooligosaccharides and probiotics ameliorates the metabolic dysfunction-associated steatotic liver disease
Sang Yoon Lee, Su-Been Lee, Goo-Hyun Kwon, Seol Hee Song, Jeong Ha Park, Min Ju Kim, Jung A Eom, Kyeong Jin Lee, Sang Jun Yoon, Hyunjoon Park, Sung-Min Won, Jin-Ju Jeong, Ki-Kwang Oh, Young Lim Ham, Gwang Ho Baik, Dong Joon Kim, Satya Priya Sharma, Ki Tae Suk
J. Microbiol. 2025;63(2):e2411002.   Published online February 27, 2025
DOI: https://doi.org/10.71150/jm.2411002
  • 451 View
  • 24 Download
AbstractAbstract PDF

Synbiotics have become a new-age treatment tool for limiting the progression of metabolic dysfunction-associated steatotic liver disease; however, inclusive comparisons of various synbiotic treatments are still lacking. Here, we have explored and evaluated multiple synbiotic combinations incorporating three distinctive prebiotics, lactitol, lactulose and fructooligosaccharides. Of the synbiotic treatments evaluated, a combination of fructooligosaccharides and probiotics (FOS+Pro) exhibited superior protection against western diet-induced liver degeneration. This synbiotic (FOS+Pro) combination resulted in the lowest body weight gains, liver weights and liver/body weight ratios. The FOS+Pro synbiotic combination substantially alleviated liver histopathological markers and reduced serum AST and cholesterol levels. FOS+Pro ameliorated hepatic inflammation by lowering expression of proinflammatory markers including TNF-α, IL-1β, IL-6, and CCL2. FOS+Pro significantly improved steatosis by restricting the expression of lipid metabolic regulators (ACC1, FAS) and lipid transporters (CD36) in the liver. These findings are critical in suggesting that synbiotic treatments are capable of restraining western diet-induced metabolic dysfunction in the liver. Additionally, this study demonstrated that adding probiotic strains amplified the effectiveness of fructooligosaccharides but not all prebiotics.

Review
Fecal Microbiota Transplantation: Indications, Methods, and Challenges.
Jee Young Lee, Yehwon Kim, Jiyoun Kim, Jiyeun Kate Kim
J. Microbiol. 2024;62(12):1057-1074.   Published online November 18, 2024
DOI: https://doi.org/10.1007/s12275-024-00184-3
  • 82 View
  • 0 Download
  • 1 Crossref
AbstractAbstract
Over the past two decades, as the importance of gut microbiota to human health has become widely known, attempts have been made to treat diseases by correcting dysbiosis of gut microbiota through fecal microbiota transplantation (FMT). Apart from current knowledge of gut microbiota, FMT to treat disease has a long history, from the treatment of food poisoning in the fourth century to the treatment of Clostridioides difficile infections in the twentieth century. In 2013, FMT was recognized as a standard treatment for recurrent C. difficile because it consistently showed high efficacy. Though recurrent C. difficile is the only disease internationally recognized for FMT efficacy, FMT has been tested for other diseases and shown some promising preliminary results. Different FMT methods have been developed using various formulations and administration routes. Despite advances in FMT, some issues remain to be resolved, such as donor screening, manufacturing protocols, and unknown components in the fecal microbiota. In this review, we discuss the mechanisms, clinical indications, methods, and challenges of current FMT. We also discuss the development of alternative therapies to overcome the challenges of FMT.

Citations

Citations to this article as recorded by  
  • Transplantation of Fecal Flora from Patients with Atherosclerosis to Mice Can Increase Serum Low-Density Lipoprotein Cholesterol and Affect Intestinal Flora and Its Metabolites
    Liang Feng, Jianting Feng, Li He, Fu Chen, Xin Feng, Suwen Wang
    Applied Microbiology.2025; 5(1): 29.     CrossRef
Journal Articles
The Impact of Makgeolli Consumption on Gut Microbiota: An Enterotype-Based Preliminary Study
Gyungcheon Kim, Seongok Kim, Hayan Jung, Seohyun Kang, Gwoncheol Park, Hakdong Shin
J. Microbiol. 2024;62(11):965-972.   Published online October 16, 2024
DOI: https://doi.org/10.1007/s12275-024-00176-3
  • 81 View
  • 0 Download
  • 1 Web of Science
  • 1 Crossref
AbstractAbstract
Makgeolli, a traditional Korean liquor, contains components such as lactic acid bacteria and dietary fiber, which can induce changes in the gut microbiome. Since variations in microbiome responses may exist between enterotypes-classifications based on the dominant bacterial populations in the gut-we hypothesized that the consumption of makgeolli leads to enterotype-dependent differences in gut microbial structures among healthy participants. This study aimed to determine the effect of makgeolli consumption on gut microbial structures by stratifying all participants into two enterotype groups: Bacteroides-dominant type (B-type, n = 7) and Prevotella-dominant type (P-type, n = 4). The B-type showed an increase in alpha diversity, while no significant difference was observed in the P-type following makgeolli consumption. The composition of gut microbiota significantly changed in the B-type, whereas no noticeable alteration was observed in the P-type after makgeolli consumption. Notably, Prevotella exhibited the most significant changes only in the P-type. In line with the increased abundance of Prevotella, the genes associated with carbohydrate metabolism, including pentose/glucuronate interconversions, fructose/mannose metabolism, starch/sucrose metabolism and amino sugar/nucleotide sugar metabolism were significantly enriched following makgeolli consumption in the P-type. These findings suggest that makgeolli consumption induces enterotype-dependent alterations in gut microbial composition and metabolic pathways, highlighting the potential for personalized dietary interventions.

Citations

Citations to this article as recorded by  
  • The prebiotic potential of dietary onion extracts: shaping gut microbial structures and promoting beneficial metabolites
    Yebeen Yoo, Seongok Kim, WonJune Lee, Jinwoo Kim, Bokyung Son, Kwang Jun Lee, Hakdong Shin, Aviâja Lyberth Hauptmann
    mSystems.2025;[Epub]     CrossRef
The Gut Microbiota Mediates the Protective Effects of Spironolactone on Myocardial Infarction
Lu Li, Jian-Yong Sun, Yu-Lin Li, Shi-Wei Zhu, Sheng-Zhong Duan
J. Microbiol. 2024;62(10):883-895.   Published online September 3, 2024
DOI: https://doi.org/10.1007/s12275-024-00164-7
  • 53 View
  • 0 Download
  • 1 Web of Science
  • 1 Crossref
AbstractAbstract
Myocardial infarction (MI) is a type of cardiovascular disease that influences millions of human beings worldwide and has a great rate of mortality and morbidity. Spironolactone has been used as a critical drug for the treatment of cardiac failure and it ameliorates cardiac dysfunction post-MI. Despite these findings, whether there is a relationship between the therapeutic effects of spironolactone and the gut microorganism after MI has not been determined. In our research, we used male C57BL/6 J mice to explore whether the gut microbiota mediates the beneficial function of spironolactone after myocardial infarction. We demonstrated that deletion of the gut microbiota eliminated the beneficial function of spironolactone in MI mice, displaying exacerbated cardiac dysfunction, cardiac infarct size. In addition, the gut microbiota was altered by spironolactone after sham or MI operation in mice. We also used male C57BL/6 J mice to investigate the function of a probiotic in the myocardial infarction. In summary, our findings reveal a precious role of the gut flora in the therapeutic function of spironolactone on MI.

Citations

Citations to this article as recorded by  
  • The role of the gut microbiota in the onset and progression of heart failure: insights into epigenetic mechanisms and aging
    Giulia Matacchione, Francesco Piacenza, Lorenzo Pimpini, Yuri Rosati, Serena Marcozzi
    Clinical Epigenetics.2024;[Epub]     CrossRef
Identification of avaC from Human Gut Microbial Isolates that Converts 5AVA to 2-Piperidone
Qiudi Zhou, Lihui Feng
J. Microbiol. 2024;62(5):367-379.   Published online June 17, 2024
DOI: https://doi.org/10.1007/s12275-024-00141-0
  • 50 View
  • 0 Download
  • 1 Web of Science
AbstractAbstract
2-piperidone is a crucial industrial raw material of high-value nylon-5 and nylon-6,5. Currently, a major bottleneck in the biosynthesis of 2-piperidone is the identification of highly efficient 2-piperidone synthases. In this study, we aimed to identify specific strains among 51 human gut bacterial strains capable of producing 2-piperidone and to elucidate its synthetic mechanism. Our findings revealed that four gut bacterial strains, namely Collinsella aerofaciens LFYP39, Collinsella intestinalis LFYP54, Clostridium bolteae LFYP116, and Clostridium hathewayi LFYP18, could produce 2-piperidone from 5-aminovaleric acid (5AVA). Additionally, we observed that 2-piperidone could be synthesized from proline through cross-feeding between Clostridium difficile LFYP43 and one of the four 2-piperidone producing strains, respectively. To identify the enzyme responsible for catalyzing the conversion of 5AVA to 2-piperidone, we utilized a gain-of-function library and identified avaC (5-aminovaleric acid cyclase) in C. intestinalis LFYP54. Moreover, homologous genes of avaC were validated in the other three bacterial strains. Notably, avaC were found to be widely distributed among environmental bacteria. Overall, our research delineated the gut bacterial strains and genes involved in 2-piperidone production, holding promise for enhancing the efficiency of industrial biosynthesis of this compound.
Reviews
Application of Microbiome‑Based Therapies in Chronic Respiratory Diseases
Se Hee Lee, Jang Ho Lee, Sei Won Lee
J. Microbiol. 2024;62(3):201-216.   Published online April 18, 2024
DOI: https://doi.org/10.1007/s12275-024-00124-1
  • 79 View
  • 1 Download
  • 3 Web of Science
  • 3 Crossref
AbstractAbstract
The application of microbiome-based therapies in various areas of human disease has recently increased. In chronic respiratory disease, microbiome-based clinical applications are considered compelling options due to the limitations of current treatments. The lung microbiome is ecologically dynamic and afected by various conditions, and dysbiosis is associated with disease severity, exacerbation, and phenotype as well as with chronic respiratory disease endotype. However, it is not easy to directly modulate the lung microbiome. Additionally, studies have shown that chronic respiratory diseases can be improved by modulating gut microbiome and administrating metabolites. Although the composition, diversity, and abundance of the microbiome between the gut and lung are considerably diferent, modulation of the gut microbiome could improve lung dysbiosis. The gut microbiome infuences that of the lung via bacterial-derived components and metabolic degradation products, including short-chain fatty acids. This phenomenon might be associated with the cross-talk between the gut microbiome and lung, called gut-lung axis. There are multiple alternatives to modulate the gut microbiome, such as prebiotics, probiotics, and postbiotics ingestion and fecal material transplantation. Several studies have shown that high-fber diets, for example, present benefcial efects through the production of short-chain fatty acids. Additionally, genetically modifed probiotics to secrete some benefcial molecules might also be utilized to treat chronic respiratory diseases. Further studies on microbial modulation to regulate immunity and potentiate conventional pharmacotherapy will improve microbiome modulation techniques, which will develop as a new therapeutic area in chronic respiratory diseases.

Citations

Citations to this article as recorded by  
  • Bacteria and Allergic Diseases
    Svetlana V. Guryanova
    International Journal of Molecular Sciences.2024; 25(19): 10298.     CrossRef
  • The emerging roles of microbiome and short-chain fatty acids in the pathogenesis of bronchopulmonary dysplasia
    Yuan Gao, Kaixuan Wang, Zupan Lin, Shujing Cai, Aohui Peng, Le He, Hui Qi, Zhigang Jin, Xubo Qian
    Frontiers in Cellular and Infection Microbiology.2024;[Epub]     CrossRef
  • Host-Associated Microbiome
    Woo Jun Sul
    Journal of Microbiology.2024; 62(3): 135.     CrossRef
Balancing Act of the Intestinal Antimicrobial Proteins on Gut Microbiota and Health
Ye Eun Ra, Ye‑Ji Bang
J. Microbiol. 2024;62(3):167-179.   Published online April 17, 2024
DOI: https://doi.org/10.1007/s12275-024-00122-3
  • 73 View
  • 1 Download
  • 8 Web of Science
  • 8 Crossref
AbstractAbstract
The human gut houses a diverse and dynamic microbiome critical for digestion, metabolism, and immune development, exerting profound efects on human health. However, these microorganisms pose a potential threat by breaching the gut barrier, entering host tissues, and triggering infections, uncontrolled infammation, and even sepsis. The intestinal epithelial cells form the primary defense, acting as a frontline barrier against microbial invasion. Antimicrobial proteins (AMPs), produced by these cells, serve as innate immune efectors that regulate the gut microbiome by directly killing or inhibiting microbes. Abnormal AMP production, whether insufcient or excessive, can disturb the microbiome equilibrium, contributing to various intestinal diseases. This review delves into the complex interactions between AMPs and the gut microbiota and sheds light on the role of AMPs in governing host-microbiota interactions. We discuss the function and mechanisms of action of AMPs, their regulation by the gut microbiota, microbial evasion strategies, and the consequences of AMP dysregulation in disease. Understanding these complex interactions between AMPs and the gut microbiota is crucial for developing strategies to enhance immune responses and combat infections within the gut microbiota. Ongoing research continues to uncover novel aspects of this intricate relationship, deepening our understanding of the factors shaping gut health. This knowledge has the potential to revolutionize therapeutic interventions, ofering enhanced treatments for a wide range of gut-related diseases.

Citations

Citations to this article as recorded by  
  • Host-directed therapies modulating innate immunity against infection in hematologic malignancies
    Qiong Wang, Kristján Hermannsson, Egill Másson, Peter Bergman, Guðmundur Hrafn Guðmundsson
    Blood Reviews.2025; 70: 101255.     CrossRef
  • Comparison of naturalization mouse model setups uncover distinct effects on intestinal mucosa depending on microbial experience
    Henriette Arnesen, Signe Birkeland, Harriet Stendahl, Klaus Neuhaus, David Masopust, Preben Boysen, Harald Carlsen
    Discovery Immunology.2025;[Epub]     CrossRef
  • Oral administration of LEAP2 enhances immunity against Edwardsiella tarda through regulation of gut bacterial community and metabolite in mudskipper
    Ting-Fang Zhu, Hai-Peng Guo, Li Nie, Jiong Chen
    Fish & Shellfish Immunology.2025; 158: 110128.     CrossRef
  • Pharmacology of Intestinal Inflammation and Repair
    Céline Deraison, Nathalie Vergnolle
    Annual Review of Pharmacology and Toxicology .2025; 65(1): 301.     CrossRef
  • Macrophages and Gut Barrier Function: Guardians of Gastrointestinal Health in Post-Inflammatory and Post-Infection Responses
    Edward Xiangtai Meng, George Nicholas Verne, Qiqi Zhou
    International Journal of Molecular Sciences.2024; 25(17): 9422.     CrossRef
  • Progress in the Identification and Design of Novel Antimicrobial Peptides Against Pathogenic Microorganisms
    Shengwei Sun
    Probiotics and Antimicrobial Proteins.2024;[Epub]     CrossRef
  • Host-Associated Microbiome
    Woo Jun Sul
    Journal of Microbiology.2024; 62(3): 135.     CrossRef
  • Gut Microbiota as Emerging Players in the Development of Alcohol-Related Liver Disease
    Wei Li, Wenkang Gao, Shengqi Yan, Ling Yang, Qingjing Zhu, Huikuan Chu
    Biomedicines.2024; 13(1): 74.     CrossRef
Skin Deep: The Potential of Microbiome Cosmetics
Ju Hee Han, Hei Sung Kim
J. Microbiol. 2024;62(3):181-199.   Published online April 16, 2024
DOI: https://doi.org/10.1007/s12275-024-00128-x
  • 118 View
  • 15 Download
  • 7 Web of Science
  • 8 Crossref
AbstractAbstract
The interplay between the skin microbiome and its host is a complex facet of dermatological health and has become a critical focus in the development of microbiome cosmetics. The skin microbiome, comprising various microorganisms, is essential from birth, develops over the lifespan, and performs vital roles in protecting our body against pathogens, training the immune system, and facilitating the breakdown of organic matter. Dysbiosis, an imbalance of these microorganisms, has been implicated in a number of skin conditions such as acne, atopic dermatitis, and skin cancer. Recent scientific findings have spurred cosmetic companies to develop products that preserve and enhance the skin's microbial diversity balance. These products may incorporate elements like prebiotics, probiotics, and postbiotics, which are beneficial for the skin microbiome. Beyond topical products, there's increasing interest in ingestible beauty supplements (i.e. oral probiotics), highlighting the connection between the gut and skin. This review examines the influence of the microbiome on skin health and the emerging trends of microbiome skincare products.

Citations

Citations to this article as recorded by  
  • Influence of Cosmetic Skincare Products with pH < 5 on the Skin Microbiome: A Randomized Clinical Evaluation
    Ciska Janssens-Böcker, Claudia Doberenz, Marta Monteiro, Marta de Oliveira Ferreira
    Dermatology and Therapy.2025; 15(1): 141.     CrossRef
  • Host-Associated Microbiome
    Woo Jun Sul
    Journal of Microbiology.2024; 62(3): 135.     CrossRef
  • Skin Microbiome and Acne: Microbial Imbalances and Impact – Interview with Three Key Opinion Leaders
    Brigitte Scott
    EMJ Dermatology.2024; : 83.     CrossRef
  • Cosmeceuticals: A Review of Clinical Studies Claiming to Contain Specific, Well-Characterized Strains of Probiotics or Postbiotics
    Ioannis M. Theodorou, Dorothea Kapoukranidou, Markos Theodorou, Joulia K. Tsetis, Alexandra Eleftheria Menni, Georgios Tzikos, Stella Bareka, Anne Shrewsbury, George Stavrou, Katerina Kotzampassi
    Nutrients.2024; 16(15): 2526.     CrossRef
  • Effect of Staphylococcus aureus colonization and immune defects on the pathogenesis of atopic dermatitis
    Evrim Özdemіr, Lütfiye Öksüz
    Archives of Microbiology.2024;[Epub]     CrossRef
  • A New Generation of Postbiotics for Skin and Scalp: In Situ Production of Lipid Metabolites by Malassezia
    Martin Patrick Pagac, Mathias Gempeler, Remo Campiche
    Microorganisms.2024; 12(8): 1711.     CrossRef
  • Antimelanogenic and Antioxidant Effects of Postbioics of Lactobacillus Strains in α-MSH-Induced B16F10 Melanoma Cells via CREB/MITF and MAPKs Signaling Pathway
    Hye-Won Lee, Yu-Rim Lee, Kyung-Min Park, Na-Kyoung Lee, Hyun-Dong Paik
    Journal of Microbiology and Biotechnology.2024; 34(11): 2279.     CrossRef
  • Evaluation of the Effects of Age, Sex, and Dexpanthenol-Containing Skin Care on the Facial and Body Skin Microbiome
    Zainab Qaizar, Raffaella de Salvo, Gregor Bieri, Katrin Unbereit, Shannon Montgomery, Erwan Peltier
    Cosmetics.2024; 11(6): 213.     CrossRef
Metabolic Interaction Between Host and the Gut Microbiota During High‑Fat Diet‑Induced Colorectal Cancer
Chaeeun Lee, Seungrin Lee, Woongjae Yoo
J. Microbiol. 2024;62(3):153-165.   Published online April 16, 2024
DOI: https://doi.org/10.1007/s12275-024-00123-2
  • 73 View
  • 3 Download
  • 6 Web of Science
  • 5 Crossref
AbstractAbstract
Colorectal cancer (CRC) is the second-highest cause of cancer-associated mortality among both men and women worldwide. One of the risk factors for CRC is obesity, which is correlated with a high-fat diet prevalent in Western dietary habits. The association between an obesogenic high-fat diet and CRC has been established for several decades; however, the mechanisms by which a high-fat diet increases the risk of CRC remain unclear. Recent studies indicate that gut microbiota strongly infuence the pathogenesis of both high-fat diet-induced obesity and CRC. The gut microbiota is composed of hundreds of bacterial species, some of which are implicated in CRC. In particular, the expansion of facultative anaerobic Enterobacteriaceae, which is considered a microbial signature of intestinal microbiota functional imbalance (dysbiosis), is associated with both high-fat diet-induced obesity and CRC. Here, we review the interaction between the gut microbiome and its metabolic byproducts in the context of colorectal cancer (CRC) during high-fat diet-induced obesity. In addition, we will cover how a high-fat diet can drive the expansion of genotoxin-producing Escherichia coli by altering intestinal epithelial cell metabolism during gut infammation conditions.

Citations

Citations to this article as recorded by  
  • Wheat β-glucan reduces obesity and hyperlipidemia in mice with high-fat and high-salt diet by regulating intestinal flora
    Min Li, Qingshan Wang, Xiuwei Zhang, Kaikai Li, Meng Niu, Siming Zhao
    International Journal of Biological Macromolecules.2025; 288: 138754.     CrossRef
  • Microbial Metabolites-induced Epigenetic Modifications for Inhibition of Colorectal Cancer: Current Status and Future Perspectives
    Vaibhav Singh, Ekta Shirbhate, Rakesh Kore, Subham Vishwakarma, Shadiya Parveen, Ravichandran Veerasamy, Amit K Tiwari, Harish Rajak
    Mini-Reviews in Medicinal Chemistry.2025; 25(1): 76.     CrossRef
  • Molecular Mechanisms of Skatole-Induced Inflammatory Responses in Intestinal Epithelial Caco-2 Cells: Implications for Colorectal Cancer and Inflammatory Bowel Disease
    Katsunori Ishii, Kazuma Naito, Dai Tanaka, Yoshihito Koto, Koichi Kurata, Hidehisa Shimizu
    Cells.2024; 13(20): 1730.     CrossRef
  • Research Progress on the Relationship between Intestinal Flora and Gastrointestinal Malignancy
    军 陈
    Advances in Clinical Medicine.2024; 14(11): 262.     CrossRef
  • Host-Associated Microbiome
    Woo Jun Sul
    Journal of Microbiology.2024; 62(3): 135.     CrossRef
Journal Article
Hydroxychloroquine an Antimalarial Drug, Exhibits Potent Antifungal Efficacy Against Candida albicans Through Multitargeting
Sargun Tushar Basrani, Tanjila Chandsaheb Gavandi, Shivani Balasaheb Patil, Nandkumar Subhash Kadam, Dhairyasheel Vasantrao Yadav, Sayali Ashok Chougule, Sankunny Mohan Karuppayil, Ashwini Khanderao Jadhav
J. Microbiol. 2024;62(5):381-391.   Published online April 8, 2024
DOI: https://doi.org/10.1007/s12275-024-00111-6
  • 49 View
  • 0 Download
AbstractAbstract
Candida albicans is the primary etiological agent associated with candidiasis in humans. Unrestricted growth of C. albicans can progress to systemic infections in the worst situation. This study investigates the antifungal activity of Hydroxychloroquine (HCQ) and mode of action against C. albicans. HCQ inhibited the planktonic growth and yeast to hyphal form morphogenesis of C. albicans significantly at 0.5 mg/ml concentration. The minimum inhibitory concentrations (MIC(50)) of HCQ for C. albicans adhesion and biofilm formation on the polystyrene surface was at 2 mg/ml and 4 mg/ml respectively. Various methods, such as scanning electron microscopy, exploration of the ergosterol biosynthesis pathway, cell cycle analysis, and assessment of S oxygen species (ROS) generation, were employed to investigate HCQ exerting its antifungal effects. HCQ was observed to reduce ergosterol levels in the cell membranes of C. albicans in a dose-dependent manner. Furthermore, HCQ treatment caused a substantial arrest of the C. albicans cell cycle at the G0/G1 phase, which impeded normal cell growth. Gene expression analysis revealed upregulation of SOD2, SOD1, and CAT1 genes after HCQ treatment, while genes like HWP1, RAS1, TEC1, and CDC 35 were downregulated. The study also assessed the in vivo efficacy of HCQ in a mice model, revealing a reduction in the pathogenicity of C. albicans after HCQ treatment. These results indicate that HCQ holds for the development of novel antifungal therapies.
Review
Genomic Evolution and Recombination Dynamics of Human Adenovirus D Species: Insights from Comprehensive Bioinformatic Analysis
Anyeseu Park, Chanhee Lee, Jeong Yoon Lee
J. Microbiol. 2024;62(5):393-407.   Published online March 7, 2024
DOI: https://doi.org/10.1007/s12275-024-00112-5
  • 64 View
  • 0 Download
  • 1 Web of Science
  • 1 Crossref
AbstractAbstract
Human adenoviruses (HAdVs) can infect various epithelial mucosal cells, ultimately causing different symptoms in infected organ systems. With more than 110 types classified into seven species (A-G), HAdV-D species possess the highest number of viruses and are the fastest proliferating. The emergence of new adenovirus types and increased diversity are driven by homologous recombination (HR) between viral genes, primarily in structural elements such as the penton base, hexon and fiber proteins, and the E1 and E3 regions. A comprehensive analysis of the HAdV genome provides valuable insights into the evolution of human adenoviruses and identifies genes that display high variation across the entire genome to determine recombination patterns. Hypervariable regions within genetic sequences correlate with functional characteristics, thus allowing for adaptation to new environments and hosts. Proteotyping of newly emerging and already established adenoviruses allows for prediction of the characteristics of novel viruses. HAdV-D species evolved in a direction that increased diversity through gene recombination. Bioinformatics analysis across the genome, particularly in highly variable regions, allows for the verification or re-evaluation of recombination patterns in both newly introduced and pre-existing viruses, ultimately aiding in tracing various biological traits such as virus tropism and pathogenesis. Our research does not only assist in predicting the emergence of new adenoviruses but also offers critical guidance in regard to identifying potential regulatory factors of homologous recombination hotspots.

Citations

Citations to this article as recorded by  
  • In Silico Intensive Analysis for the E4 Gene Evolution of Human Adenovirus Species D
    Chanhee Lee, Anyeseu Park, Jeong Yoon Lee
    Journal of Microbiology.2024; 62(5): 409.     CrossRef
Journal Articles
Effects of Feather Hydrolysates Generated by Probiotic Bacillus licheniformis WHU on Gut Microbiota of Broiler and Common carp
Kamin Ke, Yingjie Sun, Tingting He, Wenbo Liu, Yijiao Wen, Siyuan Liu, Qin Wang, Xiaowei Gao
J. Microbiol. 2024;62(6):473-487.   Published online February 29, 2024
DOI: https://doi.org/10.1007/s12275-024-00118-z
  • 51 View
  • 0 Download
  • 1 Web of Science
AbstractAbstract
Due to the ever-increasing demand for meat, it has become necessary to identify cheap and sustainable sources of protein for animal feed. Feathers are the major byproduct of poultry industry, which are rich in hard-to-degrade keratin protein. Previously we found that intact feathers can be digested into free amino acids, short peptides, and nano-/micro-keratin particles by the strain Bacillus licheniformis WHU in water, and the resulting feather hydrolysates exhibit prebiotic effects on mice. To explore the potential utilization of feather hydrolysate in the feed industry, we investigated its effects on the gut microbiota of broilers and fish. Our results suggest that feather hydrolysates significantly decrease and increase the diversity of gut microbial communities in broilers and fish, respectively. The composition of the gut microbiota was markedly altered in both of the animals. The abundance of bacteria with potentially pathogenic phenotypes in the gut microbial community of the fish significantly decreased. Staphylococcus spp., Pseudomonas spp., Neisseria spp., Achromobacter spp. were significantly inhibited by the feather hydrolysates. In addition, feather hydrolysates significantly improved proteolytic activity in the guts of broilers and fish. In fish, the expression levels of ZO-1 and TGF-α significantly improved after administration of feather hydrolysates. The results presented here suggest that feather hydrolysates generated by B. licheniformis WHU could be an alternative protein source in aquaculture and could exert beneficial effects on fish.
Mycobacterium tuberculosis PE_PGRS45 (Rv2615c) Promotes Recombinant Mycobacteria Intracellular Survival via Regulation of Innate Immunity, and Inhibition of Cell Apoptosis
Tao Xu , Chutong Wang , Minying Li , Jing Wei , Zixuan He , Zhongqing Qian , Xiaojing Wang , Hongtao Wang
J. Microbiol. 2024;62(1):49-62.   Published online February 9, 2024
DOI: https://doi.org/10.1007/s12275-023-00101-0
  • 51 View
  • 0 Download
  • 1 Web of Science
  • 3 Crossref
AbstractAbstract
Tuberculosis (TB), a bacterial infectious disease caused by Mycobacterium tuberculosis (M. tuberculosis), is a significant global public health problem. Mycobacterium tuberculosis expresses a unique family of PE_PGRS proteins that have been implicated in pathogenesis. Despite numerous studies, the functions of most PE_PGRS proteins in the pathogenesis of mycobacterium infections remain unclear. PE_PGRS45 (Rv2615c) is only found in pathogenic mycobacteria. In this study, we successfully constructed a recombinant Mycobacterium smegmatis (M. smegmatis) strain which heterologously expresses the PE_PGRS45 protein. We found that overexpression of this cell wall-associated protein enhanced bacterial viability under stress in vitro and cell survival in macrophages. MS_PE_PGRS45 decreased the secretion of pro-inflammatory cytokines such as IL-1β, IL-6, IL-12p40, and TNF-α. We also found that MS_PE_PGRS45 increased the expression of the anti-inflammatory cytokine IL-10 and altered macrophage-mediated immune responses. Furthermore, PE_PGRS45 enhanced the survival rate of M. smegmatis in macrophages by inhibiting cell apoptosis. Collectively, our findings show that PE_PGRS45 is a virulent factor actively involved in the interaction with the host macrophage.

Citations

Citations to this article as recorded by  
  • Evolution of the PE_PGRS Proteins of Mycobacteria: Are All Equal or Are Some More Equal than Others?
    Bei Chen, Belmin Bajramović, Bastienne Vriesendorp, Herman Pieter Spaink
    Biology.2025; 14(3): 247.     CrossRef
  • Recent advances in research on Mycobacterium tuberculosis virulence factors and their role in pathogenesis
    Ming-Rui Sun, Jia-Yin Xing, Xiao-Tian Li, Ren Fang, Yang Zhang, Zhao-Li Li, Ning-Ning Song
    Journal of Microbiology, Immunology and Infection.2025;[Epub]     CrossRef
  • Rv2741 Promotes Mycobacterium Survival by Modulating Macrophage Function via the IL-1α-MAPK Axis
    Xintong He, Yonglin He, Xichuan Deng, Nan Lu, Anlong Li, Sijia Gao, Shiyan He, Yuran Wang, Nanzhe Fu, Zijie Wang, Yuxin Nie, Lei Xu
    ACS Infectious Diseases.2025; 11(3): 676.     CrossRef
Genetic and Functional Characterization of a Salicylate 1‑monooxygenase Located on an Integrative and Conjugative Element (ICE) in Pseudomonas stutzeri AJR13
Igor Ivanovski , Gerben J. Zylstra
J. Microbiol. 2023;61(12):1025-1032.   Published online December 15, 2023
DOI: https://doi.org/10.1007/s12275-023-00093-x
  • 50 View
  • 0 Download
AbstractAbstract
Pseudomonas stutzeri strain AJR13 was isolated for growth on the related compounds biphenyl (BPH) and diphenylmethane (DPM). The BPH and DPM degradative pathway genes are present on an integrative and conjugative element (ICE) in the chromosome. Examination of the genome sequence of AJR13 revealed a gene encoding a salicylate 1-monooxygenase (salA) associated with the ICE even though AJR13 did not grow on salicylate. Transfer of the ICE to the well-studied Pseudomonas putida KT2440 resulted in a KT2440 strain that could grow on salicylate. Knockout mutagenesis of the salA gene on the ICE in KT2440 eliminated the ability to grow on salicylate. Complementation of the knockout with the cloned salA gene restored growth on salicylate. Transfer of the cloned salA gene under control of the lac promoter to KT2440 resulted in a strain that could grow on salicylate. Heterologous expression of the salA gene in E. coli BL21 DE3 resulted in the production of catechol from salicylate, confirming that it is indeed a salicylate 1-monooxygenase. Interestingly, transfer of the cloned salA gene under control of the lac promoter to AJR13 resulted in a strain that could now grow on salicylate, suggesting that gene expression for the downstream catechol pathway is intact.
Quantitative Analysis of RNA Polymerase Slippages for Production of P3N‑PIPO Trans‑frame Fusion Proteins in Potyvirids
Dongjin Choi , Yoonsoo Hahn
J. Microbiol. 2023;61(10):917-927.   Published online October 16, 2023
DOI: https://doi.org/10.1007/s12275-023-00083-z
  • 61 View
  • 0 Download
  • 3 Web of Science
  • 3 Crossref
AbstractAbstract
Potyvirids, members of the family Potyviridae, produce the P3N-PIPO protein, which is crucial for the cell-to-cell transport of viral genomic RNAs. The production of P3N-PIPO requires an adenine (A) insertion caused by RNA polymerase slippage at a conserved GAA AAA A ( GA6) sequence preceding the PIPO open reading frame. Presently, the slippage rate of RNA polymerase has been estimated in only a few potyvirids, ranging from 0.8 to 2.1%. In this study, we analyzed publicly available plant RNA-seq data and identified 19 genome contigs from 13 distinct potyvirids. We further investigated the RNA polymerase slippage rates at the GA6 motif. Our analysis revealed that the frequency of the A insertion variant ranges from 0.53 to 4.07% in 11 potyviruses (genus Potyvirus). For the two macluraviruses (genus Macluravirus), the frequency of the A insertion variant was found to be 0.72% and 10.96% respectively. Notably, the estimated RNA polymerase slippage rates for 12 out of the 13 investigated potyvirids were reported for the first time in this study. Our findings underscore the value of plant RNA-seq data for quantitative analysis of potyvirid genome variants, specifically at the GA6 slippage site, and contribute to a more comprehensive understanding of the RNA polymerase slippage phenomenon in potyvirids.

Citations

Citations to this article as recorded by  
  • Discovery of novel tepovirus genomes with a nucleic acid-binding protein homolog by systematic analysis of plant transcriptome data
    Dongjin Choi, Hyerin Park, Seungwoo Baek, Myeung Seok Choi, Sylvain Legay, Gea Guerriero, Jean-François Hausman, Yoonsoo Hahn
    Acta Virologica.2025;[Epub]     CrossRef
  • Potyviral Helper-Component Protease: Multifaced Functions and Interactions with Host Proteins
    Veronika Hýsková, Kateřina Bělonožníková, Josef Chmelík, Hana Hoffmeisterová, Noemi Čeřovská, Tomáš Moravec, Helena Ryšlavá
    Plants.2024; 13(9): 1236.     CrossRef
  • Reconceptualizing transcriptional slippage in plant RNA viruses
    Adrian A. Valli, María Luisa Domingo-Calap, Alfonso González de Prádena, Juan Antonio García, Hongguang Cui, Cécile Desbiez, Juan José López-Moya, Shou-Wei Ding, Andrew Firth
    mBio.2024;[Epub]     CrossRef

Journal of Microbiology : Journal of Microbiology
TOP