Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
2 "H9N2"
Filter
Filter
Article category
Keywords
Publication year
Journal Article
Correlation between fat accumulation and fecal microbiota in crossbred pigs
Xin Li , Mengyu Li , Jinyi Han , Chuang Liu , Xuelei Han , Kejun Wang , Ruimin Qiao , Xiu-Ling Li , Xin-Jian Li
J. Microbiol. 2022;60(11):1077-1085.   Published online September 9, 2022
DOI: https://doi.org/10.1007/s12275-022-2218-5
  • 65 View
  • 0 Download
  • 4 Web of Science
  • 3 Crossref
AbstractAbstract
Backfat thickness (BF) is an important indicator of fat deposition capacity and lean meat rate in pigs and is very important in porcine genetics and breeding. Intestinal microbiota plays a key role in nutrient digestion and utilization with a profound impact on fat deposition of livestock animals. To investigate the relationship between the pig gut microbiome and BF, 20 low-BF (L-BF) and 20 high-BF (H-BF) pigs were selected as two groups from Yunong Black pigs in the present study. Fecal samples from pigs were analyzed for microbial diversity, composition, and predicted functionality using 16S rRNA gene sequencing. The results showed that there were significant differences in microbial β diversity between the two groups. LEfSe analysis revealed a number of bacterial features being differentially enriched in either L-BF or H-BF pigs. Spearman correlation analysis identified the abundance of Oscillospira, Peptococcus, and Bulleidia were significantly positive correlations with BF (P < 0.05), while Sutterella and Bifidobacterium were significantly negatively correlated with BF (P < 0.05). Importantly, the bacteria significantly positively correlated with BF mainly belong to Clostridium, which can ferment host-indigestible plant polysaccharides into shortchain fatty acid (SCFA) and promote fat synthesis and deposition. Predictive functional analysis indicated that the pathway abundance of cell motility and glycan biosynthesis were significantly widespread in the microbiota of the H-BF group. The results of this study will be useful for the development of microbial biomarkers for predicting and improving porcine BF, as well as for the investigation of targets for dietary strategies.

Citations

Citations to this article as recorded by  
  • Carboxymethyl chitosan-dialdehyde glucan/polydopamine carrier targeted delivery Bacillus subtilis on enhancing oral utilization and intestinal colonization in mice
    Lulu Chu, Luyu Xie, Bingzhi Chen, Yuji Jiang, Wenjie Wang
    International Journal of Biological Macromolecules.2024; 280: 135574.     CrossRef
  • Impact of Early Weaning on Development of the Swine Gut Microbiome
    Benoit St-Pierre, Jorge Yair Perez Palencia, Ryan S. Samuel
    Microorganisms.2023; 11(7): 1753.     CrossRef
  • Comparison of Conjunctival Sac Microbiome between Low and High Myopic Eyes
    Kang Xiao, Zhengyu Chen, Qin Long
    Journal of Microbiology.2023; 61(5): 571.     CrossRef
Research Support, Non-U.S. Gov't
Molecular characterization of mammalian-adapted Korean-type avian H9N2 virus and evaluation of its virulence in mice
Kuk Jin Park , Min-Suk Song , Eun-Ha Kim , Hyeok-il Kwon , Yun Hee Baek , Eun-hye Choi , Su-Jin Park , Se Mi Kim , Young-il Kim , Won-Suk Choi , Dae-Won Yoo , Chul-Joong Kim , Young Ki Choi
J. Microbiol. 2015;53(8):570-577.   Published online July 31, 2015
DOI: https://doi.org/10.1007/s12275-015-5329-4
  • 49 View
  • 0 Download
  • 14 Crossref
AbstractAbstract
Avian influenza A virus (AIV) is commonly isolated from domestic poultry and wild migratory birds, and the H9N2 subtype is the most prevalent and the major cause of severe disease in poultry in Korea. In addition to the veterinary concerns regarding the H9N2 subtype, it is also considered to be the next potential human pandemic strain due to its rapid evolution and interspecies transmission. In this study, we utilize serial lung-to-lung passage of a low pathogenic avian influenza virus (LPAI) H9N2 (A/Ck/Korea/163/04, WT163) (Y439-lineage) in mice to increase pathogenicity and investigate the potential virulence marker. Mouse-adapted H9N2 virus obtained high virulence (100% mortality) in mice after 98 serial passages. Sequence results show that the mouse adaptation (ma163) possesses several mutations within seven gene segments (PB2, PA, HA, NP, NA, M, and NS) relative to the wild-type strain. The HA gene showed the most mutations (at least 11) with one resulting in the loss of an N-glycosylation site (at amino acid 166). Moreover, reverse genetic studies established that an E627K substitution in PB2 and the loss of the N-glycosylation site in the HA protein (aa166) are critical virulence markers in the mouse-adapted H9N2 virus. Thus, these results add to the increasing body of mutational analysis data defining the function of the viral polymerase and HA genes and their roles in mammalian host adaptation. To our knowledge, this is first report of the generation of a mammalian-adapted Korea H9N2 virus (Y493-lineages). Therefore, this study offers valuable insights into the molecular evolution of the LPAI Korean H9N2 in a new host and adds to the current knowledge of the molecular markers associated with increased virulence.

Citations

Citations to this article as recorded by  
  • An Influenza A virus can evolve to use human ANP32E through altering polymerase dimerization
    Carol M. Sheppard, Daniel H. Goldhill, Olivia C. Swann, Ecco Staller, Rebecca Penn, Olivia K. Platt, Ksenia Sukhova, Laury Baillon, Rebecca Frise, Thomas P. Peacock, Ervin Fodor, Wendy S. Barclay
    Nature Communications.2023;[Epub]     CrossRef
  • Current situation and control strategies of H9N2 avian influenza in South Korea
    Mingeun Sagong, Kwang-Nyeong Lee, Eun-Kyoung Lee, Hyunmi Kang, Young Ki Choi, Youn-Jeong Lee
    Journal of Veterinary Science.2023;[Epub]     CrossRef
  • Antigenic Evolution Characteristics and Immunological Evaluation of H9N2 Avian Influenza Viruses from 1994–2019 in China
    Qingzheng Liu, Lingcai Zhao, Yanna Guo, Yongzhen Zhao, Yingfei Li, Na Chen, Yuanlu Lu, Mengqi Yu, Lulu Deng, Jihui Ping
    Viruses.2022; 14(4): 726.     CrossRef
  • Molecular epidemiology and pathogenicity of H5N1 and H9N2 avian influenza viruses in clinically affected chickens on farms in Bangladesh
    Ripatun Nahar Ripa, Joshua E. Sealy, Jayna Raghwani, Tridip Das, Himel Barua, Md. Masuduzzaman, A. K. M. Saifuddin, Md. Reajul Huq, Mohammad Inkeyas Uddin, Munir Iqbal, Ian Brown, Nicola S. Lewis, Dirk Pfeiffer, Guillaume Fournie, Paritosh Kumar Biswas
    Emerging Microbes & Infections.2021; 10(1): 2223.     CrossRef
  • Mouse adaptation of the H9N2 avian influenza virus causes the downregulation of genes related to innate immune responses and ubiquitin-mediated proteolysis in mice
    Jing Guo, Xinxin Gao, Baotao Liu, Yubao Li, Wenqiang Liu, Jianbiao Lu, Cheng Liu, Rui Xue, Xuyong Li
    Medical Microbiology and Immunology.2020; 209(2): 151.     CrossRef
  • H9 Influenza Viruses: An Emerging Challenge
    Silvia Carnaccini, Daniel R. Perez
    Cold Spring Harbor Perspectives in Medicine.2020; 10(6): a038588.     CrossRef
  • Adaptive amino acid substitutions enable transmission of an H9N2 avian influenza virus in guinea pigs
    Liu Lina, Chen Saijuan, Wang Chengyu, Lu Yuefeng, Dong Shishan, Chen Ligong, Guo Kangkang, Guo Zhendong, Li Jiakai, Zhang Jianhui, Luo Qingping, Zhang Wenting, Shang Yu, Wang Honglin, Zhang Tengfei, Wen Guoyuan, Zhu Jiping, Zhang Chunmao, Jin Meilin, Gao
    Scientific Reports.2019;[Epub]     CrossRef
  • A PB1-K577E Mutation in H9N2 Influenza Virus Increases Polymerase Activity and Pathogenicity in Mice
    Haruhiko Kamiki, Hiromichi Matsugo, Tomoya Kobayashi, Hiroho Ishida, Akiko Takenaka-Uema, Shin Murakami, Taisuke Horimoto
    Viruses.2018; 10(11): 653.     CrossRef
  • Genetics and biological property analysis of Korea lineage of influenza A H9N2 viruses
    Min Kang, Hyung-Kwan Jang
    Veterinary Microbiology.2017; 204: 96.     CrossRef
  • The significance of avian influenza virus mouse-adaptation and its application in characterizing the efficacy of new vaccines and therapeutic agents
    Won-Suk Choi, Khristine Kaith S. Lloren, Yun Hee Baek, Min-Suk Song
    Clinical and Experimental Vaccine Research.2017; 6(2): 83.     CrossRef
  • Rapid acquisition of polymorphic virulence markers during adaptation of highly pathogenic avian influenza H5N8 virus in the mouse
    Won-Suk Choi, Yun Hee Baek, Jin Jung Kwon, Ju Hwan Jeong, Su-Jin Park, Young-il Kim, Sun-Woo Yoon, Jungwon Hwang, Myung Hee Kim, Chul-Joong Kim, Richard J. Webby, Young Ki Choi, Min-Suk Song
    Scientific Reports.2017;[Epub]     CrossRef
  • Vaccine Efficacy of Inactivated, Chimeric Hemagglutinin H9/H5N2 Avian Influenza Virus and Its Suitability for the Marker Vaccine Strategy
    Se Mi Kim, Young-Il Kim, Su-Jin Park, Eun-Ha Kim, Hyeok-il Kwon, Young-Jae Si, In-Won Lee, Min-Suk Song, Young Ki Choi, Jae U. Jung
    Journal of Virology.2017;[Epub]     CrossRef
  • Prevalence and diversity of H9N2 avian influenza in chickens of Northern Vietnam, 2014
    Duong Mai Thuy, Thomas P. Peacock, Vu Thi Ngoc Bich, Thomas Fabrizio, Dang Nguyen Hoang, Nguyen Dang Tho, Nguyen Thi Diep, Minh Nguyen, Le Nguyen Minh Hoa, Hau Thi Thu Trang, Marc Choisy, Ken Inui, Scott Newman, Nguyen vu Trung, Rogier van Doorn, Thanh Lo
    Infection, Genetics and Evolution.2016; 44: 530.     CrossRef
  • PB2 subunit of avian influenza virus subtype H9N2: a pandemic risk factor
    Hanna Sediri, Swantje Thiele, Folker Schwalm, Gülsah Gabriel, Hans-Dieter Klenk
    Journal of General Virology.2016; 97(1): 39.     CrossRef

Journal of Microbiology : Journal of Microbiology
TOP