Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
1 "Hyphal development"
Filter
Filter
Article category
Keywords
Publication year
Journal Article
Effect of biostimulation and bioaugmentation on hydrocarbon degradation and detoxification of diesel-contaminated soil: a microcosm study
Patricia Giovanella , Lídia de Azevedo Duarte , Daniela Mayumi Kita , Valéria Maia de Oliveira , Lara Durães Sette
J. Microbiol. 2021;59(7):634-643.   Published online May 15, 2021
DOI: https://doi.org/10.1007/s12275-021-0395-2
  • 47 View
  • 0 Download
  • 5 Web of Science
  • 7 Crossref
AbstractAbstract
Soil contamination with diesel oil is quite common during processes of transport and storage. Bioremediation is considered a safe, economical, and environmentally friendly approach for contaminated soil treatment. In this context, studies using hydrocarbon bioremediation have focused on total petroleum hydrocarbon (TPH) analysis to assess process effectiveness, while ecotoxicity has been neglected. Thus, this study aimed to select a microbial consortium capable of detoxifying diesel oil and apply this consortium to the bioremediation of soil contaminated with this environmental pollutant through different bioremediation approaches. Gas chromatography (GC-FID) was used to analyze diesel oil degradation, while ecotoxicological bioassays with the bioindicators Artemia sp., Aliivibrio fischeri (Microtox), and Cucumis sativus were used to assess detoxification. After 90 days of bioremediation, we found that the biostimulation and biostimulation/ bioaugmentation approaches showed higher rates of diesel oil degradation in relation to natural attenuation (41.9 and 26.7%, respectively). Phytotoxicity increased in the biostimulation and biostimulation/bioaugmentation treatments during the degradation process, whereas in the Microtox test, the toxicity was the same in these treatments as that in the natural attenuation treatment. In both the phytotoxicity and Microtox tests, bioaugmentation treatment showed lower toxicity. However, compared with natural attenuation, this approach did not show satisfactory hydrocarbon degradation. Based on the microcosm experiments results, we conclude that a broader analysis of the success of bioremediation requires the performance of toxicity bioassays.

Citations

Citations to this article as recorded by  
  • Heavy fuel oil-contaminated soil remediation by individual and bioaugmentation-assisted phytoremediation with Medicago sativa and with cold plasma-treated M. sativa
    Jūratė Žaltauskaitė, Rimas Meištininkas, Austra Dikšaitytė, Laima Degutytė-Fomins, Vida Mildažienė, Zita Naučienė, Rasa Žūkienė, Kazunori Koga
    Environmental Science and Pollution Research.2024; 31(20): 30026.     CrossRef
  • Soil Corrosivity Under Natural Attenuation
    Larissa O. da Silva, Sara H. de Oliveira, Rafael G. C. da Silva, Magda R. S. Vieira, Ivanilda R. de Melo, Severino L. Urtiga Filho
    Materials Research.2024;[Epub]     CrossRef
  • Updating risk remediation-endpoints for petroleum-contaminated soils? A case study in the Ecuadorian Amazon region
    Daniel Hidalgo-Lasso, Karina García-Villacís, Jeaneth Urvina Ulloa, Darwin Marín Tapia, Patricio Gómez Ortega, Frederic Coulon
    Heliyon.2024; 10(9): e30395.     CrossRef
  • Recent advances in the development and applications of luminescent bacteria–based biosensors
    Yingying Li, Yuankun Zhao, Yiyang Du, Xuechun Ren, He Ding, Zhimin Wang
    Luminescence.2024;[Epub]     CrossRef
  • Oil biodegradation studies with an immobilized bacterial consortium in plant biomass for the construction of bench-scale bioreactor
    Rachel M. Ferreira, Bernardo D. Ribeiro, Danielle.M.A. Stapelfeldt, Rodrigo P. do Nascimento, Maria de.F.R. Moreira
    Cleaner Chemical Engineering.2023; 6: 100107.     CrossRef
  • Application of Luminescent Bacteria Bioassay in the Detection of Pollutants in Soil
    Kai Zhang, Meng Liu, Xinlong Song, Dongyu Wang
    Sustainability.2023; 15(9): 7351.     CrossRef
  • Salicylate or Phthalate: The Main Intermediates in the Bacterial Degradation of Naphthalene
    Vasili M. Travkin, Inna P. Solyanikova
    Processes.2021; 9(11): 1862.     CrossRef

Journal of Microbiology : Journal of Microbiology
TOP