Research Support, Non-U.S. Gov't
- Purification and Characterization of Manganese Peroxidase of the White-Rot Fungus Irpex lacteus
-
Kwang-Soo Shin , Young Hwan Kim , Jong-Soon Lim
-
J. Microbiol. 2005;43(6):503-509.
-
DOI: https://doi.org/2298 [pii]
-
-
Abstract
-
The production of manganese peroxidase (MnP) by Irpex lacteus, purified to electrophoretic homogeneity by acetone precipitation, HiPrep Q and HiPrep Sephacryl S-200 chromatography, was shown to correlate with the decolorization of textile industry wastewater. The MnP was purified 11.0-fold, with an overall yield of 24.3%. The molecular mass of the native enzyme, as determined by gel filtration chromatography, was about 53 kDa. The enzyme was shown to have a molecular mass of 53.2 and 38.3 kDa on SDS-PAGE and MALDI-TOF mass spectrometry, respectively, and an isoelectric point of about 3.7. The enzyme was optimally active at pH 6.0 and between 30 and 40oC. The enzyme efficiently catalyzed the decolorization of various artificial dyes and oxidized Mn (II) to Mn (III) in the presence of H2O2. The absorption spectrum of the enzyme exhibited maxima at 407, 500, and 640 nm. The amino acid sequence of the three tryptic peptides was analyzed by ESI Q-TOF MS/MS spectrometry, and showed low similarity to those of the extracellular peroxidases of other white-rot basidiomycetes.
Journal Article
- The Role of Enzymes Produced by White-Rot Fungus Irpex lacteus in the Decolorization of the Textile Industry Effluent
-
Kwang-Soo Shin
-
J. Microbiol. 2004;42(1):37-41.
-
DOI: https://doi.org/2003 [pii]
-
-
Abstract
-
The textile industry wastewater has been decolorized efficiently by the white rot fungus, Irpex lacteus, without adding any chemicals. The degree of the decolorization of the dye effluent by shaking or stationary cultures is 59 and 93%, respectively, on the 8th day. The higher level of manganese-dependent peroxidase (MnP) and non-specific peroxidase (NsP) was detected in stationary cultures than in the cultures shaken. Laccase activities were equivalent in both cultures and its level was not affected significantly by the culture duration. Neither lignin peroxidase (LiP) nor Remazol Brilliant Blue R oxidase (RBBR ox) was detected in both cultures. The absorbance of the dye effluent was significantly decreased by the stationary culture filtrate of 7 days in the absence of Mn (II) and veratryl alcohol. In the stationary culture filtrate, three or more additional peroxidase bands were detected by the zymogram analysis.
- Simultaneous Utilization of Two Different Pathways in Degradation of 2,4,6-Trinitrotoluene by White Rot Fungus Irpex lacteus
-
Hyoun-Young Kim , Hong-Gyu Song
-
J. Microbiol. 2000;38(4):250-254.
-
-
-
Abstract
-
This study confirmed that white rot fungus Irpex lacteus was able to metabolize 2,4,6-trinitrotoluene (TNT) with two different initial transformations. In one metabolic pathway of TNT a nitro group was removed from the aromatic ring of TNT. Hydride-Meisenheimer complexes of TNT (H^- -TNT), colored dark red, were confirmed as the intermediate in this transformation by comparison with the synthetic compounds. 2,4-Dinitrotoluene as a following metabolic product was detected, and nitrite produced by denitration of H^- -TNT supported this transformation. In the other TNT pathway, nitro groups in TNT were successively reduced to amine groups via hydroxylamines. Hydroxylamino-dinitrotoluenes and amino-dinitrotoluenes were identified as the intermediates. The activity of a membrane-associated aromatic nitroreductase was detected in the cell-free extract of I. lacteus. This enzyme catalyzed the nitro group reduction of TNT with NADPH as a cofactor. Enzyme activity was not observed in the presence of molecular oxygen.