Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
3 "Joon Sig Choi"
Filter
Filter
Article category
Keywords
Publication year
Authors
Funded articles
Full article
Crystal structures of the μ2 subunit of clathrin-adaptor protein 2 in complex with peptides derived from human papillomavirus 16 E7
Sujin Jung, Dahwan Lim, Joon Sig Choi, Ho-Chul Shin, Seung Jun Kim, Bonsu Ku
J. Microbiol. 2025;63(8):e2505003.   Published online August 31, 2025
DOI: https://doi.org/10.71150/jm.2505003
  • 811 View
  • 27 Download
AbstractAbstract PDF

Human papillomaviruses (HPVs) cause abnormal cellular proliferation, leading to malignant or benign lesions, such as cervical cancer and warts. The genome of HPV16, the most prevalent high-risk oncogenic genotype within the Alphapapillomavirus genus, encodes two oncoproteins. One of these proteins, E7, interacts with multiple host proteins and modulates their functions through distinct pathways. The CR2 domain of HPV16 E7 was recently reported to interact with the μ2 subunit of clathrin-adaptor protein 2 (AP2-μ2), an adaptor complex involved in cargo internalization during clathrin-mediated endocytosis. In this study, to provide molecular insights into their intermolecular interactions, we determined the crystal structures of AP2-μ2 in complex with the HPV16 E7-derived peptides. Subsequent biochemical analyses revealed that this interaction is primarily maintained by the Y-x-x-Φ motif and further supported by acidic cluster residues of HPV16 E7. Finally, sequence alignment of the E7 CR2 domains from various HPV genotypes showed that the AP2-μ2-binding motif is largely conserved in Alpha-, Beta-, and Mupapillomaviruses, but not in Nu- and Gammapapillomaviruses.

Journal Articles
Crystal Structures of Plk1 Polo‑Box Domain Bound to the Human Papillomavirus Minor Capsid Protein L2‑Derived Peptide
Sujin Jung , Hye Seon Lee , Ho-Chul Shin , Joon Sig Choi , Seung Jun Kim , Bonsu Ku
J. Microbiol. 2023;61(8):755-764.   Published online September 8, 2023
DOI: https://doi.org/10.1007/s12275-023-00071-3
  • 197 View
  • 0 Download
  • 2 Web of Science
  • 1 Crossref
AbstractAbstract PDF
Human papillomaviruses (HPVs) can increase the proliferation of infected cells during HPV-driven abnormalities, such as cervical cancer or benign warts. To date, more than 200 HPV genotypes have been identified, most of which are classified into three major genera: Alphapapillomavirus, Betapapillomavirus, and Gammapapillomavirus. HPV genomes commonly encode two structural (L1 and L2) and seven functional (E1, E2, E4–E7, and E8) proteins. L2, the minor structural protein of HPVs, not only serves as a viral capsid component but also interacts with various human proteins during viral infection. A recent report revealed that L2 of HPV16 recruits polo-like kinase 1 (Plk1), a master regulator of eukaryotic mitosis and cell cycle progression, for the delivery of viral DNA to mitotic chromatin during HPV16 infection. In this study, we verified the direct and potent interactions between the polo-box domain (PBD) of Plk1 and PBD-binding motif (S–S–pT–P)-containing phosphopeptides derived from L2 of HPV16/HPV18 (high-risk alphapapillomaviruses), HPV5b (low-risk betapapillomavirus), and HPV4 (low-risk gammapapillomavirus). Subsequent structural determination of the Plk1 PBD bound to the HPV18 or HPV4 L2-derived phosphopeptide demonstrated that they interact with each other in a canonical manner, in which electrostatic interactions and hydrogen bonds play key roles in sustaining the complex. Therefore, our structural and biochemical data imply that Plk1 is a broad binding target of L2 of various HPV genotypes belonging to the Alpha-, Beta-, and Gammapapillomavirus genera.

Citations

Citations to this article as recorded by  
  • Crystal structures of the μ2 subunit of clathrin-adaptor protein 2 in complex with peptides derived from human papillomavirus 16 E7
    Sujin Jung, Dahwan Lim, Joon Sig Choi, Ho-Chul Shin, Seung Jun Kim, Bonsu Ku
    Journal of Microbiology.2025; 63(8): e2505003.     CrossRef
Crystal structure of human LC8 bound to a peptide from Ebola virus VP35
Dahwan Lim , Ho-Chul Shin , Joon Sig Choi , Seung Jun Kim , Bonsu Ku
J. Microbiol. 2021;59(4):410-416.   Published online February 25, 2021
DOI: https://doi.org/10.1007/s12275-021-0641-7
  • 232 View
  • 0 Download
  • 4 Web of Science
  • 3 Crossref
AbstractAbstract PDF
Zaire ebolavirus, commonly called Ebola virus (EBOV), is an RNA virus that causes severe hemorrhagic fever with high mortality. Viral protein 35 (VP35) is a virulence factor encoded in the EBOV genome. VP35 inhibits host innate immune responses and functions as a critical cofactor for viral RNA replication. EBOV VP35 contains a short conserved motif that interacts with dynein light chain 8 (LC8), which serves as a regulatory hub protein by associating with various LC8-binding proteins. Herein, we present the crystal structure of human LC8 bound to the peptide comprising residues 67−76 of EBOV VP35. Two VP35 peptides were found to interact with homodimeric LC8 by extending the central β- sheets, constituting a 2:2 complex. Structural analysis demonstrated that the intermolecular binding between LC8 and VP35 is mainly sustained by a network of hydrogen bonds and supported by hydrophobic interactions in which Thr73 and Thr75 of VP35 are involved. These findings were verified by binding measurements using isothermal titration calorimetry. Biochemical analyses also verified that residues 67−76 of EBOV VP35 constitute a core region for interaction with LC8. In addition, corresponding motifs from other members of the genus Ebolavirus commonly bound to LC8 but with different binding affinities. Particularly, VP35 peptides originating from pathogenic species interacted with LC8 with higher affinity than those from noninfectious species, suggesting that the binding of VP35 to LC8 is associated with the pathogenicity of the Ebolavirus species.

Citations

Citations to this article as recorded by  
  • Crystal Structures of Plk1 Polo-Box Domain Bound to the Human Papillomavirus Minor Capsid Protein L2-Derived Peptide
    Sujin Jung, Hye Seon Lee, Ho-Chul Shin, Joon Sig Choi, Seung Jun Kim, Bonsu Ku
    Journal of Microbiology.2023; 61(8): 755.     CrossRef
  • Borna Disease Virus 1 Phosphoprotein Forms a Tetramer and Interacts with Host Factors Involved in DNA Double-Strand Break Repair and mRNA Processing
    Nicolas Tarbouriech, Florian Chenavier, Junna Kawasaki, Kamel Bachiri, Jean-Marie Bourhis, Pierre Legrand, Lily L. Freslon, Estelle M. N. Laurent, Elsa Suberbielle, Rob W. H. Ruigrok, Keizo Tomonaga, Daniel Gonzalez-Dunia, Masayuki Horie, Etienne Coyaud,
    Viruses.2022; 14(11): 2358.     CrossRef
  • Structural and biochemical analysis of the PTPN4 PDZ domain bound to the C-terminal tail of the human papillomavirus E6 oncoprotein
    Hye Seon Lee, Hye-Yeoung Yun, Eun-Woo Lee, Ho-Chul Shin, Seung Jun Kim, Bonsu Ku
    Journal of Microbiology.2022; 60(4): 395.     CrossRef

Journal of Microbiology : Journal of Microbiology
TOP