Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
2 "Manki Song"
Filter
Filter
Article category
Keywords
Publication year
Authors
Funded articles
Full article
Mouse strain-dependent neutralizing antibody responses to Zika virus vaccines
Sang Hwan Seo, Jung-ah Choi, Eunji Yang, Hayan Park, Dae-Im Jung, Jae-Ouk Kim, Jae Seung Yang, Manki Song
J. Microbiol. 2025;63(8):e2504005.   Published online August 31, 2025
DOI: https://doi.org/10.71150/jm.2504005
  • 1,141 View
  • 17 Download
AbstractAbstract PDF

The 2015 Zika virus (ZIKV) outbreak in Brazil and its global spread underscored the urgent need for effective and broadly protective vaccines. While C57BL/6 and BALB/c mice are widely used in preclinical vaccine research, direct comparisons of their ability to elicit ZIKV-specific neutralizing antibodies (nAbs) remain limited. This study aimed to systematically evaluate and compare the immunogenic potential of these two common mouse strains across diverse vaccine platforms, focusing on their capacity to generate functional neutralizing antibody responses. We assessed nAb and IgG responses following four vaccination strategies: (1) DNA vaccine encoding prMEΔTM followed by E protein domain III boost, (2) recombinant EΔTM protein expressed using baculovirus system, (3) formalin-inactivated ZIKV, and (4) live ZIKV. Although both strains generated detectable ZIKV- and E protein-specific IgG, the magnitude and quality of responses varied by vaccine platform and strain. Notably, C57BL/6 mice consistently mounted significantly higher nAb titers than BALB/c mice across all immunization groups, including subunit- and whole-virus-based vaccines. In contrast, BALB/c mice showed lower or undetectable nAb responses, despite comparable or higher total IgG levels in some cases. These findings show that host genetic background is a critical determinant of vaccine-induced neutralization and underscore the importance of selecting appropriate animal models in ZIKV vaccine development. C57BL/6 mice, due to their robust nAb responses, represent a reliable model for evaluating vaccine immunogenicity. Conversely, the limited nAb responses in BALB/c mice position them as a potential low-responder model, offering a stringent system to test the potency and breadth of protective immunity under suboptimal conditions.

Research Support, Non-U.S. Gov't
Preliminary Study about Sublingual Administration of Bacteria-expressed Pandemic H1N1 Influenza Vaccine in Miniature Pigs
Hyekwon Kim , Jeong-Ki Kim , Hohyun Song , Jungah Choi , Byoungshik Shim , Bokyu Kang , Hyoungjoon Moon , Minjoo Yeom , Sang-Hyun Kim , Daesub Song , Manki Song
J. Microbiol. 2014;52(9):794-800.   Published online July 30, 2014
DOI: https://doi.org/10.1007/s12275-014-4289-4
  • 225 View
  • 0 Download
  • 5 Crossref
AbstractAbstract PDF
Sublingual (SL) administration of influenza vaccine would be non-invasive and effective way to give human populations protective immunity against the virus, especially when pandemic influenza outbreaks. In this study, the efficacy of pandemic influenza virus-based subunit vaccines was tested after sublingual (SL) adjuvant administration in pigs. Eight specific pathogen-free Yucatan pigs were divided into 4 groups: nonvaccinated but challenged (A) and vaccinated and challenged (B, C, and D). The vaccinated groups were subdivided by vaccine type and inoculation route: SL subunit vaccine (hemagglutinin antigen 1 [HA1] + wild-type cholera toxin [wtCT], B); IM subunit vaccine (HA1 + aluminum hydroxide, C); and IM inactivated vaccine (+ aluminum hydroxide, D). The vaccines were administered twice at a 2-week interval. All pigs were challenged with pandemic influenza virus (A/swine/ GCVP-KS01/2009 [H1N1]) and monitored for clinical signs, serology, viral shedding, and histopathology. After vaccination, hemagglutination inhibition titre was higher in group D (320) than in the other vaccinated groups (40–80) at the time of challenge. The mobility and feed intake were reduced in group C. Both viral shedding and histopathological lesions were reduced in groups B and D. Although this study has limitation due to the limited number of pigs (2 pigs per a group), the preliminary data in this study provided the protective potential of SL administration of bacteria-expressed pandemic H1N1 influenza vaccine in pigs. There should be additional animal studies about effective adjuvant system and vaccine types for the use of SL influenza vaccination.

Citations

Citations to this article as recorded by  
  • Oral mucosa immunity: ultimate strategy to stop spreading of pandemic viruses
    Hyesun Jang, Michele Matsuoka, Marcelo Freire
    Frontiers in Immunology.2023;[Epub]     CrossRef
  • Pathological Evaluation of Porcine Circovirus 2d (PCV2d) Strain and Comparative Evaluation of PCV2d and PCV2b Inactivated Vaccines against PCV2d Infection in a Specific Pathogen-Free (SPF) Yucatan Miniature Pig Model
    Yun-Hee Noh, Seung-Chai Kim, Chang-Gi Jeong, Seung-Chul Lee, Dong-Uk Lee, In-Joong Yoon, Won-Il Kim
    Vaccines.2022; 10(9): 1469.     CrossRef
  • La vacuna sublingual de la gripe
    J. Reina
    Vacunas.2019; 20(1): 37.     CrossRef
  • The sublingual influenza vaccine
    J. Reina
    Vacunas (English Edition).2019; 20(1): 37.     CrossRef
  • Experimental miniature piglet model for the infection of human norovirus GII
    Dong Joo Seo, Day Jung, Soontag Jung, Seung‐Kwon Ha, Sang‐Do Ha, In‐Soo Choi, Jinjong Myoung, Changsun Choi
    Journal of Medical Virology.2018; 90(4): 655.     CrossRef

Journal of Microbiology : Journal of Microbiology
TOP