Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
2 "Martelella lutilitoris"
Filter
Filter
Article category
Keywords
Publication year
Journal Articles
The β‑Lactamase Activity at the Community Level Confers β‑Lactam Resistance to Bloom‑Forming Microcystis aeruginosa Ce
Yerim Park , Wonjae Kim , Minkyung Kim , Woojun Park
J. Microbiol. 2023;61(9):807-820.   Published online October 18, 2023
DOI: https://doi.org/10.1007/s12275-023-00082-0
  • 61 View
  • 0 Download
  • 7 Web of Science
  • 7 Crossref
AbstractAbstract
Many freshwater cyanobacteria, including Microcystis aeruginosa, lack several known antibiotic resistance genes; however, both axenic and xenic M. aeruginosa strains exhibited high antibiotic resistance against many antibiotics under our tested concentrations, including colistin, trimethoprim, and kanamycin. Interestingly, axenic PCC7806, although not the xenic NIBR18 and NIBR452 strains, displayed susceptibility to ampicillin and amoxicillin, indicating that the associated bacteria in the phycosphere could confer such antibiotic resistance to xenic strains. Fluorescence and scanning electron microscopic observations revealed their tight association, leading to possible community-level β-lactamase activity. Combinatory treatment of ampicillin with a β-lactamase inhibitor, sulbactam, abolished the ampicillin resistance in the xenic stains. The nitrocefin-based assay confirmed the presence of significant community-level β-lactamase activity. Our tested low ampicillin concentration and high β-lactamase activity could potentially balance the competitive advantage of these dominant species and provide opportunities for the less competitive species, thereby resulting in higher bacterial diversity under ampicillin treatment conditions. Non-PCR-based metagenome data from xenic NIBR18 cultures revealed the dominance of blaOXArelated antibiotic resistance genes followed by other class A β-lactamase genes (AST-1 and FAR-1). Alleviation of ampicillin toxicity could be observed only in axenic PCC7806, which had been cocultured with β-lactamase from other freshwater bacteria. Our study suggested M. aeruginosa develops resistance to old-class β-lactam antibiotics through altruism, where associated bacteria protect axenic M. aeruginosa cells.

Citations

Citations to this article as recorded by  
  • Sustainable control of Microcystis aeruginosa, a harmful cyanobacterium, using Selaginella tamariscina extracts
    Wonjae Kim, Yerim Park, Minkyung Kim, Yeji Cha, Jaejoon Jung, Che Ok Jeon, Woojun Park
    Ecotoxicology and Environmental Safety.2024; 277: 116375.     CrossRef
  • Microcystis abundance is predictable through ambient bacterial communities: A data-oriented approach
    Mingyeong Kang, Dong-Kyun Kim, Ve Van Le, So-Ra Ko, Jay Jung Lee, In-Chan Choi, Yuna Shin, Kyunghyun Kim, Chi-Yong Ahn
    Journal of Environmental Management.2024; 368: 122128.     CrossRef
  • Enhanced mechanical properties of living and regenerative building materials by filamentous Leptolyngbya boryana
    Yongjun Son, Jihyeon Min, Indong Jang, Jiyoon Park, Chongku Yi, Woojun Park
    Cell Reports Physical Science.2024; 5(8): 102098.     CrossRef
  • Food Webs and Feedbacks: The Untold Ecological Relevance of Antimicrobial Resistance as Seen in Harmful Algal Blooms
    Aabir Banerji, Nichole E. Brinkman, Benjamin Davis, Alison Franklin, Michael Jahne, Scott P. Keely
    Microorganisms.2024; 12(11): 2121.     CrossRef
  • Extensive Genomic Rearrangement of Catalase-Less Cyanobloom-Forming Microcystis aeruginosa in Freshwater Ecosystems
    Minkyung Kim, Jaejoon Jung, Wonjae Kim, Yerim Park, Che Ok Jeon, Woojun Park
    Journal of Microbiology.2024; 62(11): 933.     CrossRef
  • Biological and Chemical Approaches for Controlling Harmful Microcystis Blooms
    Wonjae Kim, Yerim Park, Jaejoon Jung, Che Ok Jeon, Masanori Toyofuku, Jiyoung Lee, Woojun Park
    Journal of Microbiology.2024; 62(3): 249.     CrossRef
  • Alleviation of H2O2 toxicity by extracellular catalases in the phycosphere of Microcystis aeruginosa
    Yerim Park, Wonjae Kim, Yeji Cha, Minkyung Kim, Woojun Park
    Harmful Algae.2024; 137: 102680.     CrossRef
Martelella lutilitoris sp. nov., isolated from a tidal mudflat
Young-Ju Kim , Soon Dong Lee
J. Microbiol. 2019;57(11):976-981.   Published online September 25, 2019
DOI: https://doi.org/10.1007/s12275-019-9259-4
  • 51 View
  • 0 Download
  • 6 Web of Science
  • 8 Crossref
AbstractAbstract
A novel, Gram-stain-negative, marine bacterium, designated GH2-6T, was isolated from a rhizosphere mudflat of a halophyte (Carex scabrifolia) collected in Gangwha Island, the Republic of Korea. The cells of the organism were strictly aerobic, oxidase- and catalase-positive, non-flagellated rods. Growth occurred at 20–45°C, pH 5–10, and 0.5–9 (w/v) NaCl. The requirement of Na+ for growth (0.5–3%) was observed. The major respiratory quinone was Q-10. The major polar lipids were phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, an aminolipid and a glycolipid. The predominant fatty acids were C18:1 ω7c, C18:0, C16:0, C19:0 cyclo ω8c, C18:1 ω7c 11-methyl and summed feature 2 (C14:0 3-OH and/or C16:1 iso I). The genome size was 4.45 Mb and the G+C content of the genomic DNA was 61.9 mol%. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain GH2-6T belonged to genus Martelella and formed a tight cluster with M. radicis BM5-7T and M. endophytica YC6887T. Levels of 16S rRNA gene sequence similarity between the novel isolate and members of the genus were 99.3–95.5%, but strain GH2-6T possessed an extended loop (49 nucleotides in length) between positions 187 and 213 of the 16S rRNA gene sequence (E. coli numbering). DDH values in vitro between the novel isolate and the closest relatives were 23.2±12.8 – 46.3±5.2%. On the basis of polyphasic data presented in this study, the type strain GH2-6T (= KACC 19403T = KCTC 62125T = NBRC 113212T) represents a novel species of the genus Martelella for which the name Martelella lutilitoris sp. nov. is proposed.

Citations

Citations to this article as recorded by  
  • Genomic Analysis of Halotolerant Bacterial Strains Martelella soudanensis NC18T and NC20
    Jung-Yun Lee, Dong-Hun Kim
    Journal of Microbiology and Biotechnology.2022; 32(11): 1427.     CrossRef
  • Description of Polaribacter batillariae sp. nov., Polaribacter cellanae sp. nov., and Polaribacter pectinis sp. nov., novel bacteria isolated from the gut of three types of South Korean shellfish
    Su-Won Jeong, Jeong Eun Han, June-Young Lee, Ji-Ho Yoo, Do-Yeon Kim, In Chul Jeong, Jee-Won Choi, Yun-Seok Jeong, Jae-Yun Lee, So-Yeon Lee, Euon Jung Tak, Hojun Sung, Hyun Sik Kim, Pil Soo Kim, Dong-Wook Hyun, Jin-Woo Bae
    Journal of Microbiology.2022; 60(6): 576.     CrossRef
  • Martelella alba sp. nov., isolated from mangrove rhizosphere soil within the Beibu Gulf
    Mi Li, Chenghai Gao, Yuyao Feng, Kai Liu, Pei Cao, Yonghong Liu, Xiangxi Yi
    Archives of Microbiology.2021; 203(4): 1779.     CrossRef
  • Insights from comparative proteomic analysis into degradation of phenanthrene and salt tolerance by the halophilic Martelella strain AD-3
    Xin Chen, Weiwei Wang, Haiyang Hu, Hongzhi Tang, Yongdi Liu, Ping Xu, Kuangfei Lin, Changzheng Cui
    Ecotoxicology.2021; 30(7): 1499.     CrossRef
  • Duganella aceris sp. nov., isolated from tree sap and proposal to transfer of Rugamonas aquatica and Rugamonas rivuli to the genus Duganella as Duganella aquatica comb. nov., with the emended description of the genus Rugamonas
    Dabin Jeon, In Seop Kim, Hanna Choe, Ji-Sun Kim, Soon Dong Lee
    Archives of Microbiology.2021; 203(6): 2843.     CrossRef
  • Characterization of Martelella soudanensis sp. nov., Isolated from a Mine Sediment
    Jung-Yun Lee, Dong-Hun Lee, Dong-Hun Kim
    Microorganisms.2021; 9(8): 1736.     CrossRef
  • List of new names and new combinations previously effectively, but not validly, published
    Aharon Oren, George Garrity
    International Journal of Systematic and Evolutionary Microbiology .2020; 70(7): 4043.     CrossRef
  • Hahyoungchilella caricis gen. nov., sp. nov., isolated from a rhizosphere mudflat of a halophyte (Carex scabrifolia), transfer of Thioclava arenosa Thongphrom et al. 2017 to Pseudothioclava as Pseudothioclava arenosa gen. nov., comb. nov. and proposal of
    Young-Ju Kim, Soon Dong Lee
    Journal of Microbiology.2019; 57(12): 1048.     CrossRef

Journal of Microbiology : Journal of Microbiology
TOP