Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
5 "Min Cho"
Filter
Filter
Article category
Keywords
Publication year
Authors
Funded articles
Research Article
Dissimilatory nitrate reductions in soil Neobacillus and Bacillus strains under aerobic condition
Seohyun Ahn, Min Cho, Michael J. Sadowsky, Jeonghwan Jang
J. Microbiol. 2025;63(2):e2411019.   Published online February 27, 2025
DOI: https://doi.org/10.71150/jm.2411019
  • 254 View
  • 10 Download
AbstractAbstract PDFSupplementary Material
Denitrification and dissimilatory nitrate reduction to ammonium (DNRA) were thought to be carried-out by anaerobic bacteria constrained to anoxic conditions as they use nitrate (NO3-) as a terminal electron acceptor instead of molecular O2. Three soil bacilli, Neobacillus spp. strains PS2-9 and PS3-12 and Bacillus salipaludis PS3-36, were isolated from rice paddy field soil in Korea. The bacterial strains were selected as possible candidates performing aerobic denitrification and DNRA as they observed to reduce NO3- and produce extracellular NH4+ regardless of oxygen presence at the initial screening. Whole genome sequencing revealed that these strains possessed all the denitrification and DNRA functional genes in their genomes, including the nirK, nosZ, nirB, and nrfA genes, which were simultaneously cotranscribed under aerobic condition. The ratio between the assimilatory and dissimilatory NO3- reduction pathways depended on the availability of a nitrogen source for cell growth, other than NO3-. Based on the phenotypic and transcriptional analyses of the NO3- reductions, all three of the facultative anaerobic strains reduced NO3- likely in both assimilatory and dissimilatory pathways under both aerobic and anoxic conditions. To our knowledge, this is the first report that describes coexistence of NO3- assimilation, denitrification, and DNRA in a Bacillus or Neobacillus strain under aerobic condition. These strains may play a pivotal role in the soil nitrogen cycle.
Journal Article
Thalassotalea aquiviva sp. nov., and Thalassotalea maritima sp. nov., Isolated from Seawater of the Coast in South Korea
Jina Lee, Seung-Hui Song, Kira Moon, Nakyeong Lee, Sangdon Ryu, Hye Seon Song, Sung Moon Lee, Yun Ji Kim, Se Won Chun, Kyung-Min Choi, Aslan Hwanhwi Lee
J. Microbiol. 2024;62(12):1099-1111.   Published online December 10, 2024
DOI: https://doi.org/10.1007/s12275-024-00191-4
  • 52 View
  • 0 Download
AbstractAbstract
Two novel bacterial strains, 273M-4T and Sam97T, were isolated from seawater in the Yellow Sea, Muan-gun, South Korea, and identified as members of the genus Thalassotalea. Both strains were Gram-stain-negative, aerobic, rod-shaped, non-motile, non-flagellated, and oxidase- and catalase-positive. Phylogenetic analysis based on 16S rRNA gene sequences showed that strains 273M-4T and Sam97T were most closely related to Thalassotalea ponticola KCTC 42155T, with sequence similarities of 97.5% and 98.3%, respectively. Optimal growth for strain 273M-4T occurred at 25-30 °C, pH 7.0, and 2% NaCl, while strain Sam97T grew optimally at 30 °C, pH 8.0, and 2% NaCl. Genome sizes of strains 273M-4T and Sam97T were 3.37 and 3.31 Mb, with DNA G + C contents of 41.0 mol% and 42.9 mol%, respectively. The orthologous average nucleotide identity (OrthoANI) and digital DNA-DNA hybridization (dDDH) values between the two strains were 71.6% and 24.4%, respectively, indicating that they are distinct species. Further genomic analyses of these two strains revealed OrthoANI values of < 73.5% and dDDH values of < 26.7% within the genus Thalassotalea, suggesting their distinctiveness from other Thalassotalea species. The predominate fatty acids of strains 273M-4T and Sam97T were summed feature 3 (consisting of C16:1 ω7c/C16:1 ω6c) and C16:0. All strains contained phosphatidylethanolamine and phosphatidylglycerol as the major polar lipids and ubiquinone-8 (Q-8) as the primary respiratory quinone. Based on phenotypic, phylogenetic, genotypic, and chemotaxonomic data, strains 273M-4T (= KCTC 8644T = LMG 33695T) and Sam97T (= KCTC 8645T = LMG 33694T) represent novel species of the genus Thalassotalea, named Thalassotalea aquiviva sp. nov. and Thalassotalea maritima sp. nov..
Review
Denitrifying Woodchip Bioreactors: A Microbial Solution for Nitrate in Agricultural Wastewater—A Review
Sua Lee , Min Cho , Michael J. Sadowsky , Jeonghwan Jang
J. Microbiol. 2023;61(9):791-805.   Published online August 18, 2023
DOI: https://doi.org/10.1007/s12275-023-00067-z
  • 50 View
  • 0 Download
  • 2 Web of Science
  • 1 Crossref
AbstractAbstract
Nitrate ( NO3 −) is highly water-soluble and considered to be the main nitrogen pollutants leached from agricultural soils. Its presence in aquatic ecosystems is reported to cause various environmental and public health problems. Bioreactors containing microbes capable of transforming NO3 − have been proposed as a means to remediate contaminated waters. Woodchip bioreactors (WBRs) are continuous flow, reactor systems located below or above ground. Below ground systems are comprised of a trench filled with woodchips, or other support matrices. The nitrate present in agricultural drainage wastewater passing through the bioreactor is converted to harmless dinitrogen gas ( N2) via the action of several bacteria species. The WBR has been suggested as one of the most cost-effective NO3 −-removing strategy among several edge-of-field practices, and has been shown to successfully remove NO3 − in several field studies. NO3 − removal in the WBR primarily occurs via the activity of denitrifying microorganisms via enzymatic reactions sequentially reducing NO3 − to N2. While previous woodchip bioreactor studies have focused extensively on its engineering and hydrological aspects, relatively fewer studies have dealt with the microorganisms playing key roles in the technology. This review discusses NO3 − pollution cases originating from intensive farming practices and N-cycling microbial metabolisms which is one biological solution to remove NO3 − from agricultural wastewater. Moreover, here we review the current knowledge on the physicochemical and operational factors affecting microbial metabolisms resulting in removal of NO3 − in WBR, and perspectives to enhance WBR performance in the future.

Citations

Citations to this article as recorded by  
  • Complete genome sequence of Neobacillus sp. strain OS1-2, a denitrifying bacterium isolated from apple orchard soil
    Jinwoo Ahn, Jeonghwan Jang, Elinne Becket
    Microbiology Resource Announcements.2024;[Epub]     CrossRef
Journal Articles
Weigela florida inhibits the expression of inflammatory mediators induced by Pseudomonas aeruginosa and Staphylococcus aureus infection
Hyo Bin Kim , Soomin Cho , Yeji Lee , Weihui Wu , Un-Hwan Ha
J. Microbiol. 2022;60(6):649-656.   Published online April 30, 2022
DOI: https://doi.org/10.1007/s12275-022-1638-6
  • 44 View
  • 0 Download
  • 3 Web of Science
  • 4 Crossref
AbstractAbstract
Inflammatory responses involve the action of inflammatory mediators that are necessary for the clearance of invading bacterial pathogens. However, excessive production of inflammatory mediators can damage tissues, thereby impairing bacterial clearance. Here, we examined the effects of Weigela florida on the expression of inflammatory cytokines induced by Pseudomonas aeruginosa or Staphylococcus aureus infection in macrophages. The results showed that pre-treatment with W. florida markedly downregulated the bacterial infectionmediated expression of cytokines. Additionally, post-treatment also triggered anti-inflammatory effects in cells infected with S. aureus to a greater extent than in those infected with P. aeruginosa. Bacterial infection activated inflammation-associated AKT (Thr308 and Ser473)/NF-κB and MAPK (p38, JNK, and ERK) signaling pathways, whereas W. florida treatment typically inhibited the phosphorylation of AKT/NF‐κB and p38/JNK, supporting the anti‐inflammatory effects of W. florida. The present results suggest that W. florida decreases the infection-mediated expression of inflammatory mediators by inhibiting the AKT/NF-κB and MAPK signaling pathways, implying that it may have potential use as an inhibitory agent of excessive inflammatory responses.

Citations

Citations to this article as recorded by  
  • Multifunctional fluorescence probe for simultaneous detection of viscosity, polarity, and ONOO− and its bioimaging in vitro and vivo
    Yuan-Yuan Li, Jia-Ling Hu, Ji-Rou Wu, Yi-Ru Wang, Ai-Hong Zhang, Yu-Wei Tan, Ya-Jing Shang, Ting Liang, Min Li, Ya-Li Meng, Yan-Fei Kang
    Biosensors and Bioelectronics.2024; 254: 116233.     CrossRef
  • Polymicrobial interactions influence Mycobacterium abscessus co-existence and biofilm forming capabilities
    Nishant Nandanwar, Geoffery Gu, Joy E. Gibson, Michael N. Neely
    Frontiers in Microbiology.2024;[Epub]     CrossRef
  • Tissue damage alleviation and mucin inhibition by P5 in a respiratory infection mouse model with multidrug-resistant Acinetobacter baumannii
    Jun Hee Oh, Jonggwan Park, Hee Kyoung Kang, Hee Joo Park, Yoonkyung Park
    Biomedicine & Pharmacotherapy.2024; 181: 117724.     CrossRef
  • Spatiotemporal Deep-Learning-Based Algal Bloom Prediction for Lake Okeechobee Using Multisource Data Fusion
    Yufei Tang, Yingqi Feng, Sasha Fung, Veronica Ruiz Xomchuk, Mingshun Jiang, Tim Moore, Jordon Beckler
    IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.2022; 15: 8318.     CrossRef
Mesorhizobium denitrificans sp. nov., a novel denitrifying bacterium isolated from sludge
Muhammad Zubair Siddiqi , Ngo Thi Phuong Thao , Gyumin Choi , Dae-Cheol Kim , Young-Woo Lee , Sang Young Kim , Ji-Hyang Wee , Wan-Taek Im
J. Microbiol. 2019;57(4):238-242.   Published online March 30, 2019
DOI: https://doi.org/10.1007/s12275-019-8590-0
  • 46 View
  • 0 Download
  • 14 Web of Science
  • 14 Crossref
AbstractAbstract
A Gram-stain-negative, non-spore-forming, facultative, rodshaped bacterium (designated LA-28T) was isolated from a sludge sample from a wastewater treatment plant in Hanam city, Republic of Korea. On the basis of 16S rRNA gene sequencing, strain LA-28T clustered with species of the genus Mesorhizobium and appeared closely related to M. jarvisii LMG 28313T (96.8%), M. waimense ICMP 19557T (96.7%), and M. huakuii LMG 14107T (96.7%). Growth occurs at 18– 40°C on R2A medium in the presence of 1–4% NaCl (w/v) and at pH 6–8. The DNA G+C content was 61.2 mol%, and the predominant quinone was ubiquinone-10 (Q-10). The major cellular fatty acids (> 5%) were C16:0, C19:0 ω8c cyclo, C18:1 ω7c 11-methyl, and C18:1 ω7c and/or C18:1 ω6c (summed feature 8). Major polar lipids were phosphatidylglycerol (PG), phosphatidylethanolamine (PE), phosphatidyl-N-methylethanolamine (PME), and phosphatidylcholine (PC). Physiological and biochemical characteristics indicated that strain LA-28T represents a novel species of the genus Mesorhizobium, for which the name Mesorhizobium denitrificans sp. nov. is proposed. The type strain is LA-28T (= KACC 19675T = LMG 30806T).

Citations

Citations to this article as recorded by  
  • Bioaugmented biological contact oxidation reactor for treating simulated textile dyeing wastewater
    Hongyu Dong, Yonglan Tian, Jianjiang Lu, Jie Zhao, Yanbin Tong, Junfeng Niu
    Bioresource Technology.2024; 404: 130916.     CrossRef
  • Manganese reductive dissolution coupled to Sb mobilization in contaminated shooting range soil
    Lara Costa, Mathieu Martinez, Marcel Suleiman, Rolf Keiser, Moritz Lehmann, Markus Lenz
    Applied Microbiology and Biotechnology.2024;[Epub]     CrossRef
  • Evaluation of the performance of new plastic packing materials from plastic waste in biotrickling filters for odour removal
    S. Sáez-Orviz, R. Lebrero, L. Terrén, S. Doñate, M.D. Esclapez, L. Saúco, R. Muñoz
    Process Safety and Environmental Protection.2024; 191: 2361.     CrossRef
  • Mesorhizobium koreense sp. nov., Isolated from Soil
    Hyosun Lee, Dhiraj Kumar Chaudhary, Dong-Uk Kim
    Journal of Microbiology and Biotechnology.2024; 34(9): 1819.     CrossRef
  • Population genomics of Australian indigenous Mesorhizobium reveals diverse nonsymbiotic genospecies capable of nitrogen-fixing symbioses following horizontal gene transfer
    Elena Colombi, Yvette Hill, Rose Lines, John T. Sullivan, MacLean G. Kohlmeier, Claus T. Christophersen, Clive W. Ronson, Jason J. Terpolilli, Joshua P. Ramsay
    Microbial Genomics .2023;[Epub]     CrossRef
  • Aquibium microcysteis gen. nov., sp. nov., isolated from a Microcystis aeruginosa culture and reclassification of Mesorhizobium carbonis as Aquibium carbonis comb. nov. and Mesorhizobium oceanicum as Aquibium oceanicum comb. nov
    Minkyung Kim, Wonjae Kim, Woojun Park
    International Journal of Systematic and Evolutionary Microbiology .2022;[Epub]     CrossRef
  • The structure and assembly of rhizobacterial communities are influenced by poplar genotype
    Qi Liang Zhu, Kun Yan, Nian Zhao Wang, Shu Qi Ma, De Shan Lu, Xiao Hua Su, Zheng Sai Yuan, Yu Feng Dong, Yan Ping Wang, Chang Jun Ding
    Frontiers in Microbiology.2022;[Epub]     CrossRef
  • Shifts of microbial community structure along substrate concentration gradients in immobilized biomass for nitrogen removal
    Shao-Wei Tsai, Larissa Schwinghammer, Chien-Hsien Lee, Cheng-Fang Lin, Chia-Hung Hou
    npj Clean Water.2022;[Epub]     CrossRef
  • Inoculation effect of Pseudomonas sp. TF716 on N2O emissions during rhizoremediation of diesel-contaminated soil
    Ji-Yoon Kim, Kyung-Suk Cho
    Scientific Reports.2022;[Epub]     CrossRef
  • Aerobic granulation of nitrifying activated sludge enhanced removal of 17α-ethinylestradiol
    Lili Wang, Zhifang Liu, Xiaoman Jiang, Anjie Li
    Science of The Total Environment.2021; 801: 149546.     CrossRef
  • Combined impacts of diclofenac and divalent copper on the nitrogen removal, bacterial activity and community from a sequencing batch reactor
    Huan Yang, Zichao Wang, Shengyu Yuan, Yueyue Wang, Youtao Song, Naishun Bu, Lin Wang, Lu Zhang
    Journal of Water Process Engineering.2021; 43: 102212.     CrossRef
  • Nitrogen removal bacterial strains, MSNA-1 and MSD4, with wide ranges of salinity and pH resistances
    Xiaoying Zeng, Jinhui Jeanne Huang, Binbin Hua, Pascale Champagne
    Bioresource Technology.2020; 310: 123309.     CrossRef
  • Metabolomics and metagenomics characteristic of historic beeswax seals
    Justyna Szulc, Ivona Jablonskaja, Elżbieta Jabłońska, Tomasz Ruman, Joanna Karbowska-Berent, Beata Gutarowska
    International Biodeterioration & Biodegradation.2020; 152: 105012.     CrossRef
  • International Committee on Systematics of Prokaryotes Subcommittee on the Taxonomy of Rhizobia and Agrobacteria Minutes of the closed meeting by videoconference, 17 July 2019
    Philippe de Lajudie, J. Peter W. Young
    International Journal of Systematic and Evolutionary Microbiology .2020; 70(5): 3563.     CrossRef

Journal of Microbiology : Journal of Microbiology
TOP