Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
1 "MuS1 gene"
Filter
Filter
Article category
Keywords
Publication year
Research Support, Non-U.S. Gov't
NOTE] Ectopic Expression of Sweet Potato MuS1 Increases Acquired Stress Tolerance and Fermentation Yield in Saccharomyces cerevisiae
Il-Sup Kim , Sun-Young Shin , Sun-Hyung Kim , Ho-Sung Yoon
J. Microbiol. 2012;50(3):544-546.   Published online June 30, 2012
DOI: https://doi.org/10.1007/s12275-012-2043-3
  • 42 View
  • 0 Download
  • 2 Crossref
AbstractAbstract
The MuS1 gene is highly homologous to many stress-related proteins in plants. Here, we characterized whether a new candidate gene, MuS1, is related to multiple stress tolerance in yeast as it is in plants. Transgenic yeast strain expressing MuS1 were more resistant to hydrogen peroxide, menadione, high salinity, metals (i.e., cadmium, copper, iron, and zinc), ethanol, and lactic acid than wild-type strain transformed with a vector alone. In addition, the alcohol yield of the transgenic yeast strain was higher than that of the wild-type strain during the batch fermentation process. These results show that MuS1-expressing transgenic yeast strain exhibits enhanced alcohol yield as well as tolerance to abiotic stresses, especially metal stress.

Citations

Citations to this article as recorded by  
  • The unique importance of sweetpotato: Insights focusing on genetic improvements of salt and drought tolerance
    Mingku Zhu
    Scientia Horticulturae.2025; 339: 113848.     CrossRef
  • The interaction networks of small rubber particle proteins in the latex of Taraxacum koksaghyz reveal diverse functions in stress responses and secondary metabolism
    Silva Melissa Wolters, Natalie Laibach, Jenny Riekötter, Kai-Uwe Roelfs, Boje Müller, Jürgen Eirich, Richard M. Twyman, Iris Finkemeier, Dirk Prüfer, Christian Schulze Gronover
    Frontiers in Plant Science.2024;[Epub]     CrossRef

Journal of Microbiology : Journal of Microbiology
TOP