Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
2 "Mucilaginibacter limnophilus sp. nov."
Filter
Filter
Article category
Keywords
Publication year
Journal Articles
Integrated proteomic and metabolomic analyses reveal significant changes in chloroplasts and mitochondria of pepper (Capsicum annuum L.) during Sclerotium rolfsii infection
Hongdong Liao , Xiangyu Wen , Xuelei Deng , Yonghong Wu , Jianping Xu , Xin Li , Shudong Zhou , Xuefeng Li , Chunhui Zhu , Feng Luo , Yanqing Ma , Jingyuan Zheng
J. Microbiol. 2022;60(5):511-525.   Published online March 31, 2022
DOI: https://doi.org/10.1007/s12275-022-1603-4
  • 59 View
  • 0 Download
  • 6 Web of Science
  • 5 Crossref
AbstractAbstract
Infection by Sclerotium rolfsii will cause serious disease and lead to significant economic losses in chili pepper. In this study, the response of pepper during S. rolfsii infection was explored by electron microscopy, physiological determination and integrated proteome and metabolome analyses. Our results showed that the stomata of pepper stems were important portals for S. rolfsii infection. The plant cell morphology was significantly changed at the time of the fungal hyphae just contacting (T1) or surrounding (T2) the pepper. The chlorophyll, carotenoid, and MDA contents and the activities of POD, SOD, and CAT were markedly upregulated at T1 and T2. Approximately 4129 proteins and 823 metabolites were clearly identified in proteome and metabolome analyses, respectively. A change in 396 proteins and 54 metabolites in pepper stem tissues was observed at T1 compared with 438 proteins and 53 metabolites at T2. The proteins and metabolites related to photosynthesis and antioxidant systems in chloroplasts and mitochondria were disproportionally affected by S. rolfsii infection, impacting carbohydrate and amino acid metabolism. This study provided new insights into the response mechanism in pepper stems during S. rolfsii infection, which can guide future work on fungal disease resistance breeding in pepper.

Citations

Citations to this article as recorded by  
  • Multifaceted chemical and bioactive features of Ag@TiO2 and Ag@SeO2 core/shell nanoparticles biosynthesized using Beta vulgaris L. extract
    Khaled M. Elattar, Fatimah O. Al-Otibi, Mohammed S. El-Hersh, Attia A. Attia, Noha M. Eldadamony, Ashraf Elsayed, Farid Menaa, WesamEldin I.A. Saber
    Heliyon.2024; 10(7): e28359.     CrossRef
  • Fighting for Survival at the Stomatal Gate
    Maeli Melotto, Brianna Fochs, Zachariah Jaramillo, Olivier Rodrigues
    Annual Review of Plant Biology .2024; 75(1): 551.     CrossRef
  • Zinc and Boron Soil Applications Affect Athelia rolfsii Stress Response in Sugar Beet (Beta vulgaris L.) Plants
    Tamalika Bhadra, Chandan Kumar Mahapatra, Md. Hosenuzzaman, Dipali Rani Gupta, Abeer Hashem, Graciela Dolores Avila-Quezada, Elsayed Fathi Abd_Allah, Md. Anamul Hoque, Swapan Kumar Paul
    Plants.2023; 12(19): 3509.     CrossRef
  • Genetic Regulation, Environmental Cues, and Extraction Methods for Higher Yield of Secondary Metabolites in Capsicum
    Khushbu Islam, Abdul Rawoof, Ajay Kumar, John Momo, Ilyas Ahmed, Meenakshi Dubey, Nirala Ramchiary
    Journal of Agricultural and Food Chemistry.2023; 71(24): 9213.     CrossRef
  • Integrated pathological, proteomic and metabolomic analyses reveal significant changes of Eriocheir sinensis hepatopancreatic in response to the microsporidian Hepatospora eriocheir infection
    Libo Hou, Mengdi Wang, Hao Li, Lei Zhu, Xianghui Kong, Wei Gu, Keran Bi, Jie Du, Qingguo Meng
    Aquaculture.2023; 577: 739994.     CrossRef
Mucilaginibacter limnophilus sp. nov., isolated from a lake
Shih-Yi Sheu , Yi-Ru Xie , Wen-Ming Chen
J. Microbiol. 2019;57(11):967-975.   Published online August 28, 2019
DOI: https://doi.org/10.1007/s12275-019-9146-z
  • 51 View
  • 0 Download
  • 3 Web of Science
  • 4 Crossref
AbstractAbstract
A polyphasic taxonomy approach was used to characterize strain YBJ-36T, isolated from a freshwater lake in Taiwan. Phylogenetic analyses, based on 16S rRNA gene sequences and coding sequences of an up-to-date bacterial core gene set (92 protein clusters), indicated that strain YBJ-36T formed a phylogenetic lineage in the genus Mucilaginibacter. 16S rRNA gene sequence similarity indicated that strain YBJ-36T is closely related to species within the genus Mucilaginibacter (93.8–97.8% sequence similarity) and is most similar to Mucilaginibacter fluminis TTM-2T (97.8%), followed by Mucilaginibacter roseus TTM-1T (97.2%). Microbiological analyses demonstrated that strain YBJ-36T is Gram-negative, aerobic, non-motile, rod-shaped, surrounded by a thick capsule, and forms pink-colored colonies. Strain YBJ-36T grew between 20–40°C (optimal range, 35–37°C), pH 5.5–7.0 (optimal pH of 6) and 0–2% NaCl (optimal concentration, 0.5%). The predominant fatty acids of strain YBJ-36T are iso-C15:0 and summed feature 3 (C16:1 ω7c and/or C16:1 ω6c), the major polar lipid is phosphatidylethanolamine, the major polyamine is homospermidine, and the major isoprenoid quinone is MK-7. The draft genome is approximately 4.63 Mb in size with a G+C content of 42.8 mol%. Strain YBJ-36T exhibited less than 35% DNA-DNA relatedness with Mucilaginibacter fluminis TTM-2T and Mucilaginibacter roseus TTM-1T. Based on phenotypic and genotypic properties and phylogenetic inference, strain YBJ-36T should be classified in a novel species of the genus Mucilaginibacter, for which the name Mucilaginibacter limnophilus sp. nov. is proposed. The type strain is YBJ-36T (= BCRC 81056T = KCTC 52811T = LMG 30058T).

Citations

Citations to this article as recorded by  
  • Complete genomes of Mucilaginibacter sabulilitoris SNA2 and Mucilaginibacter sp. cycad4: microbes with the potential for plant growth promotion
    Ann M. Hirsch, Ethan Humm, Liudmilla Rubbi, Giorgia Del Vecchio, Sung Min Ha, Matteo Pellegrini, Robert P. Gunsalus, Leighton Pritchard
    Microbiology Resource Announcements.2024;[Epub]     CrossRef
  • Mucilaginibacter sp. Strain Metal(loid) and Antibiotic Resistance Isolated from Estuarine Soil Contaminated Mine Tailing from the Fundão Dam
    Ana L. S. Vasconcelos, Fernando Dini Andreote, Thaiane Defalco, Endrews Delbaje, Leticia Barrientos, Armando C. F. Dias, Fabricio Angelo Gabriel, Angelo F. Bernardino, Kattia Núñez-Montero
    Genes.2022; 13(2): 174.     CrossRef
  • List of new names and new combinations previously effectively, but not validly, published
    Aharon Oren, George Garrity
    International Journal of Systematic and Evolutionary Microbiology .2020; 70(3): 1443.     CrossRef
  • Reclassification of genus Izhakiella into the family Erwiniaceae based on phylogenetic and genomic analyses
    Lingmin Jiang, Dexin Wang, Ji-Sun Kim, Ju Huck Lee, Dae-Hyuk Kim, Suk Weon Kim, Jiyoung Lee
    International Journal of Systematic and Evolutionary Microbiology .2020; 70(5): 3541.     CrossRef

Journal of Microbiology : Journal of Microbiology
TOP