Research Support, Non-U.S. Gov't
- Production, Partial Characterization, and Immobilization in Alginate Beads of an Alkaline Protease from a New Thermophilic Fungus Myceliophthora sp.
-
Letícia Maria Zanphorlin , Fernanda Dell Antonio Facchini , Filipe Vasconcelos , Rafaella Costa Bonugli-Santos , André Rodrigues , Lara Durães Sette , Eleni Gomes , Gustavo Orlando Bonilla-Rodriguez
-
J. Microbiol. 2010;48(3):331-336. Published online June 23, 2010
-
DOI: https://doi.org/10.1007/s12275-010-9269-8
-
-
38
View
-
0
Download
-
34
Scopus
-
Abstract
-
Thermophilic fungi produce thermostable enzymes which have a number of applications, mainly in biotechnological processes. In this work, we describe the characterization of a protease produced in solidstate (SSF) and submerged (SmF) fermentations by a newly isolated thermophilic fungus identified as a putative new species in the genus Myceliophthora. Enzyme-production rate was evaluated for both fermentation processes, and in SSF, using a medium composed of a mixture of wheat bran and casein, the proteolytic output was 4.5-fold larger than that obtained in SmF. Additionally, the peak of proteolytic activity was obtained after 3 days for SSF whereas for SmF it was after 4 days. The crude enzyme obtained by both
SSF and SmF displayed similar optimum temperature at 50°C, but the optimum pH shifted from 7 (SmF) to 9 (SSF). The alkaline protease produced through solid-state fermentation (SSF), was immobilized on beads of calcium alginate, allowing comparative analyses of free and immobilized proteases to be carried out. It was
observed that both optimum temperature and thermal stability of the immobilized enzyme were higher than for the free enzyme. Moreover, the immobilized enzyme showed considerable stability for up to 7 reuses.