Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
7 "Mycobacterium"
Filter
Filter
Article category
Keywords
Publication year
Journal Articles
Furan-based Chalcone Annihilates the Multi-Drug-Resistant Pseudomonas aeruginosa and Protects Zebra Fish Against its Infection
Santosh Pushpa Ramya Ranjan Nayak , Catharine Basty , Seenivasan Boopathi , Loganathan Sumathi Dhivya , Khaloud Mohammed Alarjani , Mohamed Ragab Abdel Gawwad , Raghda Hager , Muthu Kumaradoss Kathiravan , Jesu Arockiaraj
J. Microbiol. 2024;62(2):75-89.   Published online February 21, 2024
DOI: https://doi.org/10.1007/s12275-024-00103-6
  • 21 View
  • 0 Download
  • 3 Citations
AbstractAbstract
The emergence of carbapenem-resistant Pseudomonas aeruginosa, a multi-drug-resistant bacteria, is becoming a serious public health concern. This bacterium infects immunocompromised patients and has a high fatality rate. Both naturally and synthetically produced chalcones are known to have a wide array of biological activities. The antibacterial properties of synthetically produced chalcone were studied against P. aeruginosa. In vitro, study of the compound (chalcone derivative named DKO1), also known as (2E)-1-(5-methylfuran-2-yl)-3-(4-nitrophenyl) prop-2-en-1-one, had substantial antibacterial and biofilm disruptive action. DKO1 effectively shielded against P. aeruginosa-induced inflammation, oxidative stress, lipid peroxidation, and apoptosis in zebrafish larvae. In adult zebrafish, the treatment enhanced the chances of survivability and reduced the sickness-like behaviors. Gene expression, biochemical analysis, and histopathology studies found that proinflammatory cytokines (TNF-α, IL-1β, IL-6, iNOS) were down regulated; antioxidant enzymes such as superoxide dismutase (SOD) and catalase (CAT) levels increased, and histoarchitecture was restored in zebrafish. The data indicate that DKO1 is an effective antibacterial agent against P. aeruginosa demonstrated both in vitro and in vivo.
Coumarin-based combined computational study to design novel drugs against Candida albicans
Akhilesh Kumar Maurya , Nidhi Mishra
J. Microbiol. 2022;60(12):1201-1207.   Published online November 10, 2022
DOI: https://doi.org/10.1007/s12275-022-2279-5
  • 15 View
  • 0 Download
  • 3 Citations
AbstractAbstract
Candida species cause the most prevalent fungal illness, candidiasis. Candida albicans is known to cause bloodstream infections. This species is a commensal bacterium, but it can cause hospital–acquired diseases, particularly in COVID-19 patients with impaired immune systems. Candida infections have increased in patients with acute respiratory distress syndrome. Coumarins are both naturally occurring and synthetically produced. In this study, the biological activity of 40 coumarin derivatives was used to create a three-dimensional quantitative structure activity relationship (3D-QSAR) model. The training and test minimum inhibitory concentration values of C. albicans active compounds were split, and a regression model based on statistical data was established. This model served as a foundation for the creation of coumarin derivative QSARs. This is a unique way to create new therapeutic compounds for various ailments. We constructed novel structural coumarin derivatives using the derived QSAR model, and the models were confirmed using molecular docking and molecular dynamics simulation.
Enhancement of the solubility of recombinant proteins by fusion with a short-disordered peptide
Jun Ren , Suhee Hwang , Junhao Shen , Hyeongwoo Kim , Hyunjoo Kim , Jieun Kim , Soyoung Ahn , Min-gyun Kim , Seung Ho Lee , Dokyun Na
J. Microbiol. 2022;60(9):960-967.   Published online July 14, 2022
DOI: https://doi.org/10.1007/s12275-022-2122-z
  • 14 View
  • 0 Download
  • 5 Citations
AbstractAbstract
In protein biotechnology, large soluble fusion partners are widely utilized for increased yield and solubility of recombinant proteins. However, the production of additional large fusion partners poses an additional burden to the host, leading to a decreased protein yield. In this study, we identified two highly disordered short peptides that were able to increase the solubility of an artificially engineered aggregationprone protein, GFP-GFIL4, from 0.6% to 61% (D3-DP00592) and 46% (D4-DP01038) selected from DisProt database. For further confirmation, the peptides were applied to two insoluble E. coli proteins (YagA and YdiU). The peptides also enhanced solubility from 52% to 90% (YagA) and from 27% to 93% (YdiU). Their ability to solubilize recombinant proteins was comparable with strong solubilizing tags, maltosebinding protein (40 kDa) and TrxA (12 kDa), but much smaller (< 7 kDa) in size. For practical application, the two peptides were fused with a restriction enzyme, I-SceI, and they increased I-SceI solubility from 24% up to 75%. The highly disordered peptides did not affect the activity of I-SceI while I-SceI fused with MBP or TrxA displayed no restriction activity. Despite the small size, the highly disordered peptides were able to solubilize recombinant proteins as efficiently as conventional fusion tags and did not interfere with the function of recombinant proteins. Consequently, the identified two highly disordered peptides would have practical utility in protein biotechnology and industry.
Review
Current status and perspectives on vaccine development against dengue virus infection
Jisang Park , Ju Kim , Yong-Suk Jang
J. Microbiol. 2022;60(3):247-254.   Published online February 14, 2022
DOI: https://doi.org/10.1007/s12275-022-1625-y
  • 84 View
  • 0 Download
  • 30 Citations
AbstractAbstract
Dengue virus (DENV) consists of four serotypes in the family Flaviviridae and is a causative agent of dengue fever, dengue hemorrhagic fever, and dengue shock syndrome. DENV is transmitted by mosquitoes, Aedes aegypti and A. albopictus, and is mainly observed in areas where vector mosquitoes live. The number of dengue cases reported by the World Health Organization increased more than 8-fold over the last two decades from 505,430 in 2000 to over 2.4 million in 2010 to 5.2 million in 2019. Although vaccine is the most effective
method
against DENV, only one commercialized vaccine exists, and it cannot be administered to children under 9 years of age. Currently, many researchers are working to resolve the various problems hindering the development of effective dengue vaccines; understanding of the viral antigen configuration would provide insight into the development of effective vaccines against DENV infection. In this review, the current status and perspectives on effective vaccine development for DENV are examined. In addition, a plausible direction for effective vaccine development against DENV is suggested.
Journal Article
Potent antibacterial and antibiofilm activities of TICbf-14, a peptide with increased stability against trypsin
Liping Wang , Xiaoyun Liu , Xinyue Ye , Chenyu Zhou , Wenxuan Zhao , Changlin Zhou , Lingman Ma
J. Microbiol. 2022;60(1):89-99.   Published online December 29, 2021
DOI: https://doi.org/10.1007/s12275-022-1368-9
  • 27 View
  • 0 Download
  • 2 Citations
AbstractAbstract
The poor stability of peptides against trypsin largely limits their development as potential antibacterial agents. Here, to obtain a peptide with increased trypsin stability and potent antibacterial activity, TICbf-14 derived from the cationic peptide Cbf-14 was designed by the addition of disulfide-bridged hendecapeptide (CWTKSIPPKPC) loop. Subsequently, the trypsin stability and antimicrobial and antibiofilm activities of this peptide were evaluated. The possible mechanisms underlying its mode of action were also clarified. The results showed that TICbf-14 exhibited elevated trypsin inhibitory activity and effectively mitigated lung histopathological damage in bacteria-infected mice by reducing the bacterial counts, further inhibiting the systemic dissemination of bacteria and host inflammation. Additionally, TICbf-14 significantly repressed bacterial swimming motility and notably inhibited biofilm formation. Considering the mode of action, we observed that TICbf-14 exhibited a potent membrane-disruptive mechanism, which was attributable to its destructive effect on ionic bridges between divalent cations and LPS of the bacterial membrane. Overall, TICbf-14, a bifunctional peptide with both antimicrobial and trypsin inhibitory activity, is highly likely to become an ideal candidate for drug development against bacteria.
Review
Trans-acting regulators of ribonuclease activity
Jaejin Lee , Minho Lee , Kangseok Lee
J. Microbiol. 2021;59(4):341-359.   Published online March 29, 2021
DOI: https://doi.org/10.1007/s12275-021-0650-6
  • 14 View
  • 0 Download
  • 4 Citations
AbstractAbstract
RNA metabolism needs to be tightly regulated in response to changes in cellular physiology. Ribonucleases (RNases) play an essential role in almost all aspects of RNA metabolism, including processing, degradation, and recycling of RNA molecules. Thus, living systems have evolved to regulate RNase activity at multiple levels, including transcription, post-transcription, post-translation, and cellular localization. In addition, various trans-acting regulators of RNase activity have been discovered in recent years. This review focuses on the physiological roles and underlying mechanisms of trans-acting regulators of RNase activity.
Journal Article
[PROTOCOL] High-throughput cultivation based on dilution-to-extinction with catalase supplementation and a case study of cultivating acI bacteria from Lake Soyang
Suhyun Kim , Miri S. Park , Jaeho Song , Ilnam Kang , Jang-Cheon Cho
J. Microbiol. 2020;58(11):893-905.   Published online October 30, 2020
DOI: https://doi.org/10.1007/s12275-020-0452-2
  • 16 View
  • 0 Download
  • 13 Citations
AbstractAbstract
Multi-omics approaches, including metagenomics and single- cell amplified genomics, have revolutionized our understanding of the hidden diversity and function of microbes in nature. Even in the omics age, cultivation is an essential discipline in microbial ecology since microbial cultures are necessary to assess the validity of an in silico prediction about the microbial metabolism and to isolate viruses infecting bacteria and archaea. However, the ecophysiological characteristics of predominant freshwater bacterial lineages remain largely unknown due to the scarcity of cultured representatives. In an ongoing effort to cultivate the uncultured majority of freshwater bacteria, the most abundant freshwater Actinobacteria acI clade has recently been cultivated from Lake Soyang through catalase-supplemented high-throughput cultivation based on dilution-to-extinction. This method involves physical isolation of target microbes from mixed populations, culture media simulating natural habitats, and removal of toxic compounds. In this protocol, we describe detailed procedures for isolating freshwater oligotrophic microbes, as well as the essence of the dilution-to-extinction culturing. As a case study employing the catalase-supplemented dilution-to-extinction protocol, we also report a cultivation trial using a water sample collected from Lake Soyang. Of the 480 cultivation wells inoculated with a single lake-water sample, 75 new acI strains belonging to 8 acI tribes (acI-A1, A2, A4, A5, A6, A7, B1, B4, C1, and C2) were cultivated, and each representative strain per subclade could be revived from glycerol stocks. These cultivation results demonstrate that the protocol described in this study is efficient in isolating freshwater bacterioplankton harboring streamlined genomes.

Journal of Microbiology : Journal of Microbiology
TOP